Skip to main content

New-Generation Vectors for Plant Transgenics: Methods and Applications

  • Chapter
  • First Online:
Book cover Advances in Plant Transgenics: Methods and Applications

Abstract

Transgenic development is the establishment of novel traits into the plants to enhance its quality. Foreign gene introduction into the nuclear or chloroplast genomes in plants is achieved through the DNA-carrying elements known as plasmids or vectors. Plant genetic engineering will be productive only if we develop small, easy-to-handle, and simple to use Agrobacterium binary vectors. Most of the new-generation vectors were derived from conventional vectors, such as pBIN and pCAMBIA series. Conventional vectors are larger in size making it difficult for cloning as it decreases the ability of gene integration. For the functional characterization of genes, it requires comprehensive genetic analysis, which includes overexpression, downregulation (antisense/RNAi), promoter analysis, subcellular localization studies, and gene complementation analysis. These high-throughput functional genetic approaches rely on efficient cloning strategies and new-generation vectors. Ancient cloning procedures based on the restriction and digestion are cumbersome and require large time. Modern cloning approaches were established with the newly arrived next-generation vector systems that will be helpful to reduce the cloning difficulty and to increase cloning efficiency methods. The major purpose of the expression vectors is to achieve high protein expression, which is normally driven by strong promoters. Modern, stable, and transient expression vector systems were established to enhance the expression of the foreign gene and to reduce the complexity of gene construct preparation. This chapter describes the various new-generation vectors and their potential application in the field of plant genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MA, Shah KH, Bohlmann H (2012) pMAA-Red: a new pPZP-derived vector for fast visual screening of transgenic Arabidopsis plants at the seed stage. BMC Biotech:12

    Google Scholar 

  • An H, Roussot C, Suárez-López P, Corbesier L, Vincent C, Piñeiro M, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131(15):3615–3626

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300(5620):764–764

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Voytas D (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 1(3):394–401

    Article  CAS  Google Scholar 

  • Bonke M, Thitamadee S, Mähöonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN (2007) Combining expression and comparative evolutionary analysis. COBRA Gene Fam Plant Physiol 143(1):172–187

    Article  CAS  Google Scholar 

  • Brand L, Hörler M, Nüesch E, Vassalli S, Barrell P, Yang W (2006) A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol 141:1194–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britt AB, May GD (2003) Re-engineering plant gene targeting. Trends Plant Sci 8:90–95

    Article  CAS  PubMed  Google Scholar 

  • Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell A, Takeda A, Fahlgren N, Johnson SC, Cuperus JT, Carrington JC (2014) New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol 165(1):15–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll D (2008) Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther 15:1463–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty R, Banerjee R, Chung SM, Farman M, Citovsky V (2007) pSITE vectors for stable integration or transient expression of autofluorescent protein fusions in plants: probing Nicotiana benthamiana-virus interactions. Mol Plant-Microbe Interact 20:740–750

    Article  CAS  PubMed  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    Article  CAS  PubMed  Google Scholar 

  • Chen QJ, Zhou HM, Chen J, Wang XC (2006) A Gateway-based platform for multigene plant transformation. Plant Mol Biol 62:927–936

    Article  CAS  PubMed  Google Scholar 

  • Cheo DL, Titus SA, Byrd DRN, Hartley JL, Temple GF, Brasch MA (2004) Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones. Genome Res 14:2111–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14(12):3237–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133(2):462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson WO, Folimonova SY (2013) Virus-based transient expression vectors for woody crops: a new frontier for vector design and use. Annu Rev Phytopathol 51:321–337

    Article  CAS  PubMed  Google Scholar 

  • Dawson WO, Lewandowski DJ, Hilf ME, Bubrick P, Raffo AJ, Shaw JJ, Grantham GL, Desjardins PR (1989) A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology 172:285–292

    Article  CAS  PubMed  Google Scholar 

  • De Francesco L (2011) Move over ZFNs. Nat Biotechnol 29:681–684

    Article  CAS  Google Scholar 

  • Deveaux Y, Peaucelle A, Roberts GR, Coen E, Simon R (2003) Mizukami Y (2003) the ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J 36:918–930

    Article  CAS  PubMed  Google Scholar 

  • Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782

    Article  CAS  PubMed  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Donson J, Kearney CM, Hilf ME, Dawson WO (1991) Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc Natl Acad Sci U S A 88:7204–7208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  PubMed  Google Scholar 

  • Exposito-Rodriguez M, Laissue PP, López-Calcagno PE, Mullineaux PM, Raines CA, Simkin AJ (2017) Development of pGEMINI, a plant gateway destination vector allowing the simultaneous integration of two cDNA via a single LR-Clonase reaction. Plan Theory 6:55

    Google Scholar 

  • Gleba YY, Giritch A (2011) Plant viral vectors for protein expression. In: Caranta C, Aranda MA, Tepfer M, Lopez-Moya JJ (eds) Recent advances in plant virology. Caister Academic Press, Norfolk, pp 387, 412 pp–412

    Google Scholar 

  • Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the “full virus” and the “deconstructed virus” strategies. Curr Opin Plant Biol 7:182–188

    Article  CAS  PubMed  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection–a new platform for expressing recombinant vaccines in plants. Vaccine 23(17–18):2042–2048

    Article  CAS  PubMed  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    Article  CAS  PubMed  Google Scholar 

  • Goodin MM, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO (2002) pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383

    Article  CAS  PubMed  Google Scholar 

  • Gorlach J, Volrath S, Beiter GK, Hengym G, Beckhove U (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gossele V, Fache I, Meulewaeter F, Cornelissen M, Metzlaff M (2002) SVISS – a novel transient gene silencing system for gene function discovery and validation in tobacco plants. Plant J 32:859–866

    Article  CAS  PubMed  Google Scholar 

  • Groß-Hardt R, Lenhard M, Laux T (2002) WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 16:1129–1138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ha SB, An G (1998) Identification of upstream regulatory elements involved in the developmental expression of the Arabidopsis thaliana cab1 gene. Proc Natl Acad Sci U S A 85:8017–8021

    Article  Google Scholar 

  • Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site specific recombination. Genome Res 10:1788–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  CAS  PubMed  Google Scholar 

  • Himmelbach A, Zierold U, Hensel G, Riechen J, Douchkov D, Schweizer P, Kumlehn J (2007) A set of modular binary vectors for transformation of cereals. Plant Physio 145:1192–1200

    Article  CAS  Google Scholar 

  • Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103:706–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Van Loock B, Liao M, Verbelen JP, Vissenberg K (2007) Combination of the ALCR/alcA ethanol switch and GAL4/VP16-UAS enhancer trap system enables spatial and temporal control of transgene expression in Arabidopsis. Plant Biotechnol J 5:477–482

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, De Meyer B, Hilson P (2005) Modular cloning in plant cells. Trends Plant Sci 10:103–105

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway vectors. Plant Physiol 145:1144–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katzen F (2007) Gateway recombinational cloning: a biological operating system. Expert Opin Drug Discov 2:571–589

    Article  CAS  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Construction of a Z-DNA-specific restriction endonuclease. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronbak R, Ingvardsen CR, Madsen CK, Per Langkjær Gregersen PL (2014) A novel approach to the generation of seamless constructs for plant transformation. Plant Meth 10:10

    Article  CAS  Google Scholar 

  • Kusano H, Onodera H, Kihira M, Aoki H, Matsuzaki H, Hiroaki Shimada H (2016) A simple gateway-assisted construction system of TALEN genes for plant genome editing. Sci Rep 6:30234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lico C, Chen Q, Sant L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindbo JA (2007) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145(4):1232–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liou MR, Huang YW, Hu CC, Lin NS, Hsu YH (2014) A dual gene-silencing vector system for monocot and dicot plants. Plant Biotechnol J 12:330–343

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A 94:5525–5530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Gen 4:794–805

    Article  CAS  Google Scholar 

  • Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14(23):2938–2943

    Article  PubMed  PubMed Central  Google Scholar 

  • Maizel A, Weigel D (2004) Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana. Plant J 38:164–171

    Article  CAS  PubMed  Google Scholar 

  • Malamy JE, Benfey PN (1997) Analysis of SCARECROW expression using a rapid system for assessing transgene expression in Arabidopsis roots. Plant J 12:957–963

    Article  CAS  PubMed  Google Scholar 

  • Martínez de Alba AE, Elvira-Matelot E, Vaucheret H (2013) Gene silencing in plants: a diversity of pathways. Biochim Biophys Acta 1829:1300–1308

    Article  PubMed  CAS  Google Scholar 

  • Matheka JM, Anami S, Gethi J, Omer RA, Alakonya A, Machuka J, Runo S (2013) A new double right border binary vector for producing marker-free transgenic plants. BMC Res Not 6:448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michniewicz M, Frick EM, Lucia C, Strader LC (2015) Gateway-compatible tissue-specific vectors for plant transformation. BMC Res Not 8:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 31:691–693

    Article  CAS  PubMed  Google Scholar 

  • Pogue GP, Lindbo JA, Dawson WO, Turpen TH (1998) Tobamovirus transient expression vectors: tools for plant biology and high-level expression of foreign proteins in plants. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Springer, Dordrecht

    Google Scholar 

  • Purkayastha A, Dasgupta I (2009) Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem 47:967–976

    Article  CAS  PubMed  Google Scholar 

  • Que Q, Chilton MM, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops. Challenges and opportunities. GM Crops 1:220–229

    Article  PubMed  Google Scholar 

  • Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148(3):1212–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    Article  CAS  PubMed  Google Scholar 

  • Sanagala R, Moola AK, Diana RKB (2017) A review on advanced methods in plant gene targeting. J Genetic Eng Biotech 15:317–321

    Article  Google Scholar 

  • Sasaki Y, Sone T, Yoshida S, Yahata K, Hotta J, Chesnut JD, Honda T, Imamoto F (2004) Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the Multisite Gateway system. J Biotechnol 107:233–243

    Article  CAS  PubMed  Google Scholar 

  • Schlücking K, Edel KH, Köster P, Drerup MM, Eckert C, Steinhorst L, Waadt R, Batistic O, Kudla J (2013) A new β-estradiol-inducible vector set that facilitates easy construction and efficient expression of transgenes reveals CBL3-dependent cytoplasm to tonoplast translocation of CIPK5. Mol Plant 6(6):1814–1829

    Article  PubMed  CAS  Google Scholar 

  • Scholthof HB, Scholthof KB, Jackson AO (1996) Plant virus gene vectors for transient expression of foreign proteins in plants. Annu Rev Phytopathol 34:299–323

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah KH, Almaghrabi B, Bohlmann H (2013) Comparison of expression vectors for transient expression of recombinant proteins in plants. Plant Mol Biol Reporter 31:1529–1538

    Article  CAS  Google Scholar 

  • Shah SH, Jan SA, Ahmad N, Khan SU (2015) Use of different promoters in transgenic plant development: current challenges and future perspectives. American-Eurasian J Agric Environ Sci 15(4):664–675

    CAS  Google Scholar 

  • Shuai B, Reynaga-Pena CG, Springer PS (2002) The lateral organ boundaries gene defines a novel, plant-specific gene family. Plant Physiol 129:747–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson J, Schell J, Van Montagu M, Herrera-Estrella L (1986a) Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancer- and silencer-like properties. Nature 323:551–554

    Article  CAS  Google Scholar 

  • Simpson J, Vanm M, Herrera Estrella L (1986b) Photosynthesis-associated gene families: differences in response to tissue-specific and environmental factors. Science 233:34–38

    Article  CAS  PubMed  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  • Sorek R, Awrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266

    Article  CAS  PubMed  Google Scholar 

  • Takken FLW, van Wijk R, Michielse CB, Houterman PM, Ram AFJ (2004) A one-step method to convert vectors into binary vectors suited for agrobacterium-mediated transformation. Curr Genet 45:242–248

    Article  CAS  PubMed  Google Scholar 

  • Thole V, Worland B, Snape JW, Vain P (2007) The pCLEAN dual binary vector system for agrobacterium-mediated plant transformation. Plant Physiol 145:1211–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thole JM, Beisner ER, Liu J, Venkova SV, Strader LC (2014) Abscisic acid regulates root elongation through the activities of auxin and ethylene in Arabidopsis thaliana. G3: Genes, Genomes, Genetics 4(7):1259–1274

    Google Scholar 

  • Tsutsui H, Higashiyama T (2017) pKAMA-ITACHI vectors for highly efficient CRISPR/Cas9-mediated gene knockout in Arabidopsis thaliana. Plant Cell Physiol 58(1):46–56

    CAS  PubMed  Google Scholar 

  • Tzfira T, Tian GW, Lacroix B, Vyas S, Li J, Leitner-Dagan Y, Krichevsky A, Taylor T, Vainstein A, Citovsky V (2005) pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57:503–516

    Article  CAS  PubMed  Google Scholar 

  • Untergasser A, Bijl GJ, Liu W, Bisseling T, Schaart JG (2012) One-step agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE. PLoS One 7:e47885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 10:1213–1227

    Google Scholar 

  • Veylder LD, Van MM, Inze D (1997) Herbicide safener inducible gene expression in Arabidopsis thaliana. Plant Cell Physiol 38:568–577

    Article  PubMed  Google Scholar 

  • Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) Retracted: an enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant J 33(5):949–956

    Article  CAS  PubMed  Google Scholar 

  • Wang CT, Yin XL, Kong XX, Li WS, Ma L (2013) A series of TA-based and zero-background vectors for plant functional genomics. Plos One:8, e59576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnasooriya SN, Montgomery BL (2009) Detection of spatial-specific phytochrome responses using targeted expression of biliverdin reductase in Arabidopsis. Plant Physiol 149:424–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang L, Hunter D, Voogd C, Joyce N, Davies K (2013) A Narcissus mosaic viral vector system for protein expression and flavonoid production. Plant Methods 9:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Hwang US, Lim S, Yoo RH, Igori D, Lee SH, Lim HS, Moon JS (2015) Complete genome sequence and construction of infectious full-length cDNA clones of tobacco ringspot Nepovirus, a viral pathogen causing bud blight in soybean. Virus Genes 51:163–166

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Huang C (2012) Virus-induced gene silencing using begomovirus satellite molecules. Methods Mol Biol 894:57–67

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Niu QW, Chau NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in plants. Plant J 24:265–273

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chau NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant (Sanction No. PDF/2016/000750) from the Department of Science and Technology, Science and Engineering Research Board, Government of India, and (Sanction No. No.F.4-2/2006 (BSR)/BL/16-170541) from the D. S. Kothari Postdoctoral Fellowship and was also supported by UGC-SAP, DST-FIST, and DST-PURSE schemes.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baskar, V., Kuppuraj, S.P., Samynathan, R., Sathishkumar, R. (2019). New-Generation Vectors for Plant Transgenics: Methods and Applications. In: Sathishkumar, R., Kumar, S., Hema, J., Baskar, V. (eds) Advances in Plant Transgenics: Methods and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-9624-3_5

Download citation

Publish with us

Policies and ethics