Skip to main content

Cancer: Genetics and Important Pathways

  • Chapter
  • First Online:
Cancer Genetics and Therapeutics
  • 554 Accesses

Abstract

We have seen in Chap. 1 that all the hallmarks of cancer are related to molecular mechanisms in cells, driven by expression levels of key genes. Moreover, these genes are many times connected through genetic pathways. We have discussed the apoptosis pathway in Chap. 1. We start this chapter with a review of the fundamental concepts in genetics and molecular biology. We then discuss the genetic landscape of cancer. It is a complex problem to implicate specific genes for particular types of cancer, and our understanding is evolving all the time. We discuss the current understanding of the genetic landscapes for several important types of cancer. Finally we discuss some of the important pathways involved in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Alberts, A.D. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 6th edn. (Garland Science, New York, 2015)

    Google Scholar 

  2. B. Vogelstein, N. Papadopoulos, V.E. Velculescu, S. Zhou, L.A. Diaz Jr., K.W. Kinzler, Cancer genome landscapes. Science 339, 1546–1558 (2013)

    Article  CAS  Google Scholar 

  3. P.J. Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403), 400–404 (2012). https://doi.org/10.1038/nature11017

    Article  CAS  Google Scholar 

  4. US National Library of Medicine, Genetics Home Reference, https://ghr.nlm.nih.gov/gene

  5. NCBI gene resources, https://www.ncbi.nlm.nih.gov/gene

  6. D. Huang et al., Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 37, 173–187 (2018)

    Article  CAS  Google Scholar 

  7. X. Wang et al., The molecular landscape of synchronous colorectal cancer reveals genetic heterogeneity. Carcinogenesis 39(5), 708–718 (2018)

    Article  CAS  Google Scholar 

  8. X. Li et al., Genomic analysis of liver cancer unveils novel driver genes and distinct prognostic features. Theranostics 8(6), 1740–1751 (2018)

    Article  CAS  Google Scholar 

  9. E.A. Semenova, R. Nagel, A. Berns, Origins, genetic landscape, and emerging therapies for small cell lung cancer. Genes Dev. 29, 1447–1462 (2015)

    Article  CAS  Google Scholar 

  10. L. Jiang et al., Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLOS Genet. (2016). https://doi.org/10.1371/journal.pgen.1005895

    Article  Google Scholar 

  11. R. Govindan et al., Genomic landscape of non-small cell lung cancer in smokers and never smokers. Cell 150(6), 1121–1134 (2012). https://doi.org/10.1016/j.cell.2012.08.024

    Article  CAS  Google Scholar 

  12. L. Ding et al., Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008)

    Article  CAS  Google Scholar 

  13. N. Hayward et al., Whole-genome landscapes of major melanoma subtypes. Nature 545, 175–180 (2017). https://doi.org/10.1038/nature22071

    Article  CAS  Google Scholar 

  14. E. Hodis et al., A landscape of driver mutations in melanoma. Cell 150(2), 251–263 (2012). https://doi.org/10.1016/j.cell.2012.06.024

    Article  CAS  Google Scholar 

  15. N. Waddell et al., Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540), 495–501 (2015). https://doi.org/10.1038/nature14169

    Article  CAS  Google Scholar 

  16. M.F. Berger et al., Melanoma genome sequencing reveals frequent PLEX2 mutations. Nature 485, 502–206 (2012). https://doi.org/10.1038/nature11071

    Article  CAS  Google Scholar 

  17. A. Ojesina et al., Landscape of genomic alterations in cervical carcinomas. Nature 506(7488), 371–375 (2014). https://doi.org/10.1038/nature12881

    Article  CAS  Google Scholar 

  18. B. Vogelstein, K.W. Kinzler, Nat. Med. 10, 789–799 (2004)

    Article  CAS  Google Scholar 

  19. O. Dreesen, A.H. Brivanlou, Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 3(1), 7–17 (2007)

    Article  CAS  Google Scholar 

  20. A. Weiss, L. Attisano, The TGFbeta superfamily signaling pathway. WIREs Dev. Biol. 2, 47–63 (2013). https://doi.org/10.1002/wdev.86

    Article  CAS  Google Scholar 

  21. R. Sever, J.S. Brugge, Signal transduction in cancer. Cold Spring Harb. Perspect. Med. 5, 1006098 (2015). https://doi.org/10.1101/cshperspect.a006098

    Article  Google Scholar 

  22. J. Messagué, TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012)

    Article  Google Scholar 

  23. F. Verrecchia, A. Mauviel, Transforming growth factor-β signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J. Invest. Darmatol. 118(2), 211–215 (2002)

    Article  CAS  Google Scholar 

  24. Y. Xia, S. Shen, I.M. Verma, NF-κB, and active player in human cancers. Cancer Immunol. Res. 2(9), 823–830 (2014)

    Article  CAS  Google Scholar 

  25. T. Żhan, N. Rindtorff, M. Boutros, Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017)

    Article  Google Scholar 

  26. W. Zhang, H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12(1), 9–18 (2002)

    Article  CAS  Google Scholar 

  27. B.A. Hemmings, D.F. Restuccia, PI3K-PKB/AKT pathway. Cold Spring Harb. Perspect. Biol. 4, a011189 (2012)

    Article  Google Scholar 

  28. J.S.L. Yu, W. Cui, Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signaling in pluripotency and cell fate determination. Development 143, 3050–3060 (2016)

    Article  CAS  Google Scholar 

  29. J.Ć. Haan et al., Genomic landscape of metastatic colorectal cancer. Nat. Commun. 5, 5457 (2014). https://doi.org/10.1038/ncomms6457

    Article  CAS  Google Scholar 

  30. N. Hama et al., Epigenetic landscape influences the liver cancer genomic architecture. Nat. Commun. 9, 1643 (2018). https://doi.org/10.1038/s41467-018-03999-y

    Article  Google Scholar 

  31. S.M. Hong et al., Molecular signatures of pancreatic cancer. Arch. Pathol. Lab. Med. 135(6), 716–727 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. S. Li, H.M. Lu, M.H. Black, The current genetic landscape of triple-negative breast cancer. J. Lab. Precis. Med. 3, 94 (2018)

    Article  Google Scholar 

  33. R. Nahar et al., Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing. Nat. Commun. 9, 216 (2018). https://doi.org/10.1038/s41467-017-02584-z

    Article  Google Scholar 

  34. S. Nik-Zainal et al., Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016). https://doi.org/10.1038/nature17676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, M., Datta, A. (2019). Cancer: Genetics and Important Pathways. In: Cancer Genetics and Therapeutics. Springer, Singapore. https://doi.org/10.1007/978-981-13-9471-3_2

Download citation

Publish with us

Policies and ethics