Skip to main content

Pre- and Probiotics: Using Functional Foods in the Fight Against Microbial Resistance to Antibiotics

  • Chapter
  • First Online:
Antibacterial Drug Discovery to Combat MDR

Abstract

Functional foods such as prebiotics, dietary fibers, and probiotic microorganisms have several beneficial effects on the human body. Probiotic microorganisms are reported to produce and enhance the absorption of vitamins and minerals, short-chain fatty acids, amino acids, and organic acids, resulting in the enhancement of the host immune system. Generally, lactic acid bacteria and yeasts are used as probiotics. Prebiotics are nonabsorbable polysaccharides/oligosaccharides such as fructooligosaccharides, inulin, and human milk oligosaccharides and have positive effects on host health, maintaining the balance of the gut microbiome, as well as stimulating immunomodulatory activity. Prebiotics are not metabolized by digestive enzymes, allowing them to reach the colon unaltered, where they can be fermented by probiotics. They also promote mineral absorption and act as a fertilizer for gut microflora. These prebiotics can act in synergy with probiotics (synbiotics) and can thus be even more effective if used wisely, selectively stimulating the growth of specific microorganisms. As these synbiotics can directly inhibit the growth and colonization of pathogens and regulate the immune system, they can be developed as an alternative strategy for combating antibiotic resistance in pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alice, F., Albert, L., Stephanie, N., Iris, C., & Susan, C. (2012). Efficacy and safety of xylooligosaccharides. Dietary Fibre and Health, 497–518.

    Google Scholar 

  • Alvarez-Olmos, M. I., & Oberhelman, R. A. (2001). Probiotic agents and infectious diseases: A modern perspective on a traditional therapy. Clinical Infectious Diseases, 32(11), 1567–1576.

    Article  CAS  PubMed  Google Scholar 

  • Anadón, A., Martínez-Larrañaga, M. R., & Martínez, M. A. (2006). Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regulatory Toxicology and Pharmacology, 45(1), 91–95.

    Article  PubMed  CAS  Google Scholar 

  • Anukam, K. C., & Reid, G. (2007). Probiotics: 100 years (1907–2007) after Elie Metchnikoff’s observation. Communicating current research and educational topics and trends in applied. Microbiology, 1, 466–474.

    Google Scholar 

  • Arslanoglu, S., Moro, G. E., Schmitt, J., Tandoi, L., Rizzardi, S., & Boehm, G. (2008). Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. The Journal of Nutrition, 138(6), 1091–1095.

    Article  CAS  PubMed  Google Scholar 

  • Beachey, E. H., & Courtney, H. S. (1987). Bacterial adherence: The attachment of group A streptococci to mucosal surfaces. Reviews of Infectious Diseases, 9(Supplement_5), S475–S481.

    Google Scholar 

  • Begley, M., Hill, C., & Gahan, C. G. M. (2006). Bile salt hydrolase activity in probiotics. Applied and Environmental Microbiology, 72, 1729–1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin, J. L., Hedin, C. R., Koutsoumpas, A., Ng, S. C., McCarthy, N. E., Hart, A. L., ... & Stagg, A. J. (2011). Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut, gut-2010.

    Google Scholar 

  • Bian, J., Peng, F., Peng, X. P., Peng, P., Xu, F., & Sun, R. C. (2013). Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresource Technology, 127, 236–241.

    Article  CAS  PubMed  Google Scholar 

  • Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31(2), 118–129.

    Article  CAS  Google Scholar 

  • Brandão, R. L., Castro, I. M., Bambirra, E. A., Amaral, S. C., Fietto, L. G., Tropia, M. J. M., et al. (1998). Intracellular Signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Applied and Environmental Microbiology, 64(2), 564–568.

    PubMed  PubMed Central  Google Scholar 

  • Brestoff, J. R., & Artis, D. (2013). Commensal bacteria at the interface of host metabolism and the immune system. Journal Nature Immunology, 14(7), 676–684.

    Google Scholar 

  • Cao, Y., Gao, X., Zhang, W., Zhang, G., Nguyen, A. K., Liu, X., et al. (2011). Dietary fibre enhances TGF-β signaling and growth inhibition in the gut. American Journal of Physiology. Gastrointestinal and Liver Physiology, 301(1), G156–G164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter, A., Adams, M., La Ragione, R. M., & Woodward, M. J. (2017). Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33. Veterinary Microbiology, 199, 100–107.

    Article  PubMed  Google Scholar 

  • Carvalho, A. F. A., de Oliva Neto, P., Da Silva, D. F., & Pastore, G. M. (2013). Xylo-oligosaccharides from lignocellulosic materials: Chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Research International, 51(1), 75–85.

    Article  CAS  Google Scholar 

  • Chapla, D., Pandit, P., & Shah, A. (2012). Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresource Technology, 115, 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Mao, X., He, J., Yu, B., Huang, Z., Yu, J., et al. (2013). Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. British Journal of Nutrition, 110(10), 1837–1848.

    Article  CAS  PubMed  Google Scholar 

  • Chingwaru, W., & Vidmar, J. (2017). Potential of Zimbabwean commercial probiotic products and strains of Lactobacillus plantarum as prophylaxis and therapy against diarrhoea caused by Escherichia coli in children. Asian Pacific Journal of Tropical Medicine, 10(1), 57–63.

    Article  PubMed  Google Scholar 

  • Chung, W. S. F., Walker, A. W., Louis, P., Parkhill, J., Vermeiren, J., Bosscher, D., et al. (2016). Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology, 14(1), 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coppa, G. V., Bruni, S., Morelli, L., Soldi, S., & Gabrielli, O. (2004). The first prebiotics in humans: Human milk oligosaccharides. Journal of Clinical Gastroenterology, 38, S80–S83.

    Article  CAS  PubMed  Google Scholar 

  • Courtin, C. M., Swennen, K., Verjans, P., & Delcour, J. A. (2009). Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chemistry, 112(4), 831–837.

    Article  CAS  Google Scholar 

  • Crittenden, R. G., Morris, L. F., Harvey, M. L., Tran, L. T., Mitchell, H. L., & Playne, M. J. (2001). Selection of a Bifidobacterium strain to complement resistant starch in a synbiotic yoghurt. Journal of Applied Microbiology, 90(2), 268–278.

    Article  CAS  PubMed  Google Scholar 

  • Crittenden, R., Weerakkody, R., Sanguansri, L., & Augustin, M. (2006). Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Applied and Environmental Microbiology, 72(3), 2280–2282.

    Google Scholar 

  • Cummings, J. H., Christie, S., & Cole, T. J. (2001a). A study of fructo oligosaccharides in the prevention of travellers’ diarrhoea. Alimentary Pharmacology & Therapeutics, 15(8), 1139–1145.

    Google Scholar 

  • Cummings, J. H., Macfarlane, G. T., & Englyst, H. N. (2001b). Prebiotic digestion and fermentation. The American Journal of Clinical Nutrition, 73(2), 415s–420s.

    Google Scholar 

  • De Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and synbiotics. In Food biotechnology (pp. 1–66). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Desai, A. R., Powell, I. B., & Shah, N. P. (2004). Survival and activity of probiotic lactobacilli in skim milk containing prebiotics. Journal of Food Science, 69(3).

    Google Scholar 

  • Dixit, Y., Wagle, A., & Vakil, B. (2016). Patents in the field of probiotics, prebiotics, synbiotics: A review. Journal of Food Microbiology, Safety and Hygiene, 1(111), 2.

    Google Scholar 

  • Elli, M., Zink, R., Rytz, A., Reniero, R., & Morelli, L. (2000). Iron requirement of Lactobacillus spp. in completely chemically defined growth media. Journal of Applied Microbiology, 88(4), 695–703.

    Article  CAS  PubMed  Google Scholar 

  • Fai, A. E. C., & Pastore, G. M. (2015). Galactooligosaccharides: Production, health benefits, application to foods and perspectives. Scientia Agropecuaria, 6(1), 69–81.

    Google Scholar 

  • Ferreira, S. A., Oslakovic, C., Cukalevski, R., Frohm, B., Dahlbäck, B., Linse, S., et al. (2012). Biocompatibility of mannan nanogel—safe interaction with plasma proteins. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(7), 1043–1051.

    Article  CAS  Google Scholar 

  • Figueroa-González, I., Hernández-Sánchez, H., Rodrıguez-Serrano, G., Gómez-Ruiz, L., Garcıa-Garibay, M., & Cruz-Guerrero, A. (2010). Antimicrobial effect of Lactobacillus casei strain shirota co-cultivated with Escherichia coli UAM0403 [Efecto antimicrobiano de Lactobacillus casei variedad shirota co-cultivado CON Escherichia coli UAM0403]. I i í Química Ingeniería Química, 11.

    Google Scholar 

  • Fishman, M. L., Chau, H. K., Hoagland, P., & Ayyad, K. (1999). Characterization of pectin, flash-extracted from orange albedo by microwave heating, under pressure. Carbohydrate Research, 323(1-4), 126–138.

    Article  Google Scholar 

  • Flickinger, E. A., Schreijen, E. M. W. C., Patil, A. R., Hussein, H. S., Grieshop, C. M., Merchen, N. R., & Fahey, G. C. (2003). Nutrient digestibilities, microbial populations, and protein catabolites as affected by fructan supplementation of dog diets. Journal of Animal Science, 81(8), 2008–2018.

    Article  CAS  PubMed  Google Scholar 

  • Gaggìa, F., Mattarelli, P., & Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141, S15–S28.

    Article  PubMed  Google Scholar 

  • Gibbons, R. J., & Houte, J. V. (1975). Bacterial adherence in oral microbial ecology. Annual Reviews in Microbiology, 29(1), 19–42.

    Article  CAS  Google Scholar 

  • Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401–1412.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A., & Roberfroid, M. B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutrition Research Reviews, 17(2), 259–275.

    Article  CAS  PubMed  Google Scholar 

  • Gilliland, S. E., & Speck, M. L. (1977). Deconjugation of bile acids by intestinal lactobacilli. Applied and Environmental Microbiology, 33(1), 15–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, Q., Zhang, C., Song, D., Li, P., & Zhu, X. (2015). Enhancing vitamin B12 content in soy-yogurt by Lactobacillus reuteri. International Journal of Food Microbiology, 206, 56–59.

    Article  CAS  PubMed  Google Scholar 

  • Guillot, J. F. (2003). Probiotic feed additives. Journal of Veterinary Pharmacology and Therapeutics, 26, 52–55.

    Google Scholar 

  • Heldt, H. W. (2005). Plant biochemistry (3rd Ed., pp. 265–269). London: Elsevier Academic Press.

    Google Scholar 

  • Hemarajata, P., & Versalovic, J. (2013). Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 6(1), 39–51.

    Google Scholar 

  • Hijová, E., Szabadosova, V., Štofilová, J., & Hrčková, G. (2013). Chemopreventive and metabolic effects of inulin on colon cancer development. Journal of Veterinary Science, 14(4), 387–393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopping, B. N., Erber, E., Grandinetti, A., Verheus, M., Kolonel, L. N., & Maskarinec, G. (2009). Dietary fibre, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. The Journal of Nutrition, 140(1), 68–74.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, S. A., Patil, G. R., Reddi, S., Yadav, V., Pothuraju, R., Singh, R. R. B., & Kapila, S. (2017). Aloe vera (Aloe barbadensis Miller) supplemented probiotic lassi prevents Shigella infiltration from epithelial barrier into systemic blood flow in mice model. Microbial Pathogenesis, 102, 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Jakubczyk, E., & Kosikowska, M. (2000). Nowageneracjamlecznychproduktowfermentowanych z udzialemprobiotykowiprebiotykow, produktysynbiotyczne. PrzeglądMleczarski, 12.

    Google Scholar 

  • Jin, L. Z., Marquardt, R. R., & Zhao, X. (2000). A strain of Enterococcus faecium (18C23) inhibits adhesion of enterotoxigenic Escherichia coli K88 to porcine small intestine mucus. Applied and Environmental Microbiology, 66(10), 4200–4204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallel, F., Driss, D., Bouaziz, F., Neifer, M., Ghorbel, R., & Chaabouni, S. E. (2015a). Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK and their in vitro evaluation as prebiotics. Food and Bioproducts Processing, 94, 536–546.

    Article  CAS  Google Scholar 

  • Kallel, F., Driss, D., Chaabouni, S. E., & Ghorbel, R. (2015b). Biological activities of xylooligosaccharides generated from garlic straw xylan by purified xylanase from Bacillus mojavensis UEB-FK. Applied Biochemistry and Biotechnology, 175(2), 950–964.

    Article  CAS  PubMed  Google Scholar 

  • Kano, M., Masuoka, N., Kaga, C., Sugimoto, S., Iizuka, R., Manabe, K., et al. (2013). Consecutive intake of fermented milk containing Bifidobacterium breve strain Yakult and galacto-oligosaccharides benefits skin condition in healthy adult women. Bioscience of Microbiota, Food and Health, 32(1), 33–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Bansal, A., Chakrabarti, A., & Singhi, S. (2013). Evaluation of efficacy of probiotics in prevention of Candida colonization in a PICU—a randomized controlled trial. Critical Care Medicine, 41(2), 565–572.

    Article  PubMed  Google Scholar 

  • Kumar, V., & Satyanarayana, T. (2011). Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnology Letters, 33(11), 2279.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, S. M. (2013). The interplay between fibre and the intestinal microbiome in the inflammatory response. Advances in Nutrition, 4(1), 16–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyoji, Y., Naoki, H., & Kunimasa, K. (2006). Inhibitory effects of acidic xylooligosaccharide on stress-induced gastric inflammation in mice. Food Hygienic Society of Japan, 47(6), 284–287.

    Article  Google Scholar 

  • Lam, K. L., & Cheung, P. C. K. (2013). Non-digestible long chain beta-glucans as novel prebiotics. Bioactive Carbohydrates and Dietary Fibre, 2(1), 45–64.

    Article  CAS  Google Scholar 

  • Lee, A. (1985). Neglected niches. In Advances in microbial ecology (pp. 115–162). Boston: Springer.

    Chapter  Google Scholar 

  • Lee, Y. K., & Salminen, S. (2009). Handbook of probiotics and prebiotics. New York: Wiley.

    Google Scholar 

  • Li, P., & Gu, Q. (2016). Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin. Journal of Biotechnology, 229, 1–2.

    Article  CAS  PubMed  Google Scholar 

  • Liong, M. T., & Shah, N. P. (2005). Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain. Journal of Applied Microbiology, 99(4), 783–793.

    Article  CAS  PubMed  Google Scholar 

  • Marteau, P. R., Vrese, M. D., Cellier, C. J., & Schrezenmeir, J. (2001).Protection from gastrointestinal diseases with the use of probiotics. The American Journal of Clinical Nutrition, 73(2), 430s–436s.

    Google Scholar 

  • Macfarlane, G. T., Steed, H., & Macfarlane, S. (2008). Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology, 104(2), 305–344.

    CAS  PubMed  Google Scholar 

  • Mäkeläinen, H., Forssten, S., Saarinen, M., Stowell, J., Rautonen, N., & Ouwehand, A. (2009). Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model. Beneficial Microbes, 1(1), 81–91.

    Article  CAS  Google Scholar 

  • Manigandan, T., Mangaiyarkarasi, S. P., Hemaltha, R., Hemaltha, V. T., & Murali, N. P. (2012). Probiotics, prebiotics and synbiotics—A review. Biomedical and Pharmacology Journal, 5, 295–304.

    Article  CAS  Google Scholar 

  • Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021.

    Article  PubMed Central  CAS  Google Scholar 

  • Meance, S. (2004). Acacia gum (Fibregum™), a very well tolerated specific natural prebiotic having a wide range of food applications-Part 1. Agro Food Industry Hi-Tech, 15(1), 24–29.

    CAS  Google Scholar 

  • Mikkelson, A., Maaheimo, H., & Hakala, T. K. (2013). Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Carbohydrate Research, 372, 60–68.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, C., & Lambert, J. (1996). Production of anti-microbial substances by probiotics. Asia Pacific Journal of Clinical Nutrition, 5, 20–24.

    CAS  PubMed  Google Scholar 

  • Moreira, L. R. S. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology, 79(2), 165.

    Article  CAS  PubMed  Google Scholar 

  • Muñiz-Márquez, D. B., Contreras, J. C., Rodríguez, R., Mussatto, S. I., Teixeira, J. A., & Aguilar, C. N. (2015). Biotechnological production of oligosaccharides: Advances and challenges. Advances in Food Biotechnology, 381.

    Google Scholar 

  • Näse, L., Hatakka, K., Savilahti, E., Saxelin, M., Pönkä, A., Poussa, T., et al. (2001). Effect of long–term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Research, 35(6), 412–420.

    Article  PubMed  Google Scholar 

  • Nova, E., Wärnberg, J., Gómez-Martínez, S., Díaz, L. E., Romeo, J., & Marcos, A. (2007). Immunomodulatory effects of probiotics in different stages of life. British Journal of Nutrition, 98(S1), S90–S95.

    Article  CAS  PubMed  Google Scholar 

  • Oelschlaeger, T. A. (2010). Mechanisms of probiotic actions–a review. International Journal of Medical Microbiology, 300(1), 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Olano-Martin, E., Mountzouris, K. C., Gibson, G. R., & Rastall, R. A. (2001). Continuous production of pectic oligosaccharides in an enzyme membrane reactor. Journal of Food Science, 66(7), 966–971.

    Article  CAS  Google Scholar 

  • Olveira, G., & González-Molero, I. (2016). An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinología y Nutrición (English Edition), 63(9), 482–494.

    Google Scholar 

  • Ouwehand, A. C., Kirjavainen, P. V., Shortt, C., & Salminen, S. (1999). Probiotics: Mechanisms and established effects. International Dairy Journal, 9(1), 43–52.

    Article  Google Scholar 

  • Pandey, K. R., Naik, S. R., & Vakil, B. V. (2015). Probiotics, prebiotics and synbiotics-a review. Journal of Food Science and Technology, 52(12), 7577–7587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, S., & Goyal, A. (2012). The current trends and future perspectives of prebiotics research: A review. 3 Biotech, 2(2), 115–125.

    Article  CAS  PubMed Central  Google Scholar 

  • Peña, A. S. (2007). Intestinal flora, probiotics, prebiotics, synbiotics and novel foods. Revista Española de Enfermedades Digestivas, 99(11), 653.

    Article  PubMed  Google Scholar 

  • Peng, X., Li, S., Luo, J., Wu, X., & Liu, L. (2013). Effects of dietary fibres and their mixtures on short chain fatty acids and microbiota in mice guts. Food & Function, 4(6), 932–938.

    Article  CAS  Google Scholar 

  • Pokusaeva, K., Fitzgerald, G. F., & Sinderen, D. (2011). Carbohydrate metabolism in bifidobacteria. Genes & Nutrition, 6(3), 285.

    Article  CAS  Google Scholar 

  • Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D., & Rossi, M. (2007). Folate production by bifidobacteria as a potential probiotic property. Applied and Environmental Microbiology, 73(1), 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Raja, B. R., & Arunachalam, K. D. (2011). Market potential for probiotic nutritional supplements in India. African Journal of Business Management, 5(14), 5418.

    Google Scholar 

  • Reid, G., Jass, J., Sebulsky, M. T., & McCormick, J. K. (2003). Potential uses of probiotics in clinical practice. Clinical Microbiology Reviews, 16(4), 658–672.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929–967.

    Article  CAS  PubMed  Google Scholar 

  • Saavedra, J. M., & Tschernia, A. (2002). Human studies with probiotics and prebiotics: Clinical implications. British Journal of Nutrition, 87(S2), S241–S246.

    Article  CAS  PubMed  Google Scholar 

  • Sáez-Lara, M. J., Robles-Sanchez, C., Ruiz-Ojeda, F. J., Plaza-Diaz, J., & Gil, A. (2016). Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trials. International Journal of Molecular Sciences, 17(6), 928.

    Article  PubMed Central  CAS  Google Scholar 

  • Saint-Cyr, M. J., Haddad, N., Taminiau, B., Poezevara, T., Quesne, S., Amelot, M., et al. (2017). Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. International Journal of Food Microbiology, 247, 9–17.

    Article  PubMed  Google Scholar 

  • Samanta, A. K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A. P., Senani, S., & Sridhar, M. (2015). Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. Bioactive Carbohydrates and Dietary Fibre, 5(1), 62–71.

    Article  CAS  Google Scholar 

  • Sanders, M. E., Gibson, G. R., Gill, H. S., & Guarner, F. (2007). Probiotics: Their potential to impact human health. Council for Agricultural Science and Technology Issue Paper, 36, 1–20.

    Google Scholar 

  • Sarao, L. K., & Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, 57(2), 344–371.

    Article  CAS  PubMed  Google Scholar 

  • Scavuzzi, B. M., Henrique, F. C., Miglioranza, L. H. S., Simão, A. N. C., & Dichi, I. (2014). Impact of prebiotics, probiotics and synbiotics on components of the metabolic syndrome. Annals of Nutritional Disorders and Therapy, 1, 1009.

    Google Scholar 

  • Schiffrin, E. J., Thomas, D. R., Kumar, V. B., Brown, C., Hager, C., Van’t Hof, M. A., et al. (2007). Systemic inflammatory markers in older persons: The effect of oral nutritional supplementation with prebiotics. The Journal of Nutrition, Health & Aging, 11(6), 475.

    CAS  Google Scholar 

  • Schley, P. D., & Field, C. J. (2002). The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, 87(S2), S221–S230.

    Article  CAS  PubMed  Google Scholar 

  • Scholtens, P. A., Alles, M. S., Bindels, J. G., van der Linde, E. G., Tolboom, J. J., & Knol, J. (2006). Bifidogenic effects of solid weaning foods with added prebiotic oligosaccharides: A randomised controlled clinical trial. Journal of Pediatric Gastroenterology and Nutrition, 42(5), 553–559.

    Article  CAS  PubMed  Google Scholar 

  • Schoster, A., Kokotovic, B., Permin, A., Pedersen, P. D., Dal Bello, F., & Guardabassi, L. (2013). In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains. Anaerobe, 20, 36–41.

    Article  CAS  PubMed  Google Scholar 

  • Schrezenmeir, J., & de Vrese, M. (2001). Probiotics, prebiotics, and synbiotics—approaching a definition. The American Journal of Clinical Nutrition, 73(2), 361s–364s.

    Article  CAS  PubMed  Google Scholar 

  • Sekhon, B. S., & Jairath, S. (2010). Prebiotics, probiotics and synbiotics: An overview. Journal of Pharmaceutical Education and Research, 1(2), 13.

    Google Scholar 

  • Sharon, N., & Ofek, I. (2000). Safe as mother’s milk: Carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconjugate Journal, 17(7-9), 659–664.

    Article  CAS  PubMed  Google Scholar 

  • Sikorska, H., & Smoragiewicz, W. (2013). Role of probiotics in the prevention and treatment of methicillin-resistant Staphylococcus aureus infections. International Journal of Antimicrobial Agents, 42(6), 475–481.

    Article  CAS  PubMed  Google Scholar 

  • Silva, O. N. O., Mulder, K. C., Barbosa, A. A., Otero-Gonzalez, A. J., Lopez-Abarrategui, C., Dias, S. C., et al. (2011). Exploring the pharmacological potential of promiscuous host-defense peptides: From natural screenings to biotechnological applications. Frontiers in Microbiology, 2, 232.

    PubMed  PubMed Central  Google Scholar 

  • Singdevsachan, K., Kumar, S., Auroshree, P., Mishra, J., Baliyarsingh, B., & Tayung, K. H. (2016). Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioactive Carbohydrates and Dietary Fibre, 7(1), 1–14.

    Article  CAS  Google Scholar 

  • Singh, R. D., Banerjee, J., & Arora, A. (2015). Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioactive Carbohydrates and Dietary Fibre, 5(1), 19–30.

    Article  CAS  Google Scholar 

  • Slavin, J. (2013). Fibre and prebiotics: Mechanisms and health benefits. Nutrients, 5(4), 1417–1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohail, M. U., Ijaz, A., Yousaf, M. S., Ashraf, K., Zaneb, H., Aleem, M., & Rehman, H. (2010). Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poultry Science, 89(9), 1934–1938.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, P. K., & Kapoor, M. (2017). Production, properties, and applications of endo-β-mannanases. Biotechnology Advances, 35(1), 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D. W., & Greer, F. R. (2010). Probiotics and prebiotics in pediatrics. Pediatrics, 126(6), 1217–1231.

    Article  PubMed  Google Scholar 

  • Thomas, C. M., & Versalovic, J. (2010). Probiotics-host communication: Modulation of signaling pathways in the intestine. Gut Microbes, 1(3), 148–163.

    Google Scholar 

  • Tomasik, P. J., & Tomasik, P. (2003). Probiotics and prebiotics. Cereal Chemistry, 80(2), 113–117.

    Article  CAS  Google Scholar 

  • Van Loo, J., Clune, Y., Bennett, M., & Collins, J. K. (2005). The SYNCAN project: Goals, set-up, first results and settings of the human intervention study. British Journal of Nutrition, 93(S1), S91–S98.

    Article  CAS  PubMed  Google Scholar 

  • Vera, C., Córdova, A., Aburto, C., Guerrero, C., Suárez, S., & Illanes, A. (2016). Synthesis and purification of galacto-oligosaccharides: State of the art. World Journal of Microbiology and Biotechnology, 32(12), 197.

    Article  PubMed  CAS  Google Scholar 

  • Vetvicka, V., Vashishta, A., Saraswat-Ohri, S., & Vetvickova, J. (2008). Immunological effects of yeast-and mushroom-derived β-glucans. Journal of Medicinal Food, 11(4), 615–622.

    Article  CAS  PubMed  Google Scholar 

  • Vitali, B., Ndagijimana, M., Cruciani, F., Carnevali, P., Candela, M., Guerzoni, M. E., & Brigidi, P. (2010). Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiology, 10(1), 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vulevic, J., Drakoularakou, A., Yaqoob, P., Tzortzis, G., & Gibson, G. R. (2008). Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. The American Journal of Clinical Nutrition, 88(5), 1438–1446.

    CAS  PubMed  Google Scholar 

  • Wang, J., Sun, B., Cao, Y., Tian, Y., & Wang, C. (2009). Enzymatic preparation of wheat bran xylooligosaccharides and their stability during pasteurization and autoclave sterilization at low pH. Carbohydrate Polymers, 77(4), 816–821.

    Article  CAS  Google Scholar 

  • Weinberg, E. D. (1997). The Lactobacillus anomaly: Total iron abstinence. Perspectives in Biology and Medicine, 40(4), 578–583.

    Article  CAS  PubMed  Google Scholar 

  • Wichienchot, S., Prasertsan, P., Hongpattarakere, T., & Rastall, R. A. (2009). Manufacture of gluco-oligosaccharide prebiotic by Gluconobacteroxydans NCIMB 4943. Songklanakarin Journal of Science and Technology, 31(6).

    Google Scholar 

  • Xue, J. L., Zhao, S., Liang, R. M., Yin, X., Jiang, S. X., Su, L. H., et al. (2016). A biotechnological process efficiently co-produces two high value-added products, glucose and xylooligosaccharides, from sugarcane bagasse. Bioresource Technology, 204, 130–138.

    Article  CAS  PubMed  Google Scholar 

  • Yamabhai, M., Sak-Ubol, S., Srila, W., & Haltrich, D. (2016). Mannan biotechnology: From biofuels to health. Critical Reviews in Biotechnology, 36(1), 32–42.

    Article  CAS  PubMed  Google Scholar 

  • Yanagida, F., Chen, Y., Onda, T., & Shinohara, T. (2005). Durancin L28-1A, a new bacteriocin from Enterococcus durans L28-1, isolated from soil. Letters in Applied Microbiology, 40(6), 430–435.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, H. D., Kim, D., & Paek, S. H. (2012). Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomolecules & Therapeutics, 20(4), 371.

    Article  CAS  Google Scholar 

  • Zhang, M. M., Cheng, J. Q., Lu, Y. R., Yi, Z. H., Yang, P., & Wu, X. T. (2010). Use of pre-, pro-and synbiotics in patients with acute pancreatitis: A meta-analysis. World journal of gastroenterology: WJG, 16(31), 3970.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Bano, A., Gupta, A., Bajpai, P., Lohani, M., Pathak, N. (2019). Pre- and Probiotics: Using Functional Foods in the Fight Against Microbial Resistance to Antibiotics. In: Ahmad, I., Ahmad, S., Rumbaugh, K. (eds) Antibacterial Drug Discovery to Combat MDR. Springer, Singapore. https://doi.org/10.1007/978-981-13-9871-1_18

Download citation

Publish with us

Policies and ethics