Skip to main content

Transgenic Technologies and Their Potential Applications in Horticultural Crop Improvement

  • Chapter
  • First Online:
Book cover Advances in Plant Transgenics: Methods and Applications

Abstract

The increasing world population is facing a threatening health crisis in the form of malnutrition or hidden hunger, and simultaneously global demand for food and nutrition is growing day by day. Horticultural crops are widely grown and used globally and play an important role in human dietary nutrition in terms of providing vitamins, edible fibers, essential minerals, and health protective bioactive plant metabolites. Consumption of horticultural crops, mainly vegetables and fruits, is also linked with enhancement of intestinal health and digestion, better body immunity, and reduced risk of several life-threatening diseases, such as diabetes, cardiovascular disease, and many forms of cancer. The growing world population needs engineered horticultural crops to enhance yield, nutrient value, and tolerance toward climate change. As the scientific community debates the advantages and risks of transgenic plants, the proportion of the transgenic field crops has significantly increased worldwide, since last few years, and the public acceptance of transgenic crops continues to demonstrate. Nevertheless, despite the encouraging success story of commercialization of transgenic field crops, the production and marketing of transgenic horticultural crops, such as vegetables, fruits, and ornamentals, are very poor. Transgenic vegetable crops could provide an economically viable solution toward sustainable production of horticultural crops in the coming years to meet the growing demands. However, countries differ in their policies and regulations for acceptance of transgenic horticultural crops. Production of transgenic horticultural crops will be more meaningful and publically acceptable if their advantages in terms of nutrient and yield and their safety issues are demonstrated clearly. In this chapter, authors presented the latest updates available on plant transgenic technologies and their possible applications in the improvement of horticultural crops, particularly on vegetables and fruits. The future challenges, strategies, and opportunities of transgenic technologies in the improvement of horticultural crops are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RB, Boynton JE, Dawson J (2000) Sub-micron gold particles are superior to larger particles for efficient biolistic ® transformation of organelles and some cell types. Mol Biol

    Google Scholar 

  • Andersson M, Turesson H, Nicolia A, Fält AS, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  • Azad M, Rabbani MG, Amin L, Sidik NM (2013) Development of transgenic papaya through agrobacterium -mediated transformation. Int J Genomics:1–5

    Article  CAS  Google Scholar 

  • Azad MAK, Amin L, Sidik NM (2014) Gene technology for papaya ringspot virus disease management. Sci World J 2014:1–11

    Google Scholar 

  • Bruening G, Lyons JM (2000) The case of the FLAVR SAVR tomato. Calif Agric 54:6–7

    Article  Google Scholar 

  • Cao YH, Zhang Z, Yao QH, Peng RH, Xiong AS, Li X (2004) Suppression of apple polyphenol oxidase by double-stranded RNA (RNAi). Shi Yan Sheng Wu Xue Bao 37:487–493

    CAS  PubMed  Google Scholar 

  • Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaithra N, Gowda PHR, Guleria N (2016) Transformation of tomato with Cry2ax1 by biolistic gun method for fruit borer resistance. Int J Agric Environ Biotechnol 8:795

    Article  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GC, Ye M, Huang JC, Yu M, Li BJ (2001) Cloning of the papaya ringspot virus (PRSV) replicase gene and generation of PRSV-resistant papayas through the introduction of the PRSV replicase gene. Plant Cell Rep 20:272–277

    Article  CAS  Google Scholar 

  • Chin DP, Bao JH, Mii M (2009) Transgenic spinach plants produced by Agrobacterium-mediated method based on the low temperature-dependent high plant regeneration ability of leaf explants. Plant Biotechnol 26:243–248

    Article  CAS  Google Scholar 

  • Choudhary B, Gaur K (2009) The development and regulation of Bt brinjal in India

    Google Scholar 

  • Clark D, Klee H, Dandekar A (2004) Despite benefits, commercialization of transgenic horticultural crops lags. Calif Agric 58:89–98

    Article  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Davison S, Ray EE, Daulhac A et al (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • De Cosa B, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz R, Quinlivan EP, Klaus SMJ, Basset GJC, Gregory JF, Hanson AD (2004) Folate bio fortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci 101(38):13720–13725. https://doi.org/10.1073/pnas.0404208101

    Article  Google Scholar 

  • Dias JS, Ortiz R (2013) Transgenic vegetables for 21st century horticulture. Acta Hortic:15–30

    Google Scholar 

  • Dias JS, Ortiz R (2014) Advances in transgenic vegetable and fruit breeding. Agric Sci:1448–1467

    Google Scholar 

  • Dias JS, Ryder E (2011) World vegetable industry: production, breeding, trends. Hortic Rev 38:299–356

    CAS  Google Scholar 

  • Du H, Yang T, Ma C, Feng D, Zhang N, Si H, Wang D (2012) Effects of RNAi silencing of SSIII gene on phosphorus content and characteristics of starch in potato tubers. J Integr Agric 11:1985–1992

    Article  Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2007) Transgenic plants from shoot apical meristems of Vitis vinifera L. “Thompson Seedless” via Agrobacterium-mediated transformation. Plant Cell Rep 26:2101–2110

    Article  CAS  PubMed  Google Scholar 

  • Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Peña L (2006) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185

    Article  Google Scholar 

  • Federal Office of Consumer Protection and Food Safety (Germany) and Partners FOCPFS (2009) Long-Term Effects of Genetically Modified (GM) Crops on health and the environment (Including Biodiversity): prioritization of potential. Risks and delimitation of uncertainties. Federal office of consumer protection of food safety, Berlin

    Google Scholar 

  • Food and agriculture organization of the United Nations FAO Stat 2013

    Google Scholar 

  • Fuchs M, Klas FE, McFerson JR, Gonsalves D (1998) Transgenic melon and squash expressing coat protein genes of aphid-borne viruses do not assist the spread of an aphid non- transmissible strain of cucumber Mosaic Virus in the Field. Transgenic Res 7:449–462

    Article  CAS  Google Scholar 

  • Gómez-Lim MA, Litz RE (2004) Genetic transformation of perennial tropical fruits. In Vitro Cell Dev Biol – Plant 40:442

    Article  Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  CAS  PubMed  Google Scholar 

  • Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J (2009) Agrobacterium -mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale and maize. Int J Plant Genomics:1–9

    Article  CAS  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11:395–407

    Article  CAS  PubMed  Google Scholar 

  • ISAAA (2016) Increase in global area producing genetically modified crops in last ten years since 2006 to 2016

    Google Scholar 

  • Ismail RM, El-Domyati FM, Wagih EE, Sadik AS, Abdelsalam AZE (2011) Construction of banana bunchy top nanovirus-DNA-3 encoding the coat protein gene and its introducing into banana plants cv. Williams. J Genet Eng Biotechnol 9:35–41

    Article  CAS  Google Scholar 

  • Jayaraman K (2010) Bt brinjal splits Indian cabinet. Nat Biotechnol 28:296

    Article  CAS  Google Scholar 

  • Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kays SJ (2011) Cultivated vegetables of the world: a multilingual onomastic on, Wageningen Academic Publishers, The Netherlands. https://doi.org/10.3920/978-90-8686-720-2

  • Keatinge JDH, Waliyar F, Jammadass RH, Moustafa A, Andrade M, Drechsel P, Hughes J’A, Kardivel P, Luther K (2010) Re-learning old lessons for the future of food: by bread alone no longer—Diversifying diets with fruit and vegetables. Crop Sci 50:51–62

    Article  Google Scholar 

  • Khan RS, Nishihara M, Yamamura S, Nakamura I, Mii M (2006) Transgenic potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotechnol 23:179–183

    Article  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehnle A, Sugii N (1992) Transformation of dendrobium orchid using particle bombardment of protocorms. Plant Cell Rep 11

    Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lius S, Manshardt RM, Fitch MMM, Slightom JL, Sanford JC, Gonsalves D (1997) Pathogen-derived resistance provides papaya with effective protection against papaya ringspot virus. Mol Breed 3:161–168

    Article  Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J et al (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of -carotene accumulation. Plant Cell Online 18:3594–3605

    Article  CAS  Google Scholar 

  • Marchant R (1998) Biolistic Transformation of Rose (Rosa hybridaL.). Ann Bot 81:109–114

    Article  Google Scholar 

  • Mendes BMJ, Boscariol RL, Mourão Filho F de AA, Almeida WAB de (2002) Agrobacterium-mediated genetic transformation of ‘Hamlin’ sweet orange. Pesq Agrop Brasileira 37:955–961

    Article  Google Scholar 

  • Mishra M, Jalil SU, Sharma N, Hudedamani U (2014) An Agrobacterium mediated transformation system of guava (Psidium guajava L.) with endochitinase gene. Crop Breed Appl Biotechnol 14:232–237

    Article  Google Scholar 

  • Mori S, Kobayashi H, Hoshi Y, Kondo M, Nakano M (2004) Heterologous expression of the flavonoid 3,5-hydroxylase gene of Vinca major alters flower color in transgenic Petunia hybrida. Plant Cell Rep 22:415–421

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci Rep 7:482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ntui V, Otang V, Sher Khan R, Bullet D, Chin P, Bullet I, Bullet N, Mii M (2010) An efficient Agrobacterium tumefaciens-mediated genetic transformation of ‘“Egusi”’ melon (Colocynthis citrullus L.)

    Google Scholar 

  • Ortiz R, Melinda S (2007) Transgenic technology: pro-poor or pro-rich. Chronica Hortic 47:9–12

    Google Scholar 

  • Park S, Kim C-K, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H +/Ca 2+ transporter. Mol Breed 14:275–282

    Article  Google Scholar 

  • Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer R, Rivlin G, Golobovitch S, Lapidot M, Gal-On A, Vainstein A, Tzfira T, Flaishman MA (2015) Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees. Planta 241:941–951

    Article  CAS  PubMed  Google Scholar 

  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pimentel D (1997) Techniques for reducing pesticide use. Economic and environmental benefits. Wiley, New York

    Google Scholar 

  • Polák J, Pívalová J, Kundu JK, Jokes M (2008) Behaviour of transgenic plum pox virus -resistant Prunus domestica L. Clone C5 grown in the open field under a high and permanent infection pressure of the Ppv-Rec strain. J Plant Pathol 90:2003–2006

    Google Scholar 

  • Ram RB, Dasgupta SK (2005) Transgenic vegetable crops. J New Seeds 6:409–428

    Article  Google Scholar 

  • Rao K (1999) Agrobacterium-mediated transformation of Sunflower (Helianthus annuus L.): A Simple Protocol. Ann Bot 83:347–354

    Article  CAS  Google Scholar 

  • Ravelonandro M, Monsion M, Teycheney PY, Delbos R, Dunez J (1992) Construction of a chimeric viral gene expressing plum pox virus coat protein. Gene 120:167–173

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-hernández AM, Gosalvez B, Sempere RN, Burgos L, Aranda MA, Truniger V (2012) Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol Plant Pathol 13:755–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669

    Article  PubMed  Google Scholar 

  • Schijlen E, Ric de Vos CH, Jonker H, van den Broeck H, Molthoff J, van Tunen A, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444

    Article  CAS  PubMed  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: International regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scorza R, Ravelonandro M, Callahan A, Cordts J, Fuchs M, Dunez J, Gonsalves D (1994) Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene. Plant Cell Rep 14

    Google Scholar 

  • Scorza R, Callahan AM, Levy L, Damsteegt V, Ravelonandro M (1998) Transferring pot virus coat protein genes through hybridization of transgenic plants to produce plum pox virus resistant plums (Prunus domestica L.). Acta Hort (472):421–427

    Google Scholar 

  • Shelton AM, Hossain MJ, Paranjape V, Azad AK, Rahman ML, Khan ASMMR, Prodhan MZH, Rashid MA, Majumder R, Hossain MA et al (2018) Bt Eggplant Project in Bangladesh: History, Present Status, and Future Direction. Front Bioeng Biotechnol 6

    Google Scholar 

  • Sticklen M (2015) Transgenic, cisgenic, intragenic and subgenic Crops. Adv Crop Sci Technol 03

    Google Scholar 

  • Sugaya T, Yano M, Sun H-J, Hirai T, Ezura H (2008) Transgenic strawberry expressing the taste-modifying protein miraculin. Plant Biotechnol 25:329–333

    Article  CAS  Google Scholar 

  • Tanaka KT, Utsumi S (2000) Plant Transformation and Transgenic Crops. Food Sci Technol Res 6:241–247

    Article  Google Scholar 

  • Tanuja P, Kumar AL (2017) Transgenic fruit crops – A review. Int J Curr Microbiol App Sci 6:2030–2037

    Article  CAS  Google Scholar 

  • Tennant PF (1994) Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected Papaya. Phytopathology 84:1359

    Article  Google Scholar 

  • Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F et al (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36:399–406

    Article  CAS  PubMed  Google Scholar 

  • Tseng MJ, Yang MT, Chu WR, Liu CW (2014) Plastid Transformation in Cabbage (Brassica oleracea L. var. capitata L.) by the Biolistic Process. Chloroplast Biotechnol:355–366

    Google Scholar 

  • Wahlroos T, Susi P, Solovyev A, Dorokhov Y, Morozov S, Atabekov J, Korpela T (2004) Increase of histidine content in Brassica rapa subsp. oleifera by over-expression of histidine-rich fusion proteins. Mol Breed 14:455–462

    Article  CAS  Google Scholar 

  • Xiong J-S, Ding J, Li Y (2015) Genome-editing technologies and their potential application in horticultural crop breeding. Horticulture Res 2:15019

    Article  CAS  Google Scholar 

  • Yepes L, Mittak V, Pang S-Z, Gonsalves C, Slightom J, Gonsalves D (1995) Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell Rep 14

    Google Scholar 

  • Zhang L, Yang X, Zhang Y, Yang J, Qi G, Guo D, Xing G, Yao Y, Xu W, Li H et al (2014) Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Post transcriptional Gene Silencing. Int J Genomics:1–8

    Article  CAS  Google Scholar 

  • Zhou J, Wang G, Liu Z (2018) Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnol J 16:1868–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo X (2002) Expression of the mouse metallothionein mutant -cDNA in the lettuces (Lactuca sativa L.). Chin Sci Bull 47:558

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pawan Kumar Agrawal or Debabrata Sircar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomar, V., Saini, S.S., Juneja, K., Agrawal, P.K., Sircar, D. (2019). Transgenic Technologies and Their Potential Applications in Horticultural Crop Improvement. In: Sathishkumar, R., Kumar, S., Hema, J., Baskar, V. (eds) Advances in Plant Transgenics: Methods and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-9624-3_9

Download citation

Publish with us

Policies and ethics