Skip to main content

Drops and Bubbles as Controlled Traveling Reactors and/or Carriers Including Microfluidics Aspects

  • Conference paper
  • First Online:
  • 498 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 228))

Abstract

Provided here is a succinct survey of significant features of theory and experiments dealing with drops or bubbles which may act as traveling reactors or mere carriers of appropriate payloads in microfluidic flows and devices. The units could be the seat of inner or surface reactions, internal heat generation, phase transformations or the like that provoke interfacial tension inhomogeneity and eventually controlled, directed or self-propelled motion (Marangoni effect).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Micro = 10−6, nano = 10−9, pico = 10−12, femto = 10−15; microfluidic drops/picoliter volumes with sizes up to 100 μm, velocities in the range 1–10 μm/s (or higher). The molecular volume of a “hard” sphere is about 11.25 Angstroms, a water molecule is about 30 Angstroms (1 Å = 10−10 m = 0.1 nm, 1 nl = (102 μm)3), a typical colloidal particle radius is 0.1 m having 1012 times the mass of a water molecule, a typical pollen grain radius is 10−5 m with a density 1 g/cm3. Warning: for sizes below 1 μm, Brownian motion becomes significant eventually dominating the evolution (a further comment on this below). There is also nanofluidics coming in with fluids moving along, e.g., 102 nm and lower scale channels handling items in the range 1 Å–102 nm.

  2. 2.

    Warnings: when drops approach each other in the hundred nanometer and lower separation range, the carrier liquid may also prevent coalescence and rather foster aggregation of drops (ruling out or just counteracting Ostwald ripening) if surface forces (Derjaguin-Casimir pressure, DLVO theory, see, e.g., [38, 39] play a significant role (aggregation leading to a solid-like behavior of the compound seems to physicochemically underly ALS and Alzheimer diseases).

  3. 3.

    Warning: though low Reynolds number means that viscous drag is paramount this is compatible with the carrier fluid itself being only of small viscosity.

  4. 4.

    One more warning: please note that, for a given fluid, the ratio \( \eta^{2} /\rho \) has units of force and any object acted upon by such force will experience a Reynolds number of unity, independently of its size. A drop or other, moving at low Reynolds number therefore experiences forces smaller than \( \eta^{2} /\rho \) which for water is about one nN. And yet another warning: continuous curved flows in (particularly rectangular or the like) micro channels where the fluid tends to move outward around the curve, with most of the times secondary flows arising, deserve a specific analysis not done here.

  5. 5.

    Warnings: when using surfactants acting on drops it must be taking into account that size matters. As a drop reduces its size the surfactant concentration tends also to diminish with the scale imposed by the ratio of surface to volume and there would be less and less surfactant molecules at its surface so that their role may become negligible. Also to be noted is that when a drop moves, in a gas or air, evaporation may occur. If this is the case its radius evolves with a rate as the inverse square (a−2) so that evaporation tends to proceed faster as size diminishes.

  6. 6.

    Warning: for a sessile drop or a drop sliding on another liquid or on a solid substrate (disregard now spreading) the wettability conditions like wettability gradient/difference in contact angles, using magnetic fields or other agents as well as degree of hydrophilicity (wettability or hydrophobicity/no wettability) [8, 24] and not solely surface tension difference is of utmost importance and hence the inhomogeneity (chemical, mechanical) of the substrate becomes significant. To the above we must add the dominant role that the mentioned Derjaguin-Casimir forces (DLVO theory) can play.

  7. 7.

    Warning: the case of a highly viscous drop η2 ≫η1 moving in a Hele-Shaw channel deserves separate consideration not done here; a typical transverse scale is about 102 μm and caged drops can be safely considered as pancaked rather than spherical.

References

  1. J.-P. Abid, M. Figoli, R. Pansu, J. Szeftel, J. Zyss, C. Larpent, S. Brasselet, Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueos medium. Langmuir 27, 7967–7971 (2011)

    Article  Google Scholar 

  2. S.L. Anna, Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48, 285–309 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Baigl, Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. Lab Chip 12, 3637–3653 (2012)

    Article  Google Scholar 

  4. T. Ban, T. Yamagami, H. Nakata, Y. Okano, pH-dependent motion of self-propelled droplets due to Marangoni effect at neutral pH. Langmuir 29, 2554–2561 (2013)

    Article  Google Scholar 

  5. M. Björnmalm, Y. Yan, F. Caruso, Engineering and evaluating drug delivery particles in microfluidic devices. J. Controlled Release 190, 139–149 (2014)

    Article  Google Scholar 

  6. R. Chattaraj, N.T. Blum, A. Goodwin, Design and application of stimulus-responsive droplets and bubbles stabilized by phospholipid monolayers, Current Opinion Coll. Interface Sci. 40, 14–24 (2019)

    Google Scholar 

  7. A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, D. Baigl, Photomanipulation of a droplet by the chromocapillary effect. Angew. Chem. Int. Ed. 48, 9281–9284 (2009)

    Article  Google Scholar 

  8. A. Egatz-Gomez, S. Melle, A.A. Garcia, S.A. Lindsay, M. Marquez, P. Dominguez-Garcia, M.A. Rubio, S.T. Picraux, J.L. Taraci, T. Clement, D. Yang, M.A. Hayes, D. Gust, Discrete magnetic microfluidics. Appl. Phys. Lett. 89, 034106 (2006)

    Article  ADS  Google Scholar 

  9. L. Florea, K. Wagner, P. Wagner, G.G. Wallace, F. Benito-López, D.L. Officer, D. Diamond, Photo-chemopropulsion-Light-stimulated movement of microdroplets. Adv. Mater. 26, 7339–7345 (2014)

    Article  Google Scholar 

  10. F. Fontana, M.P.A. Ferreira, A. Correia, J. Hirvonen, H.A. Santos, Microfluidics as cutting-edge technique for drug delivery. J. Drug Deliv. Sci. Technol. 34, 76–87 (2016)

    Article  Google Scholar 

  11. B.S. Gallardo, V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah, N.L. Abbott, Electrochemical principles for active control of liquids on submillimeter scales. Science 283, 57–60 (1999)

    Article  ADS  Google Scholar 

  12. Y.P. Gupalo, A.Y. Rednikov, Y.S. Ryazantsev, Thermocapillary drift of a drop with nonlinear surface tension dependence on temperature. Izv Akad Nauk SSSR Mekh Zhidk Gaza 53, 433–442 (1989). (in Russian)

    MATH  Google Scholar 

  13. M.M. Hanczyc, T. Toyota, T. Ikegami, N. Packard, T. Sugawara, Fatty acid chemistry at the oil-water interface: self-propelled oil droplets. J. Am. Chem. Soc. 129, 9386–9391 (2007)

    Article  Google Scholar 

  14. M. He, J.S. Edgar, D.M. Jeffries, R.M. Lorenz, J.P. Shelby, D.T. Chiu, Selective encapsulation of single cells and subcellular organelles into picoliter and femtoliter droplets. Anal. Chem. 77, 1539–1544 (2005)

    Article  Google Scholar 

  15. S.K. Ichimura, M. Nakagawa, Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000)

    Article  ADS  Google Scholar 

  16. Y. Ito, M. Heydari, A. Hashimoto, T. Konno, A. Hirasawa, S. Hori, K. Kurita, A. Nakajima, The movement of a water droplet on a gradient surface prepared by photodegradation. Langmuir 23, 1845–1850 (2007)

    Article  Google Scholar 

  17. S. Koster et al., Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8, 1110–1115 (2008)

    Article  Google Scholar 

  18. L.G. Leal, Advanced Transport Phenomena. Fluid Mechanics and Convective Transport Processes (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  19. C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Swimming droplets. Annu. Rev. Condens. Matter Phys. 7, 171–193 (2016)

    Article  ADS  Google Scholar 

  20. M. Morozov, S. Michelin, Self-propulsion near the onset of Marangoni instability of deformable active droplets (2018). arXiv:1810.03983v1[physics.flu-dyn]

  21. M. Muto, M. Yamamoto, M. Motosuke, A noncontact picoliter droplet handling by photothermal control of interfacial flow. Anal. Sci. (Japan) 32, 49–55 (2016)

    Article  Google Scholar 

  22. A.A. Nepomnyashchy, M.G. Velarde, P. Colinet, Interfacial Phenomena and Convection (Chapman & Hall/CRC, Boca Raton, 2002)

    MATH  Google Scholar 

  23. T. Ohta, T. Ohkuma, K. Shitara, Deformation of a self-propelled domain in an excitable reaction-diffusion system. Phys. Rev. E 80, 056203 (2009)

    Article  ADS  Google Scholar 

  24. L.M. Pismen, U. Thiele, Asymptotic theory for a moving droplet driven by a wettability gradient. Phys. Fluids 18, 042104 (2006)

    Article  ADS  Google Scholar 

  25. A.Y. Rednikov, Y.S. Ryanzatsev, Thermocapillary motion of a droplet heated by radiation. Int. J. Heat Mass Transf. 35, 255–261 (1992)

    Article  Google Scholar 

  26. A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, Drop motion with surfactant transfer in a homogeneous surrounding. Phys. Fluids 6(4), 51–468 (1994)

    MathSciNet  MATH  Google Scholar 

  27. A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, On the development of translational subcritical Marangoni instability for a drop with uniform internal heat generation. J. Colloid Interface Sci. 164, 168–180 (1994)

    Article  ADS  Google Scholar 

  28. A.Y. Rednikov, Y.S. Ryazantsev, M.G. Velarde, Active drops and drop motions due to nonequilibrium phenomena. J. Non-Equilib. Thermodyn. 19, 95–113 (1994)

    Article  ADS  Google Scholar 

  29. A.Y. Rednikov, V. Kurdyumov, Y.S. Ryanzatsev, M.G. Velarde, The role of time-varying gravity on the motion of a drop induced by Marangoni instability. Phys. Fluids 7, 2670–2678 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Riahi, A. Tamayol, S.A.M. Shaegh, A.M. Ghaemmaghami, M.R. Dokmeci, A. Khademhosseini, Microfluidics for advanced drug delivery systems. Curr. Opin. Chem. Eng. 7, 101–112 (2015)

    Article  Google Scholar 

  31. Y.S Ryazantsev, M.G. Velarde, R.G. Rubio, F. Ortega, P. Lopez, Thermo- and soluto-capillarity: passive and active drops. Adv. Colloid Interface Sci. 247, 52–80 (2017). (and references therein)

    Article  Google Scholar 

  32. Y.S. Ryazantsev, M.G. Velarde, R.G. Rubio, E. Guzman, F. Ortega, J.J. Montoya, On the autonomous motion of active drops or bubbles. J. Coll. Interface Sci. 527, 180–186 (2018)

    Article  ADS  Google Scholar 

  33. S. Rybalko, N. Magome, K. Yoshikawa, Forward and backward laser-guided motion of an oil droplet. Phys. Rev. E 70, 046301 (2004)

    Article  ADS  Google Scholar 

  34. M. Schmitt, H. Stark, Marangoni flow at droplet interfaces: three-dimensional solution and applications. Phys. Fluids 28, 012106 (2016)

    Article  ADS  Google Scholar 

  35. R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Droplet based microfluidics. Rep. Prog. Phys. 75, 016601 (2012)

    Article  ADS  Google Scholar 

  36. L. Shang, Y. Cheng, Y. Zhao, Emerging droplet microfluidics. Chem. Rev. 117, 7964–8040 (2017)

    Article  Google Scholar 

  37. V. Sharma, A. Sundaramurthy, Reusable hollow polymer microreactors incorporated with anisotropic nanoparticles for catalysis application. ACS Omega 4, 628–636 (2019)

    Article  Google Scholar 

  38. V.M. Starov, M.G. Velarde, Surface forces and wetting phenomena. J Phys Cond. Matter 21, 464121 (2009)

    Article  ADS  Google Scholar 

  39. V.M. Starov, M.G. Velarde, C.J. Radke, Wetting and Spreading Dynamics (CRC Press/Taylor & Francis, Boca Raton, 2007)

    Book  Google Scholar 

  40. Y. Sun, T.A. Haglund, A.J. Rogers, A.S. Ghanim, P. Sethu, Microfluidics technologies for blood-based cancer liquid biopsies. Anal. Chim. Acta 1012, 1–20 (2018)

    Article  Google Scholar 

  41. H. Takeuchi, M. Motosuke, S. Honami, Noncontact bubble manipulation in microchannel by using photothermal Marangoni effect. Heat Transfer Engng 333, 234–244 (2012)

    Article  ADS  Google Scholar 

  42. T. Toyota, N. Maru, M.M. Hanczyc, T. Ikegami, T. Sugawara, Self-propelled oil droplets consuming “fuel” surfactant. J. Am. Chem. Soc. 131, 5012–5013 (2009)

    Article  Google Scholar 

  43. D. Tsemakh, O.M. Lavrenteva, A. Nir, On the locomotion of a drop, induced by the internal secretion of surfactant. Int. J. Multiph. Flow 30, 1337–1367 (2004)

    Article  Google Scholar 

  44. M.G. Velarde, A.Y. Rednikov, Y.S. Ryazantsev, Drop motions and interfacial instability J Phys: Condens. Matter 8, 9233–9247 (1996)

    Google Scholar 

  45. M.G. Velarde, Drops, liquid layers and the Marangoni effect. Philos. Trans. R. Soc. A 356, 829–844 (1998)

    Article  ADS  Google Scholar 

  46. E. Verneuil, M.L. Cordero, F. Gallaire, C.N. Baroud, Laser-induced force on a microfluidic drop: Origin and magnitude. Langmuir 25, 5127–5134 (2009)

    Article  Google Scholar 

  47. S. Yabunaka, T. Ohta, N. Yoshinaga, Self-propelled motion of a fluid droplet under chemical reaction. J. Chem. Phys 136, 074904 (2012)

    Article  ADS  Google Scholar 

  48. K.G. Yager, C.J. Barrett, Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol. A Chem. 182, 250–261 (2006)

    Article  Google Scholar 

  49. N. Yoshinaga, Spotaneous motion and deformation of a self-propelled droplet. Phys. Rev. E 80, 012913 (2014)

    Article  ADS  Google Scholar 

  50. N.O. Young, J.S. Goldstein, M.J. Block, The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350–356 (1959)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by EU under Marie Curie ITN CoWet (Grant Number 607861) and by MINECO under grants FIS-2014-62005-EXP and CTQ-2016-78895-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel G. Velarde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Velarde, M.G., Ryazantsev, Y.S., Rubio, R.G., Guzman, E., Ortega, F., Fernandez-Barbero, A. (2019). Drops and Bubbles as Controlled Traveling Reactors and/or Carriers Including Microfluidics Aspects. In: Belhaq, M. (eds) Topics in Nonlinear Mechanics and Physics. Springer Proceedings in Physics, vol 228. Springer, Singapore. https://doi.org/10.1007/978-981-13-9463-8_13

Download citation

Publish with us

Policies and ethics