Skip to main content

Modal Analysis Investigation of Mechanical Kerr Frequency Combs

  • Conference paper
  • First Online:
Topics in Nonlinear Mechanics and Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 228))

Abstract

The aim of this work is to theoretically investigate the possibility of Kerr frequency combs in mechanical systems. In particular, whether microelectromechanical devices (MEMS) can be used to generate frequency combs in a manner that is analogous to the optical frequency combs generated in optical microresonators with Kerr-type nonlinearity. The analysis assumes a beam-like micromechanical structure, and starting from the Euler-Bernoulli beam equation derives the necessary conditions in parameter space for the comb generation. The chapter equally presents potential means for the physical implementation of mechanical Kerr combs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Optical frequency comb is a laser source whose spectrum consists of a series of discrete, equally spaced frequency lines. Frequency combs can be generated by a number of mechanisms, including periodic modulation (in amplitude and/or phase) of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a mode-locked laser.

References

  1. N. Akhmediev, J.M. Dudley, D.R. Solli, S.K. Turitsyn, Recent progress in investigating optical rogue waves. J. Opt. 15(6), 060201 (2013)

    Article  ADS  Google Scholar 

  2. C. Bao, Y. Xuan, D.E. Leaird, S. Wabnitz, M. Qi, A.M. Weiner, Spatial mode-interaction induced single soliton generation in microresonators. Optica 4(9), 1011–1015 (2017)

    Article  ADS  Google Scholar 

  3. R.D. Blevins, R. Plunkett, Formulas for natural frequency and mode shape. J. Appl. Mech. 47, 461 (1980)

    Article  ADS  Google Scholar 

  4. L.S. Cao, D.X. Qi, R.W. Peng, M. Wang, P. Schmelcher, Phononic frequency combs through nonlinear resonances. Phys. Rev. Lett. 112(7), 075505 (2014)

    Article  ADS  Google Scholar 

  5. J. Cha, C. Daraio, Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz frequencies. Nat. Nanotechnol. 13(11), 1016 (2018)

    Article  ADS  Google Scholar 

  6. Y.K. Chembo, N. Yu, Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82(3), 033801 (2010)

    Article  ADS  Google Scholar 

  7. Y.K. Chembo, C.R. Menyuk, Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87(5), 053852 (2013)

    Article  ADS  Google Scholar 

  8. Chia, C.Y., 1980. Nonlinear analysis of plates. McGraw-Hill International Book Company

    Google Scholar 

  9. N.A. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer, New York, 2003), pp. 312–319

    Book  Google Scholar 

  10. A. Coillet, Y.K. Chembo, Routes to spatiotemporal chaos in Kerr optical frequency combs. Chaos: Interdiscip. J. Nonlinear Sci. 24(1), 013113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Coillet, J. Dudley, G. Genty, L. Larger, Y.K. Chembo, Optical rogue waves in whispering-gallery-mode resonators. Phys. Rev. A 89(1), 013835 (2014)

    Article  ADS  Google Scholar 

  12. J. Crawford, S. Atluri, Non-linear vibrations of a flat plate with initial stresses. J. Sound Vib. 43(1), 117–129 (1975)

    Article  ADS  MATH  Google Scholar 

  13. S.T. Cundiff, J. Ye, J.L. Hall, Optical frequency synthesis based on mode-locked lasers. Rev. Sci. Instrum. 72(10), 3749–3771 (2001)

    Article  ADS  Google Scholar 

  14. D.A. Czaplewski, C. Chen, D. Lopez, O. Shoshani, A.M. Eriksson, S. Strachan, S.W. Shaw, Bifurcation generated mechanical frequency comb. Phys. Rev. Lett. 121(24), 244302 (2018)

    Article  ADS  Google Scholar 

  15. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, T.W. Hänsch, Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84(22), 5102 (2000)

    Article  ADS  Google Scholar 

  16. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg, Optical frequency comb generation from a monolithic microresonator. Nature 450(7173), 1214 (2007)

    Article  ADS  Google Scholar 

  17. J.N. Eckstein, A.I. Ferguson, T.W. Hänsch, High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. 40(13), 847 (1978)

    Article  ADS  Google Scholar 

  18. A. Erbe, H. Krömmer, A. Kraus, R.H. Blick, G. Corso, K. Richter, Mechanical mixing in nonlinear nanomechanical resonators. Appl. Phys. Lett. 77(19), 3102–3104 (2000)

    Article  ADS  Google Scholar 

  19. A. Ganesan, C. Do, A. Seshia, Phononic frequency comb via intrinsic three-wave mixing. Phys. Rev. Lett. 118(3), 033903 (2017)

    Article  ADS  Google Scholar 

  20. A. Ganesan, C. Do, A. Seshia, Phononic frequency comb via three-mode parametric resonance. Appl. Phys. Lett. 112(2), 021906 (2018)

    Article  ADS  Google Scholar 

  21. C. Godey, I.V. Balakireva, A. Coillet, Y.K. Chembo, Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89(6), 063814 (2014)

    Article  ADS  Google Scholar 

  22. P. Grelu, N. Akhmediev, Dissipative solitons for mode-locked lasers. Nat. Photonics 6(2), 84 (2012)

    Article  ADS  Google Scholar 

  23. D.S. Greywall, B. Yurke, P.A. Busch, A.N. Pargellis, R.L. Willett, Evading amplifier noise in nonlinear oscillators. Phys. Rev. Lett. 72(19), 2992 (1994)

    Article  ADS  Google Scholar 

  24. J.L. Hall, Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys. 78(4), 1279 (2006)

    Article  ADS  Google Scholar 

  25. D. Hatanaka, I. Mahboob, K. Onomitsu, H. Yamaguchi, Phonon waveguides for electromechanical circuits. Nat. Nanotechnol. 9(7), 520 (2014)

    Article  ADS  Google Scholar 

  26. D. Hatanaka, A. Dodel, I. Mahboob, K. Onomitsu, H. Yamaguchi, Phonon propagation dynamics in band-engineered one-dimensional phononic crystal waveguides. New J. Phys. 17(11), 113032 (2015)

    Article  ADS  Google Scholar 

  27. D. Hatanaka, T. Darras, I. Mahboob, K. Onomitsu, H. Yamaguchi, Broadband reconfigurable logic gates in phonon waveguides. Sci. Rep. 7(1), 12745 (2017)

    Article  ADS  Google Scholar 

  28. D. Hatanaka, A. Bachtold, H. Yamaguchi, Electrostatically induced phononic crystal. Phys. Rev. Appl. 11(2), 024024 (2019)

    Article  ADS  Google Scholar 

  29. H. Haus, Parameter ranges for CW passive mode locking. IEEE J. Quantum Electron. 12(3), 169–176 (1976)

    Article  ADS  Google Scholar 

  30. T. Herr, V. Brasch, J.D. Jost, C.Y. Wang, N.M. Kondratiev, M.L. Gorodetsky, T.J. Kippenberg, Temporal solitons in optical microresonators. Nat. Photonics 8(2), 145 (2014)

    Article  ADS  Google Scholar 

  31. S. Houri, U. Bhaskar, B. Gallacher, L. Francis, T. Pardoen, J.P. Raskin, Dynamic analysis of multi-beam MEMS structures for the extraction of the stress-strain response of thin films. Exp. Mech. 53(3), 441–453 (2013)

    Article  Google Scholar 

  32. S. Houri, S.J. Cartamil-Bueno, M. Poot, P.G. Steeneken, H.S.J. van der Zant, W.J. Venstra, Direct and parametric synchronization of a graphene self-oscillator. Appl. Phys. Lett. 110(7), 073103 (2017)

    Article  ADS  Google Scholar 

  33. S. Houri, R. Ohta, M. Asano, Y.M. Blanter, H. Yamaguchi, Pulse-width modulated oscillations in a nonlinear resonator under two-tone driving as a means for MEMS sensor readout. Jpn. J. Appl. Phys., 58(SB), SBBI05 (2019)

    Article  Google Scholar 

  34. S.Houri, D. Hatanaka, M. Asano, R. Ohta, H. Yamaguchi, Limit cycles and bifurcations in a nonlinear MEMS resonator with a 1: 3 internal resonance. Appl. Phys. Lett., 114(10), 103103 (2019)

    Article  ADS  Google Scholar 

  35. N. Jaber, A. Ramini, M.I. Younis, Multifrequency excitation of a clamped–clamped microbeam: analytical and experimental investigation. Microsystems & Nanoeng. 2, 16002 (2016)

    Article  Google Scholar 

  36. R.B. Karabalin, M.C. Cross, M.L. Roukes, Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79(16), 165309 (2009)

    Article  ADS  Google Scholar 

  37. T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93(8), 083904 (2004)

    Article  ADS  Google Scholar 

  38. T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011)

    Article  ADS  Google Scholar 

  39. M. Kurosu, D. Hatanaka, K. Onomitsu, H. Yamaguchi, On-chip temporal focusing of elastic waves in a phononic crystal waveguide. Nat. Commun. 9(1), 1331 (2018)

    Article  ADS  Google Scholar 

  40. J. Laconte, D. Flandre, J.P. Raskin, Micromachined Thin-Film Sensors for SOI-CMOS Co-integration (Springer Science & Business Media, 2006)

    Google Scholar 

  41. J.S. Levy, A. Gondarenko, M.A. Foster, A.C. Turner-Foster, A.L. Gaeta, M. Lipson, CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics 4(1), 37 (2010)

    Article  ADS  Google Scholar 

  42. R. Lifshitz, M.C. Cross, Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Complex. 1, 1–52 (2008)

    MATH  Google Scholar 

  43. L.A. Lugiato, R. Lefever, Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58(21), 2209 (1987)

    Article  ADS  Google Scholar 

  44. K.J. Lulla, R.B. Cousins, A. Venkatesan, M.J. Patton, A.D. Armour, C.J. Mellor, J.R. Owers-Bradley, Nonlinear modal coupling in a high-stress doubly-clamped nanomechanical resonator. New J. Phys. 14(11), 113040 (2012)

    Article  ADS  Google Scholar 

  45. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R.S. Windeler, G. Wilpers, C. Oates, L. Hollberg, S.A. Diddams, Optical frequency synthesis and comparison with uncertainty at the 10–19 level. Science 303(5665), 1843–1845 (2004)

    Article  ADS  Google Scholar 

  46. M.J. Madou, Manufacturing Techniques for Microfabrication and Nanotechnology, vol. 2 (CRC press, 2011)

    Google Scholar 

  47. I. Mahboob, Q. Wilmart, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, Tuneable electromechanical comb generation. Appl. Phys. Lett. 100(11), 113109 (2012)

    Article  ADS  Google Scholar 

  48. I. Mahboob, R. Dupuy, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, Hopf and period-doubling bifurcations in an electromechanical resonator. Appl. Phys. Lett. 109(7), 073101 (2016)

    Article  ADS  Google Scholar 

  49. P. Marin-Palomo, J.N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M.H. Pfeiffer, P. Trocha et al., Microresonator-based solitons for massively parallel coherent optical communications. Nature 546(7657), 274 (2017)

    Article  ADS  Google Scholar 

  50. M.H. Matheny, L.G. Villanueva, R.B. Karabalin, J.E. Sader, M.L. Roukes, Nonlinear mode-coupling in nanomechanical systems. Nano Lett., 13(4), 1622–1626 (2013)

    Article  ADS  Google Scholar 

  51. A.B. Matsko, A.A. Savchenkov, D. Strekalov, V.S. Ilchenko, L. Maleki, Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A 71(3), 033804 (2005)

    Article  ADS  Google Scholar 

  52. A.B. Matsko, W. Liang, A.A. Savchenkov, L. Maleki, Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators. Opt. Lett. 38(4), 525–527 (2013)

    Article  ADS  Google Scholar 

  53. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Willey, New York, 1979)

    MATH  Google Scholar 

  54. A.H. Nayfeh, R.A. Ibrahim, Nonlinear interactions: analytical, computational, and experimental methods. Appl. Mech. Rev., 54, B60 (2001)

    Article  Google Scholar 

  55. E. Obrzud, S. Lecomte, T. Herr, Temporal solitons in microresonators driven by optical pulses. Nat. Photonics 11(9), 600 (2017)

    Article  Google Scholar 

  56. K. Panajotov, M.G. Clerc, M. Tlidi, Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model. Eur. Phys. J. D 71(7), 176 (2017)

    Article  ADS  Google Scholar 

  57. M. Sathyamoorthy, Nonlinear Analysis of Structures (1997) (CRC Press 2017)

    Google Scholar 

  58. M.J. Seitner, M. Abdi, A. Ridolfo, M.J. Hartmann, E.M. Weig, Parametric oscillation, frequency mixing, and injection locking of strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 118(25), 254301 (2017)

    Article  ADS  Google Scholar 

  59. D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Opt. Lett. 16(1), 42–44 (1991)

    Article  ADS  Google Scholar 

  60. D.T. Spencer, T. Drake, T.C. Briles, J. Stone, L.C. Sinclair, C. Fredrick, Q. Li, et al., An optical-frequency synthesizer using integrated photonics. Nature 557(7703), 81–85 (2018)

    Article  ADS  Google Scholar 

  61. B. Stern, X. Ji, Y. Okawachi, A.L. Gaeta, M. Lipson, Battery-operated integrated frequency comb generator. Nature 562(7727), 401 (2018)

    Article  ADS  Google Scholar 

  62. H.A. Tilmans, M. Elwenspoek, J.H. Fluitman, Micro resonant force gauges. Sens. Actuators, A 30(1–2), 35–53 (1992)

    Article  Google Scholar 

  63. T. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Absolute optical frequency measurement of the cesium D 1 line with a mode-locked laser. Phys. Rev. Lett. 82(18), 3568 (1999)

    Article  ADS  Google Scholar 

  64. S.S. Verbridge, J.M. Parpia, R.B. Reichenbach, L.M. Bellan, H.G. Craighead, High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys. 99(12), 124304 (2006)

    Article  ADS  Google Scholar 

  65. H.J.R. Westra, M. Poot, H.S.J. Van Der Zant, W.J. Venstra, Nonlinear modal interactions in clamped-clamped mechanical resonators. Phys. Rev. Lett. 105(11), 117205 (2010)

    Article  ADS  Google Scholar 

  66. H. Yamaguchi, I. Mahboob, Parametric mode mixing in asymmetric doubly clamped beam resonators. New J. Phys. 15(1), 015023 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partly supported by a MEXT Grant-in-Aid for Scientific Research on Innovative Areas “Science of hybrid quantum systems” (Grant No. JP15H05869 and JP15K21727).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samer Houri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Houri, S., Hatanaka, D., Blanter, Y.M., Yamaguchi, H. (2019). Modal Analysis Investigation of Mechanical Kerr Frequency Combs. In: Belhaq, M. (eds) Topics in Nonlinear Mechanics and Physics. Springer Proceedings in Physics, vol 228. Springer, Singapore. https://doi.org/10.1007/978-981-13-9463-8_7

Download citation

Publish with us

Policies and ethics