Skip to main content

Functional Behaviour of Soil Physical Parameters for Regulating Organic C Pools

  • Chapter
  • First Online:
Carbon Management in Tropical and Sub-Tropical Terrestrial Systems

Abstract

Soil organic carbon (SOC) is one of the critical components of the global carbon cycle, and the study of SOC accumulation, protection and stabilization is important in evaluation and maintenance of soil fertility and environmental quality. A number of physical parameters regulate the content and fate of reactive components of SOC pools. Physical mechanisms include encapsulation of SOC through organo-mineral complexes where finer particles with high surface activity determine the structural integrity. Soil bulk density and pore geometry are responsible for C protection and decomposition. Agricultural management practices with tillage and residue management control labile and non-labile SOC pools and their array within different aggregate size fractions. Soil moisture and temperature play a key role in influencing soil microbial properties and SOC decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angers DA, Carter MR (1996) Aggregation and organic matter storage in cool, humid agricultural soils. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC Press, Boca Raton, pp 193–211

    Google Scholar 

  • Arrouays D, Saby N, Walter C, Lemercier B, Schvartz C (2006) Relationships between particle-size distribution and organic carbon in French arable top soils. Soil Use Manag 22:48–51

    Article  Google Scholar 

  • Bai SH, Blumfield TJ, Reverchon F (2014) The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site. Biol Fertil Soils 50:37–44

    Article  Google Scholar 

  • Balesdent J, Mariotti A, Boisgontier D (1990) Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. J Soil Sci 41:587–596

    Article  CAS  Google Scholar 

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230

    Article  Google Scholar 

  • Bandyopadhyay PK, Saha S, Mani PK, Mandal B (2010) Effect of organic inputs on aggregate associated organic carbon concentration under long-term rice-wheat cropping system. Geoderma 154:379–386

    Article  CAS  Google Scholar 

  • Bandyopadhyay PK, Saha S, Mallick S (2011) Comparison of soil physical properties between a permanent fallow and a long-term rice-wheat cropping with inorganic and organic inputs in the humid subtropics of eastern India. Commun Soil Sci Plant Anal 42:435–449

    Article  CAS  Google Scholar 

  • Beare MH, Hendrix PF, Coleman DC (1994a) Water stable aggregates and organic matter fractions in conventional and no tillage soils. Soil Sci Soc Am J 58:777–786

    Article  Google Scholar 

  • Beare MH, Cabrera ML, Hendrix PF, Coleman DC (1994b) Aggregate protected and unprotected organic matter pools in conventional and no-tillage soils. Soil Sci Soc Am J 58:787–795

    Article  Google Scholar 

  • Boix-Fayos C, Calvo-Cases A, Imeson AC, Soriano-Soto MD (2001) Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44:47–67

    Article  Google Scholar 

  • Bosatta E, Agren GI (1997) Theoretical analyses of soil texture effects on organic matter dynamics. Soil Biol Biochem 29:1633–1638

    Article  CAS  Google Scholar 

  • Brady C, Weil RR (2008) The nature and properties of soils, 14th edn. Pearson Prentice Hall, Upper Saddle River/Columbus, p 965

    Google Scholar 

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS (1989) Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci Soc Am J 53:800–805

    Article  Google Scholar 

  • Buschiazzo DE, Estelrich HD, Aimar SB, Viglizzo E, Babinec FJ (2004) Soil texture and tree coverage influence on organic matter. J Range Manag 57:511–516

    Article  Google Scholar 

  • Cambardella CA, Elliott ET (1992) Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783

    Article  Google Scholar 

  • Cambardella CA, Elliott ET (1994) Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Sci Soc Am J 58:123–130

    Article  Google Scholar 

  • Carter MR, Stewart BA (1996) Structure and organic matter storage in agricultural soils. CRC Press, Boca Raton

    Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chowdhury K (2018) Impact of cropping systems on aggregate associated C, N and P in soils of humid subtropics. MSc (Ag) thesis, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India, pp 1–107

    Google Scholar 

  • Collins HP, Elliott ET, Paustian K, Bundy LC, Dick WA, Huggins DR, Smucker AJM, Paul EA (2000) Soil carbon pools and fluxes in long-term corn belt agro-ecosystems. Soil Biol Biochem 32:157–168

    Article  CAS  Google Scholar 

  • Conant RT, Steinweg JM, Haddix ML, Paul EA, Plante AF, Six J (2008) Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology 89:2384–2391

    Article  Google Scholar 

  • Conen F, Leifeld J, Seth B, Alewell C (2006) Warming mineralises young and old soil carbon equally. Biogeosciences 3(4):515–519

    Article  CAS  Google Scholar 

  • Curtis RO, Post BW (1964) Estimating bulk density from organic matter content in some Vermont forest soils. Soil Sci Soc Am Proc 28:285–286

    Article  Google Scholar 

  • Dalal RC, Strong WM, Cooper JE, King AJ (2007) No-tillage and nitrogen application affects the decomposition of N-15-labelled wheat straw and the levels of mineral nitrogen and organic carbon in a vertisol. Aust J Exp Agric 47:862–868

    Article  CAS  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol 4(2):217–227

    Article  Google Scholar 

  • De Jong R (1983) Soil water desorption curves estimated from limited data. Can J Soil Sci 63:697–703

    Article  Google Scholar 

  • Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI (2002) Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. J Geophys Res 108:8222

    Article  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Article  Google Scholar 

  • Elliott ET (1986) Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. Soil Sci Soc Am J 50:627–633

    Article  Google Scholar 

  • Emerson WW (1959) The structure of soil crumbs. J Soil Sci 5:235–244

    Article  Google Scholar 

  • Emerson WW, McGarry D (2003) Organic carbon and soil porosity. Aust J Soil Res 41:107–118

    Article  Google Scholar 

  • Fabrizzi KP, Rice CW, Amado TJC, Fiorin J, Barbagelata P, Melchiori R (2009) Protection of soil organic C and N in temperate and tropical soils: effect of native and agroecosystems. Biogeochemistry 18:147–163

    Google Scholar 

  • Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59

    Article  CAS  Google Scholar 

  • Federer CA, Turcotte DE, Smith CT (1993) The organic fraction-bulk density relationship and the expression of nutrient content in forest soils. Can J For Res 23:1026–1032

    Article  CAS  Google Scholar 

  • Feller C, Beare MH (1997) Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Arshad MA (1996) Water-stable aggregation and organic matter in four soils under conventional and zero tillage. Can J Soil Sci 76:387–393

    Article  Google Scholar 

  • Franzluebbers AJ, Haney RL, Hons FM, Zuberer DA (1996) Determination of microbial biomass and nitrogen mineralization following rewetting of dried soil. Soil Sci Soc Am J 60:1133–1139

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Haney RL, Hons FM (1999a) Relationships of chloroform fumigation-incubation to soil organic matter pools. Soil Biol Biochem 31:395–405

    Article  CAS  Google Scholar 

  • Franzluebbers AJ, Haney RL, Hons FM, Zuberer DA (1999b) Assessing biological soil quality with chloroform fumigation–incubation: why substract a control? Can J Soil Sci 79:521–528

    Article  Google Scholar 

  • Ganuza A, Almendros G (2003) Organic carbon storage in soils of the Basque Country (Spain): the effect of climate, vegetation type and edaphic variables. Biol Fertil Soils 37:154–162

    CAS  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  CAS  Google Scholar 

  • Gonzalez JM, Laird DA (2003) Carbon sequestration in clay mineral fractions from 14C-labeled plant residues. Soil Sci Soc Am J 67:1715–1720

    Article  CAS  Google Scholar 

  • Gregorich EG, Voroney RP, Kachanoski RG (1991) Turnover of carbon through the microbial biomass in soils with different textures. Soil Biol Biochem 23:799–805

    Article  Google Scholar 

  • Hassan W, David J, Abbas F (2013) Effect of type and quality of two contrasting plant residues on CO2 emission potential of ultisol soil: implications for indirect influence of temperature and moisture. Catena 114:90–96

    Article  CAS  Google Scholar 

  • Hassan W, Bano R, Khatak BU, Hussain I, Yousaf M, David J (2015) Temperature sensitivity and soil organic carbon pools decomposition under different moisture regimes: effect on total microbial and enzymatic activity. CLEAN-Soil Air Water 43(3):391–398

    Article  CAS  Google Scholar 

  • Hassink J (1994) Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization. Soil Biol Biochem 9:1221–1231

    Article  Google Scholar 

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191(1):77–87

    Article  CAS  Google Scholar 

  • Hassink J, Bouwman LA, Zwart KB, Brussaard L (1993a) Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biol Biochem 25:47–55

    Article  Google Scholar 

  • Hassink J, Bouwman LA, Zwart KB, Bloem J, Brussard L (1993b) Relationship between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. Geoderma 57:105–128

    Article  CAS  Google Scholar 

  • Haynes RJ, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst 51:123–137

    Article  Google Scholar 

  • Huang ZQ, Xu ZH, Chen C (2008) Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia. Appl Soil Ecol 40:229–239

    Article  Google Scholar 

  • Jastrow JD, Boutton TW, Miller RM (1996) Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci Soc Am J 60:801–807

    Article  CAS  Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philos Trans Biol Sci 329:361–367

    Article  CAS  Google Scholar 

  • Jensen KD, Beier C, Michelsen A, Emmet BA (2003) Effects of experimental drought on microbial processes in two temperate heath lands at contrasting water conditions. Appl Soil Ecol 24:165–176

    Article  Google Scholar 

  • Kay BD, Angers DA (1999) Soil structure. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp A-229–A-276

    Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  CAS  Google Scholar 

  • Kölbl A, Kögel-Knabner I (2004) Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid-state C-13 NMR spectroscopy. J Plant Nutr Soil Sci 167:45–53

    Article  CAS  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222

    Article  Google Scholar 

  • Lenton TM, Huntingford C (2003) Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob Chang Biol 9:1333–1352

    Article  Google Scholar 

  • Liski J, Ilvesniemi H, Mäkelä A, Westman CJ (1999) CO2 emissions from soil in response to climatic warming are overestimated-the decomposition of old organic matter is tolerant to temperature. Ambio 28:171–174

    Google Scholar 

  • Lucas ST, Weil RR (2012) Can a labile carbon test be used to predict crop responses to improve soil organic matter management? Agron J 104:1160–1170

    Article  CAS  Google Scholar 

  • Lugato E, Berti A (2008) Potential carbon sequestration in a cultivated soil under different climate change scenarios: a modelling approach for evaluating promising management practices in North-East Italy. Agric Ecosyst Environ 128:97–103

    Article  CAS  Google Scholar 

  • Mandal B, Majumder B, Adhya TK, Bandopadhyay PK, Gangopadhyay A, Sarkar D, Kundu MC, Gupta Choudhury S, Hazra GC, Kundu S, Samantaray RN, Misra AK (2008) Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Glob Chang Biol 14:2139–2151

    Article  Google Scholar 

  • McGill NB, Myers RJK (1987) Controls on dynamics of soil and fertilizer nitrogen. In: Follett RF, Stewart JWB, Cole CV (eds) Soil fertility and organic matter as critical components of production systems, Soil Science Society of America special publication 19. American Society of Agronomy, Madison, pp 73–99

    Google Scholar 

  • McLauchlan KK (2006) Effect of soil texture on soil carbon and nitrogen dynamic after cessation of agriculture. Geoderma 136:289–299

    Article  CAS  Google Scholar 

  • Mehra P, Baker J, Sojka RE, Bolan N, Desbiollesk J, Kirkham MB, Ross C, Gupta R (2018) A review of tillage practices and their potential to impact the soil carbon dynamics. Adv Agron. https://doi.org/10.1016/bs.agron.2018.03.002

    Google Scholar 

  • Metay A, Moreira JAA, Bernoux M, Boyer T, Douzet JM, Feigl B, Feller C, Maraux F, Oliver R, Scopel E (2007) Storage and forms of organic carbon in a no-tillage under cover crops system on clayey Oxisol in dryland rice production (Cerrados, Brazil). Soil Tillage Res 94:122–132

    Article  Google Scholar 

  • Mondal M (2017) Impact of conservation tillage on soil properties in rice-lentil cropping system. MSc (Ag) thesis, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India, p 135

    Google Scholar 

  • Muller T, Hoper H (2004) Soil organic matter turnover as a function of the soil clay content: consequences for model applications. Soil Biol Biochem 36:877–888

    Article  CAS  Google Scholar 

  • Neue HU (1985) Organic matter dynamics in wetland soils. In: Wetland soils: characterization, classification and utilization. International Rice Research Institute, Los Banos, pp 109–122

    Google Scholar 

  • Nichols JD (1984) Relation of organic carbon to soil properties and climate in the southern Great Plains. Soil Sci Soc Am J 48:1382–1384

    Article  CAS  Google Scholar 

  • Oades JM (1984) Soil organic matter and water stable aggregates in soils. Plant Soil 76:319–337

    Article  CAS  Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Article  Google Scholar 

  • Oades JM, Gillman GP, Uehara G (1989) Interactions of soil organic matter and variable-charge clays. In: Coleman DC, Oades JM, Uehara G (eds) Dynamics of soil organic matter in tropical ecosystems. University of Hawaii Press, Honolulu, pp 69–95

    Google Scholar 

  • Olk DC, Dancel MC, Moscoso E, Jimenez RR, Dayrit FM (2002) Accumulation of lignin residues in organic matter fractions of lowland rice soils: a pyrolysis-GC-MS study. Soil Sci 167:590–606

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in the Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Parton WJ, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut JC, Seastedt T, Moya EG, Kamnalrut A, Kinyamario JI (1993) Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles 7:785–809

    Article  CAS  Google Scholar 

  • Percival HJ, Parfitt RL, Scott NA (2000) Factors controlling soil carbon levels in New Zealand grasslands: is clay content important? Soil Sci Soc Am J 64:1623–1630

    Article  CAS  Google Scholar 

  • Pêriê C, Ouimet R (2008) Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can J Soil Sci 88:315–325

    Article  Google Scholar 

  • Plante AF, Conant RT, Stewart CE, Paustian K, Six J (2006) Impact of soil texture on the distribution of soil organic matter in physical and chemical fractions. Soil Sci Soc Am J 70(1):287–296

    Article  CAS  Google Scholar 

  • Plante AF, Conant RT, Carlson J, Greenwood R, Shulman JM, Haddix ML, Paul EA (2010) Decomposition temperature sensitivity of isolated soil organic matter fractions. Soil Biol Biochem 42:1991–1996

    Article  CAS  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:155–159

    Article  Google Scholar 

  • Prasad JVNS, Rao CS, Srinivas K, Jyothi CN, Venkateswarlu B, Ramachandrappa BK, Dhanapal GN, Ravichandra K, Mishra PK (2016) Effect of ten years of reduced tillage and recycling of organic matter on crop yields; soil organic carbon and its fractions in Alfisols of semi arid tropics of southern India. Soil Tillage Res 156:131–139

    Article  Google Scholar 

  • Saggar S, Parshotam A, Sparling GP, Feltham CW, Hart PBS (1996) 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biol Biochem 28:1677–1686

    Article  CAS  Google Scholar 

  • Saroa GS, Lal R (2003) Soil restorative effects of mulching on aggregation and carbon sequestration in a Miamian soil in Central Ohio. Land Degrad Dev 14:481–493

    Article  Google Scholar 

  • Schjonning P, Thomsen IK, Moberg JP, de Jonge H, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils: I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89:177–198

    Article  Google Scholar 

  • Sims ZR, Nielsen GA (1986) Organic carbon in Montana soils as related to clay content and climate. Soil Sci Soc Am J 50:1269–1271

    Article  CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367–1377

    Article  CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Sorenhen LH (1981) Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay. Soil Biol Biochem 13:313–321

    Article  Google Scholar 

  • Tang J, Cheng H, Fang C (2017) The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon. PLoS One 12(11):e0186675. https://doi.org/10.1371/journal.pone.0186675

    Article  CAS  Google Scholar 

  • Thomsen IK, Schjønning P, Jensen B, Kirstensen K, Christensen BT (1999) Turnover of organic matter in different textured soils. II. Microbial activity as influenced by soil water regimes. Geoderma 89:199–218

    Article  Google Scholar 

  • Tian Q, He H, Cheng W, Bai Z, Wang Y, Zhang X (2016) Factors controlling soil organic carbon stability along a temperate forest altitudinal gradient. Sci Rep 6:18783

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396

    Article  CAS  Google Scholar 

  • Van Veen JA, Kuikman PJ (1990) Soil structural aspects of decomposition of organic matter by microorganisms. Biogeochemistry 11:213–233

    Article  Google Scholar 

  • Vanhala P, Karhu K, Tuomi M, Sonninen E, Jungner H, Fritze H, Liski J (2007) Old soil carbon is more temperature sensitive than the young in an agricultural field. Soil Biol Biochem 39:2967–2970

    Article  CAS  Google Scholar 

  • Verberne ELJ, Hassink J, de Willingen P, Groot JJR, van Veen JA (1990) Modelling organic matter dynamics in different soils. Neth J Agric Sci 38:221–238

    CAS  Google Scholar 

  • Von Lutzow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • Waddington JM, Griffis TJ, Rouse WR (1998) Northern Canadian wetlands: net ecosystem CO2 exchange and climatic change. Clim Chang 40:267–275

    Article  CAS  Google Scholar 

  • Wang H, Hall CS, Cornell J, Hall MP (2002) Spatial dependence and the relationship of soil organic carbon and soil moisture in the Luquillo Experimental Forest, Puerto Rico. Landsc Ecol 17:671–684

    Article  Google Scholar 

  • Wang M, Ji LZ, Li QR, Liu YQ (2003a) Effects of soil temperature and moisture on soil respiration in different forest types in Changbai Mountain. China J App Ecol 14:1234–1238

    Google Scholar 

  • Wang WJ, Dalal RC, Moody PW, Smith CJ (2003b) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35:273–284

    Article  CAS  Google Scholar 

  • Wang W, Ciais P, Nemani RR, Canadell JG, Piao S, Sitch S, White MA, Hashimoto H, Milesi C, Myneni RB (2013) Variations in atmospheric CO2 growth rates coupled with tropical temperature. PNAS 110(32):13061–13066

    Article  CAS  Google Scholar 

  • Watts CW, Dexter AR (1998) Soil friability: theory, measurement and the effects of management and organic carbon content. Eur J Soil Sci 49:73–84

    Article  Google Scholar 

  • Wolf B, Snyder GH (2003) Sustainable soils: the place of organic matter in sustaining soils and their productivity. Food Products Press of the Haworth Press, New York

    Book  Google Scholar 

  • Youkhana A, Idol T (2009) Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biol Biochem 41:2527–2534

    Article  CAS  Google Scholar 

  • Zhao H, Lv YZ, Wang XK, Zhang HL, Yang XM (2012) Tillage impacts on the fractions and compositions of soil organic carbon. Geoderma 189:397–403

    Article  CAS  Google Scholar 

  • Zhou Z, Guo C, Meng H (2013) Temperature sensitivity and basal rate of soil respiration and their determinants in temperate forests of North China. PLoS One 8(12):e81793. https://doi.org/10.1371/journal.pone.0081793

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandyopadhyay, P.K. (2020). Functional Behaviour of Soil Physical Parameters for Regulating Organic C Pools. In: Ghosh, P., Mahanta, S., Mandal, D., Mandal, B., Ramakrishnan, S. (eds) Carbon Management in Tropical and Sub-Tropical Terrestrial Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9628-1_14

Download citation

Publish with us

Policies and ethics