Skip to main content

Newer Technologies in Vitreoretinal Disorders

  • Chapter
  • First Online:
  • 461 Accesses

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

Abstract

The field of vitreo-retina has grown in leaps and bounds in terms of imaging, surgical instrumentation, and viewing systems. From time domain optical coherence tomography (TD-OCT) and B scan ultrasonography being the only available non-invasive tools to assess the retina, there has been an unprecedented growth in terms of detail and resolution in the forms of swept-source OCT (SS-OCT) and OCT angiography (OCTA). Similarly from the older cutters and viewing systems, we have now graduated to advanced high-efficiency cutters, 3D viewing systems, and intraoperative OCT. The newer advances in stem cell therapy have enabled gene therapy to arrive at the bedside, and offer a potential cure to hitherto incurable retinal disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hypersonic vitrectomy can be used during complex cases Page 1 [Internet]. Healio.com. 2018 [cited 30 August 2018]. https://www.healio.com/ophthalmology/cataract-surgery/news/print/ocular-surgery-news/%7B912f5122-b70f-4db5-9d67-9da3f4b2a7f1%7D/hypersonic-vitrectomy-can-be-used-during-complex-cases?page=3.

  2. de Oliveira P, Berger A, Chow D. Vitreoretinal instruments: vitrectomy cutters, endoillumination and wide-angle viewing systems. Int J Retin Vitreous. 2016;2(1):28.

    Article  Google Scholar 

  3. Hypersonic vitrectomy has early encouraging clinical success [Internet]. Healio.com. 2018 [cited 30 August 2018]. https://www.healio.com/ophthalmology/retina-vitreous/news/online/%7B998ef89d-366c-4855-8c27-a3327cd7cc7b%7D/hypersonic-vitrectomy-has-early-encouraging-clinical-success.

  4. Stanga P, Pastor-Idoate S, Zambrano I, Carlin P, McLeod D. Performance analysis of a new hypersonic vitrector system. PLoS One. 2017;12(6):e0178462.

    Article  Google Scholar 

  5. Riviere CN, Gangloff J, De Mathelin M. Robotic compensation of biological motion to enhance surgical accuracy. Proc IEEE. 2006;94:1705.

    Article  Google Scholar 

  6. Fleming I, Balicki M, Koo J, et al. Cooperative robot assistant for retinal microsurgery. Medical image computing and computer-assisted intervention. Med Image Comput Comput Assist Interv. 2008;11:543–50.

    PubMed  Google Scholar 

  7. Bourla DH, Hubschman JP, Culjat M, et al. Feasibility study of intraocular robotic surgery with the Da Vinci surgical system. Retina. 2008;28:154–8.

    Article  Google Scholar 

  8. Channa R, Iordachita I, Handa J. Robotic vitreoretinal surgery. Retina. 2017;37(7):1220–8.

    Article  Google Scholar 

  9. Cutler N, Balicki M, Finkelstein M, et al. Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery. Invest Ophthalmol Vis Sci. 2013;54:1316–24.

    Article  Google Scholar 

  10. Maclachlan RA, Becker BC, Tabares JC, et al. Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans Robot. 2012;28:195–212.

    Article  Google Scholar 

  11. Hubschman JP, Son J, Allen B, et al. Evaluation of the motion of surgical instruments during intraocular surgery. Eye. 2011;25:947–53.

    Article  Google Scholar 

  12. Lu CD, Kraus MF, Potsaid B, Liu JJ, Choi W, Jayaraman V, et al. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express. 2014;5(1):293–311.

    Article  Google Scholar 

  13. Song C, Park DY, Gehlbach PL, Park SJ, Kang JU. Fiber-optic OCT sensor guided ‘SMART’ micro-forceps for microsurgery. Biomed Opt Express. 2013;4(7):1045–50.

    Article  Google Scholar 

  14. Runkle A, Srivastava S, Ehlers J. Microscope-integrated OCT feasibility and utility with the EnFocus System in the DISCOVER Study. Ophthalmic Surg Lasers Imaging Retina. 2017;48(3):216–22.

    Article  Google Scholar 

  15. Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Seider MI, Izatt JA, Toth CA. Optical coherence tomography for retinal surgery: perioperative analysis to real-time four-dimensional image-guided surgery. Invest Ophthalmol Vis Sci. 2016;57(9):OCT37–50.

    Article  Google Scholar 

  16. Carrasco-Zevallos OM, Keller B, Viehland C, Shen L, Waterman LG, Todorich B, et al. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography. Sci Rep. 2016;6:31689.

    Article  CAS  Google Scholar 

  17. Shen L, Keller B, Carrasco-Zevallos OM, Viehland C, Bhullar P, Waterman G, et al. Oculus rift® as a head tracking, stereoscopic head-mounted display for intraoperative OCT in ophthalmic surgery. Invest Ophthalmol Vis Sci. 2016;57:1701.

    Article  Google Scholar 

  18. Lu CD, Witkin AJ, Waheed NK, Postsaid B, Liu JJ, Moult EM, Jayaraman V, Chan K, Duker JS, Fujimoto JG. Ultrahigh speed ophthalmic surgical OCT for intraoperative OCT angiography and widefield imaging. ARVO Meet Abstr. 2016;57(12)

    Google Scholar 

  19. Yazdanfar S, Kulkarni M, Izatt J. High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography. Opt Express. 1997;1(13):424.

    Article  CAS  Google Scholar 

  20. Press Release [Internet]. Truevisionsys.com. 2018 [cited 31 August 2018]. http://truevisionsys.com/announcement52.html.

  21. Yonekawa Y. Seeing the world through 3-D glasses. Retina Today. 2016;11(7):54–60.

    Google Scholar 

  22. Ho AC, Friess DW, Hsu J, Rahimy E. The case for 3-D retina surgery. Retina Today. 2015;10(8):76–8.

    Google Scholar 

  23. Stem M, Thanos A, Elliot D, Drenser K, Hasan T, Ruby A. Heads-up 3-d visualization in complex vitreoretinal surgery. Retina Today. 2018;7:43–8.

    Google Scholar 

  24. Adam M, Thornton S, Regillo C, Park C, Ho A, Hsu J. Minimal endoillumination levels and display luminous emittance during three-dimensional heads-up vitreoretinal surgery. Retina. 2017;37(9):1746–9.

    Article  Google Scholar 

  25. Eckardt C, Pauo EB. Heads-up surgery for vitreoretinal procedures: an Experimental and Clinical Study. Retina. 2016;36:137–47.

    Article  Google Scholar 

  26. Romano M, Cennamo G, Comune C, Cennamo M, Ferrara M, Rombetto L, et al. Evaluation of 3D heads-up vitrectomy: outcomes of psychometric skills testing and surgeon satisfaction. Eye. 2018;32(6):1093–8.

    Article  Google Scholar 

  27. Figueroa MS. 3D vitrectomy. Is it really useful? Arch Soc Esp Oftalmol. 2017;92:249–50.

    Article  CAS  Google Scholar 

  28. Skinner CC, Riemann CD. “Heads up” digitally assisted surgical viewing for retinal detachment repair in a patient with severe kyphosis. Retin Cases Brief Rep. 2018;12(3):257–9.

    Article  Google Scholar 

  29. Weiland JD, Cho AK, Humayun MS. Retinal prostheses: current clinical results and future needs. Ophthalmology. 2011;118(11):2227–37.

    Article  Google Scholar 

  30. Vurro M, Crowell AM, Pezaris JS. Simulation of thalamic prosthetic vision: Reading accuracy, speed, and acuity in sighted humans. Front Hum Neurosci. 2014;8:816.

    Article  Google Scholar 

  31. Cheng DL, Greenberg PB, Borton DA. Advances in retinal prosthetic research: a systematic review of engineering and clinical characteristics of current prosthetic initiatives. Curr Eye Res. 2017;42(3):334–47.

    Article  Google Scholar 

  32. Humayun MS, Dorn JD, da Cruz L, et al. Interim results from the international trial of second Sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–88.

    Article  Google Scholar 

  33. Kitiratschky VB, Stingl K, Wilhelm B, et al. Safety evaluation of “retina implant alpha IMS”—a prospective clinical trial. Graefes Arch Clin Exp Ophthalmol. 2015;253(3):381–7.

    Article  Google Scholar 

  34. Fujikado T, Kamei M, Sakaguchi H, et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52(7):4726–33.

    Article  Google Scholar 

  35. Ohta J, Tokuda T, Kagawa K, et al. Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation. J Neural Eng. 2007;4(1):S85–91.

    Article  CAS  Google Scholar 

  36. Chow AY, Chow VY, Packo KH, et al. The artificial silicon retina chip for the treatment of vision loss. Arch Ophthalmol. 2004;122(4):460–9.

    Article  Google Scholar 

  37. Kelly SK, Shire DB, Chen J, et al. A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng. 2011;58(11):3197–205.

    Article  Google Scholar 

  38. Lorach H, Goetz G, Smith R, et al. Photovoltaic restoration of sight with high visual acuity. Nat Med. 2015;21(5):476–82.

    Article  CAS  Google Scholar 

  39. Lee SW, Seo JM, Ha S, et al. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophthalmol Vis Sci. 2009;50(12):5859–66.

    Article  Google Scholar 

  40. Spaide RF. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol. 2016;170:58–67.

    Article  Google Scholar 

  41. Agrawal R, Gupta P, Tan KA, Cheung CM, Wong TY, Cheng CY. Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep. 2016;6:21090.

    Article  CAS  Google Scholar 

  42. Ferrara D, Mohler K, Waheed N, Adhi M, Liu J, Grulkowski I, et al. En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology. 2014;121(3):719–26.

    Article  Google Scholar 

  43. Pedinielli A, Souied E, Perrenoud F, Leveziel N, Caillaux V, Querques G. In vivo visualization of perforating vessels and focal scleral ectasia in pathological myopia. Invest Ophthalmol Vis Sci. 2013;54(12):7637.

    Article  Google Scholar 

  44. Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography. Retina. 2015;35(11):2163–80.

    Article  Google Scholar 

  45. Roy A, Conjeti S, Karri S, Sheet D, Katouzian A, Wachinger C, et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express. 2017;8(8):3627.

    Article  Google Scholar 

  46. Chiu SJ, Allingham MJ, Mettu PS, Cousins SW, Izatt JA, Farsiu S. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed Opt Express. 2015;6(4):1172–94.

    Article  Google Scholar 

  47. Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S. Automatic segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation. Opt Express. 2010;18(18):413–28.

    Article  Google Scholar 

  48. Rowe-Rendleman CL, Durazo SA, Kompella UB, Rittenhouse KD, Di Polo A, Weiner AL, et al. Drug and gene delivery to the back of the eye: from bench to bedside. Invest Ophthalmol Vis Sci. 2014;55:2714–30.

    Article  CAS  Google Scholar 

  49. Olsen TW, Feng X, Wabner K, Csaky K, Pambuccian S, Cameron JD. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest Ophthalmol Vis Sci. 2011;52:4749–56.

    Article  CAS  Google Scholar 

  50. Goldstein DA, Do D, Noronha G, Kissner JM, Srivastava SK, Nguyen QD. Suprachoroidal corticosteroid administration: a novel route for local treatment of noninfectious uveitis. Transl Vis Sci Technol. 2016;5:14.

    Article  Google Scholar 

  51. Chen M, Li X, Liu J, Han Y, Cheng L. Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J Control Release. 2015;203:109–17.

    Article  CAS  Google Scholar 

  52. Tetz M, Rizzo S, Augustin AJ. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of European treatment results. Ophthalmologica. 2012;227:183–9.

    Article  CAS  Google Scholar 

  53. Streckfuss-Bomeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, et al. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J. 2013;34:2618–29.

    Article  Google Scholar 

  54. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:348–62.

    Article  CAS  Google Scholar 

  55. Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009;106:16698–703.

    Article  CAS  Google Scholar 

  56. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  Google Scholar 

  57. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047.

    Article  CAS  Google Scholar 

  58. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol. 2004;22:53–4.

    Article  CAS  Google Scholar 

  59. Martins-Taylor K, Xu RH. Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells. 2012;30:22–7.

    Article  CAS  Google Scholar 

  60. Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med. 2015;372:1887e1897.

    Article  Google Scholar 

  61. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819e823.

    Article  Google Scholar 

  62. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169:5429–33.

    Article  CAS  Google Scholar 

  63. Moore JK, Haber JE. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16:2164–73.

    Article  CAS  Google Scholar 

  64. Haber JE, Ira G, Malkova A, et al. Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday’s model. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359:79–86.

    Article  CAS  Google Scholar 

  65. Yiu G, Tieu E, Nguyen AT, et al. Genomic disruption of VEGF-A expression in human retinal pigment epithelial cells using CRISPR-Cas9 endonuclease. Invest Ophthalmol Vis Sci. 2016;57:5490e5497.

    Google Scholar 

  66. Huang X, Zhou G, Wu W, et al. Editing VEGFR2 blocks VEGF-induced activation of Akt and tube formation. Invest Ophthalmol Vis Sci. 2017;58:1228e1236.

    Google Scholar 

  67. Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132e141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayachit, A., Chhablani, J. (2020). Newer Technologies in Vitreoretinal Disorders. In: Ichhpujani, P. (eds) Current Advances in Ophthalmic Technology. Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9795-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9795-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9794-3

  • Online ISBN: 978-981-13-9795-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics