Skip to main content

Enabling Bioeconomy with Offshore Macroalgae Biorefineries

  • Chapter
  • First Online:
Bioeconomy for Sustainable Development

Abstract

The bioeconomy provides a possible solution for the increasing demand on natural resources by substitution of the nonrenewable resources with resources derived from biomass, thus reducing the environmental impact of fossil fuels. A fundamental unit that will enable the bioeconomy implementation is biorefinery. The bioeconomy is a collective term for the complex system that includes biomass production, transportation, conversion into products, and product distribution. In this chapter, we introduce the concept of offshore marine biorefineries as potential drivers for the bioeconomy of the future. We discuss fundamental thermodynamics principles that determine the optimum scale of biorefineries and put the limit for the services area for a single-processing unit. We provide a review of the current methods to produce biomass offshore. Next, we exemplify the marine biorefineries, which show co-production of several products from the same biomass, thus reducing the waste and maximizing economic benefit from the unit. In addition, we discuss the economic and environmental challenges of marine biorefineries as an emerging platform for society transition to low-carbon economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham RE, Su P, Puri M, Raston CL, Zhang W (2019) Optimisation of biorefinery production of alginate, fucoidan and laminarin from brown seaweed Durvillaea Potatorum. Algal Res 38:101389

    Article  Google Scholar 

  • Aitken D, Bulboa C, Godoy-Faundez A, Turrion-Gomez JL, Antizar-Ladislao B (2014) Life cycle assessment of macroalgae cultivation and processing for biofuel production. J Clean Prod 75:45–56

    Article  CAS  Google Scholar 

  • Alvarado-Morales M, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T (2013) Life cycle assessment of biofuel production from brown seaweed in nordic conditions. Bioresour Technol 129:92–99

    Article  CAS  Google Scholar 

  • Alvarado-Morales M, Gunnarsson IB, Fotidis IA, Vasilakou E, Lyberatos G, Angelidaki I (2015) Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Res 9:126–132

    Article  Google Scholar 

  • Ashkenazi DY, Israel A, Abelson A (2019) A novel two-stage seaweed integrated multi-trophic aquaculture. Rev Aquac 11:246–262

    Article  Google Scholar 

  • Baghel RS, Trivedi N, Reddy CRK (2016) A simple process for recovery of a stream of products from marine macroalgal biomass. Bioresour Technol 2016(203):160–165

    Article  CAS  Google Scholar 

  • Balina K, Romagnoli F, Blumberga D (2017) Seaweed biorefinery concept for sustainable use of marine resources. Energy Procedia 128:504–511

    Article  Google Scholar 

  • Ben Yahmed N, Jmel MA, Ben Alaya M, Bouallagui H, Marzouki MN, Smaali I (2016) A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Convers Manag 119:257–265

    Article  CAS  Google Scholar 

  • Bentsen NS, Felby C (2012) Biomass for energy in the European Union – a review of bioenergy resource assessments. Biotechnol Biofuels 5(1):25

    Article  Google Scholar 

  • Bikker P, Krimpen MM, Wikselaar P, Houweling-Tan B, Scaccia N, Hal JW, Huijgen WJJ, Cone JW, López-Contreras AM, van Krimpen MM et al (2016a) Biorefinery of the green seaweed Ulva Lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28:3511–3525

    Article  CAS  Google Scholar 

  • Bikker P, van Krimpen MM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JW, Huijgen WJJ, Cone JW, Lopez-Contreras AM (2016b) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28:1–15

    Article  CAS  Google Scholar 

  • Bikker P, van Krimpen MMM, van Wikselaar P, Houweling-Tan B, Scaccia N, van Hal JWW, Huijgen WJ, Cone JWW, López-Contreras AM, Scaccia NazarenoScaccia N et al (2016c) Biorefinery of the green seaweed Ulva Lactuca to produce animal feed. Chem Biofuels 28:1–15

    Google Scholar 

  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Soon Lee T, Tullman-Ercek D, Voigt CA, Simmons BA et al (2011) Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia Coli. Proc Natl Acad Sci 108:19949–19954

    Article  CAS  Google Scholar 

  • Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176

    Article  CAS  Google Scholar 

  • Buck BH, Buchholz CM (2004) The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol 16(5):355–368

    Article  Google Scholar 

  • Buck BH, Buchholz CM (2005) Response of offshore cultivated Laminaria saccharina to hydrodynamic forcing in the North Sea. Aquaculture 250(3–4):674–691

    Article  Google Scholar 

  • Buck BH, Krause G, Rosenthal H (2004) Extensive open ocean aquaculture development within wind farms in Germany: the prospect of offshore co-management and legal constraints. Ocean Coast Manag 47(3–4):95–122

    Article  Google Scholar 

  • Buck BH, Krause G, Michler-Cieluch T, Brenner M, Buchholz CM, Busch JA, Fisch R, Geisen M, Zielinski O (2008) Meeting the quest for spatial efficiency: progress and prospects of extensive aquaculture within offshore wind farms. Helgol Mar Res 62(3):269–281

    Article  Google Scholar 

  • Buschmann AH, Camus C, Infante J, Neori A, Israel Á, Hernández-González MC, Pereda SV, Gomez-Pinchetti JL, Golberg A, Tadmor-Shalev N et al (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity seaweed production. Eur J Phycol 52:391

    Article  Google Scholar 

  • Chandra R, Iqbal HMN, Vishal G, Lee H-S, Nagra S (2019) Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour Technol 278:346–359. No. November 2018

    Article  CAS  Google Scholar 

  • Chemodanov A, Robin A, Golberg A (2017a) Design of marine macroalgae photobioreactor integrated into building to support seagriculture for biorefinery and bioeconomy. Bioresour Technol 241:1084–1093

    Article  CAS  Google Scholar 

  • Chemodanov A, Jinjikhashvily G, Habiby O, Liberzon A, Israel A, Yakhini Z, Golberg A (2017b) Net primary productivity, biofuel production and CO2 emissions reduction potential of Ulva Sp. (Chlorophyta) biomass in a coastal area of the Eastern Mediterranean. Energy Convers Manag 148:1497–1507

    Google Scholar 

  • Czyrnek-Delêtre MM, Rocca S, Agostini A, Giuntoli J, Murphy JD (2017) Life cycle assessment of seaweed biomethane, generated from seaweed sourced from integrated multi-trophic aquaculture in temperate oceanic climates. Appl Energy 196:34–50

    Article  CAS  Google Scholar 

  • De Jong E, Jungmeier G (2015) Bioreenery concepts in comparison to petrochemical Reeneries. In: Industrial Biorefineries White Biotechnol, pp 3–33

    Chapter  Google Scholar 

  • De Jong E, Higson A, Walsh P, Wellisch M (2012) Product developments in the bio-based chemicals arena. Biofuels Bioprod Biorefin 6(6):606–624

    Article  CAS  Google Scholar 

  • Drimer N (2019) First principle approach to the design of an open sea aquaculture system. Ships Offshore Struc. https://doi.org/10.1080/17445302.2016.1213491

    Article  Google Scholar 

  • Druehl LD, Baird R, Lindwall A, Lloyd KE, Pakula S (1988) Longline cultivation of some laminariaceae in British Columbia, Canada. Aquac Fish Manag 19:253–263

    Google Scholar 

  • Du X, Lu L, Reardon T, Zilberman D (2016) Economics of agricultural supply chain design: a portfolio selection approach. Am J Agric Econ 98:1377–1388

    Article  Google Scholar 

  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32

    Article  CAS  Google Scholar 

  • Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR et al (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505(7482):239–243

    Article  CAS  Google Scholar 

  • Eswaran K, Ghosh PK, Siddhanta AK, Patolia JS, Periyasamy C, Mehta AS, Mody KH, Ramavat BK, Prasad K, Rajyaguru MR (2005) Integrated method for production of carrageenan and liquid fertilizer from fresh seaweeds. US Patent 6,893,479

    Google Scholar 

  • Feinberg D, Hock S (1985) Technical and economic evaluation of macroalgae cultivation for fuel production (draft). NREL Report. https://www.nrel.gov/docs/legosti/old/2685.pdf

  • Fernand F, Israel A, Skjermo J, Wichard T, Timmermans KR, Golberg A (2017) Offshore macroalgae biomass for bioenergy production: environmental aspects, technological achievements and challenges. Renew Sust Energ Rev 75:35–45

    Article  CAS  Google Scholar 

  • Gajaria TK, Suthar P, Baghel RS, Balar NB, Sharnagat P, Mantri VA, Reddy CRK (2017) Integration of protein extraction with a stream of byproducts from marine macroalgae: a model forms the basis for marine bioeconomy. Bioresour Technol 243:867–873

    Article  CAS  Google Scholar 

  • Ghaderi H, Pishvaee MS, Moini A (2016) Biomass supply chain network design: an optimization-oriented review and analysis. Ind Crop Prod 94:972–1000

    Article  Google Scholar 

  • Glasson CRK, Sims IM, Carnachan SM, de Nys R, Magnusson M (2017) A cascading biorefinery process targeting sulfated polysaccharides (Ulvan) from Ulva Ohnoi. Algal Res 27:383–391

    Article  Google Scholar 

  • Golberg A, Liberzon A (2015) Modeling of smart mixing regimes to improve marine biorefinery productivity and energy efficiency. Algal Res 11:28–32

    Article  Google Scholar 

  • Golden JS, Handfield RB, Daystar J, McConnell TE (2015) An economic impact analysis of the us biobased products industry: a report to the congress of the United States of America. Ind Biotechnol 11(4):201–209

    Article  Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Bondeau A, Lauk C, Müller C, Plutzar C, Steinberger JK (2011) Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass Bioenergy 35(12):4753–4769

    Article  Google Scholar 

  • Hanisak M (1987) Cultivation of Gracilaria and other macroalgae in Florida for energy production. Dev Aquac Fish Sci:191–218

    Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  CAS  Google Scholar 

  • Holt TJ (1984) The development of techniques for the cultivation of Laminariales in the Irish Sea. Ph.D, University of Liverpool, p 266

    Google Scholar 

  • Hughes AD, Kelly MS, Black KD, Stanley MS (2012) Biogas from macroalgae: is it time to revisit the Idea? Biotechnol Biofuels 5(1):86

    Article  Google Scholar 

  • Ingle K, Vitkin E, Robin A, Yakhini Z, Mishori D, Golberg A (2017) Macroalgae biorefinery from Kappaphycus Alvarezii: conversion Modeling and performance prediction for India and Philippines as examples. Bio Energy Res:1–11

    Google Scholar 

  • International Energy Agency (2011) World energy outlook

    Google Scholar 

  • Jung KAA, Lim S-RR, Kim Y, Park JMM (2013) Potentials of Macroalgae as Feedstocks for Biorefinery. Bioresour Technol 135:182–190

    Article  CAS  Google Scholar 

  • Keasling JD, Chou H (2008) Metabolic engineering delivers next-generation biofuels. Nat Biotechnol 26:298–299

    Article  CAS  Google Scholar 

  • Keswani C, Singh SP (eds) (2019) Intellectual property issues in microbiology. Springer, Singapore. 425 pages, ISBN:9789811374654

    Google Scholar 

  • Korzen L, Abelson A, Israel A (2015a) Growth, protein and carbohydrate contents in Ulva rigida and gracilaria bursa-pastoris integrated with an offshore fish farm. J Appl Phycol 23:543–597

    Google Scholar 

  • Korzen L, Peled Y, Shamir SZ, Shechter M, Gedanken A, Abelson A, Israel A (2015b) An economic analysis of bioethanol production from the marine Macroalga Ulva (Chlorophyta). Technology 03(02n03):114–118

    Article  Google Scholar 

  • Korzen L, Pulidindi IN, Israel A, Abelson A, Gedanken A (2015c) Marine integrated culture of carbohydrate rich Ulva rigida for enhanced production of bioethanol. RSC Adv 5(73):59251–59256

    Article  CAS  Google Scholar 

  • Kostas ET, White DA, Cook DJ (2017) Development of a bio-refinery process for the production of speciality chemical, biofuel and bioactive compounds from Laminaria digitata. Algal Res 28(May):211–219

    Article  Google Scholar 

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18(1):27–46. http://www.ask-force.org/web/Global-Warming/Kraan-Mass-cultivation-carbyhodrate-Macroalgae-2013.pdf

    Article  Google Scholar 

  • Kraan S, Guiry MD (2001) Phase II: strain hybridisation field experiments and genetic fingerprinting of the edible brown seaweed Alaria Esculenta 18(18)

    Google Scholar 

  • Kumar S, Sahoo D (2017) A comprehensive analysis of alginate content and biochemical composition of leftover pulp from brown seaweed Sargassum wightii. Algal Res 23:233–239

    Article  Google Scholar 

  • Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria Verrucosa, a Red Alga, in a biorefinery approach. Bioresour Technol 135:150–156

    Article  CAS  Google Scholar 

  • Langlois J, Sassi J-F, Jard G, Steyer J-P, Delgenes J-P, Hélias A (2012) Life cycle assessment of biomethane from offshore-cultivated seaweed. Biofuels Bioprod Biorefin 6(4):387–404

    Article  CAS  Google Scholar 

  • Laurens LML, Chen-Glasser M, McMillan JD (2017) A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Res 24(March):261–264

    Article  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563

    Article  CAS  Google Scholar 

  • Lehahn Y, Ingle KN, Golberg A (2016) Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal Res 17:150–160

    Article  Google Scholar 

  • Lirasan T, Twide P (1993) Fourteenth international seaweed symposium. In: Chapman ARO, Brown MT, Lahaye M (eds) Fourteenth international seaweed symposium developments in hydrobiology, vol 85. Springer, Dordrecht, pp 353–355

    Chapter  Google Scholar 

  • Liu D, Keesing JK, Xing Q, Shi P (2009) World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull 58(6):888–895

    Article  CAS  Google Scholar 

  • Liu D, Keesing JK, Dong Z, Zhen Y, Di B, Shi Y, Fearns P, Shi P (2010) Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra Yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar Pollut Bull 60(9):1423–1432

    Article  CAS  Google Scholar 

  • Magnusson M, Carl C, Mata L, de Nys R, Paul NA (2016) Seaweed salt from Ulva: a novel first step in a cascading biorefinery model. Algal Res 16:308–316

    Article  Google Scholar 

  • Marinho GS, Alvarado-Morales M, Angelidaki I (2016) Valorization of macroalga Saccharina latissima as novel feedstock for fermentation-based succinic acid production in a biorefinery approach and economic aspects. Algal Res 16:102–109

    Article  Google Scholar 

  • Mhatre A, Gore S, Mhatre A, Trivedi N, Sharma M, Pandit R, Anil A, Lali A (2018) Effect of multiple product extractions on bio-methane potential of marine macrophytic green alga Ulva lactuca. Renew Energy 132:742–751

    Article  CAS  Google Scholar 

  • Milledge JJ, Nielsen BV, Bailey D (2016) High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum Muticum. Rev Environ Sci Biotechnol 15(1):67–88

    Article  CAS  Google Scholar 

  • Möller B, Hong L, Lonsing R, Hvelplund F (2012) Evaluation of offshore wind resources by scale of development. Energy 48(1):314–322

    Article  Google Scholar 

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shpigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391

    Article  Google Scholar 

  • Notoya M (2010) Production of biofuel by macroalgae with preservation of marine resources and environment. Springer, Dordrecht, pp 217–228

    Google Scholar 

  • Nunes N, Ferraz S, Valente S, Barreto MC, Pinheiro de Carvalho MAA (2017) Biochemical composition, nutritional value, and antioxidant properties of seven seaweed species from the Madeira archipelago. J Appl Phycol 29(5):2427–2437

    Article  CAS  Google Scholar 

  • Olanrewaju SO, Magee A, Kader ASA, Tee KF (2017) Simulation of offshore aquaculture system for macro algae (seaweed) oceanic farming. Ships and Offshore Structures 12(4):553–562

    Article  Google Scholar 

  • Palatnik RR, Zilberman D (2017) Economics of natural resource utilization – the case of macroalgae. In: Pinto A, Zilberman D (eds) Modeling, dynamics, optimization and bioeconomics II. Springer, pp 1–21

    Google Scholar 

  • Park JH, Yoon JJ, Park HD, Lim DJ, Kim SH (2012) Anaerobic digestibility of algal bioethanol residue. Bioresour Technol 113:78–82

    Article  CAS  Google Scholar 

  • Patarra RF, Paiva L, Neto AI, Lima E, Baptista J (2011) Nutritional value of selected macroalgae. J Appl Phycol 23(2):205–208

    Article  CAS  Google Scholar 

  • Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483

    Article  CAS  Google Scholar 

  • Peteiro C, Freire Ó (2012) Outplanting time and methodologies related to mariculture of the edible Kelp Undaria Pinnatifida in the Atlantic Coast of Spain. J Appl Phycol 24:1361–1372

    Article  Google Scholar 

  • Peteiro C, Sánchez N, Dueñas-Liaño C, Martínez B (2014) Open-sea cultivation by transplanting young Fronds of the Kelp Saccharina Latissima. J Appl Phycol 26:519–528

    Article  CAS  Google Scholar 

  • Pezoa-Conte R, Leyton A, Anugwom I, von Schoultz S, Paranko J, Mäki-Arvela P, Willför S et al (2015) Deconstruction of the green alga Ulva Rigida in ionic liquids: closing the mass balance. Algal Res 12:262–273. Elsevier

    Article  Google Scholar 

  • Pimentel D (2012) Global economic and environmental aspects of biofuels. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pimentel M, Pimentel MH (2008) Food, energy, and society. CRC Press, Boca Raton

    Google Scholar 

  • Postma PR, Cerezo-Chinarro O, Akkerman RJ, Olivieri G, Wijffels RH, Brandenburg WA, Eppink MHM (2017) Biorefinery of the macroalgae Ulva Lactuca: extraction of proteins and carbohydrates by mild disintegration. J Appl Phycol:1–13

    Google Scholar 

  • Potts T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica Bay macro algae. Environ Prog Sustain Energy 31:29–36

    Article  CAS  Google Scholar 

  • Prabhu M, Chemodanov A, Gottlieb R, Kazir M, Nahor O, Gozin M, Israel A, Livney YD, Golberg A (2019) Starch from the sea: the green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Res 37:215–227

    Article  Google Scholar 

  • Reith JH, Deurwaarder EP, Hemmes K, Biomassa E, Curvers APWM, Windenergie E (2005) BIO-OFFSHORE Grootschalige Teelt van Zeewieren in Combinatie Met Offshore Windparken in de Noordzee. https://library.wur.nl/WebQuery/wurpubs/347698

    Google Scholar 

  • Ricardo R, Neori A, Valderrama D, Reddy CRK, Cronin H, Forster J (2015) Farming of seaweeds. In: Seaweed sustainability. Elsevier, pp 27–57

    Google Scholar 

  • Roels OA, Laurence S, Vanhemelryck L (1979) The utilization of cold, nutrient-rich deep ocean water for energy and mariculture. Ocean Manag 5:199–210

    Article  Google Scholar 

  • Roesijadi AG, Copping A, Huesemann M (2008) Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products. https://arpa-e.energy.gov/sites/default/files/Techno-Economic%20Feasibility%20Analysis%20of%20Offshore%20Seaweed%20Farming%20for%20Bioenergy%20and%20Biobased%20Products-2008.pdf

    Google Scholar 

  • Roesijadi G, Jones SBB, Snowden-Swan LJ, Zhu Y (2010, September) Macroalgae as a biomass feedstock: a preliminary analysis. Dep. Energy under Contract DE-AC05-76RL01830 by Pacific Northwest Natl. Lab, pp 1–50. http://sailing-sea-farm.com/onewebmedia/PNNL-19944.pdf

  • Sahoo D, Kumar S, Elangbam G, Devi SS (2012) Biofuel production from algae through integrated biorefinery. Sci Algal Fuels 25:215–230

    Article  Google Scholar 

  • Sanderson JC, Dring MJ, Davidson K, Kelly M, Culture S (2012) Yield and bioremediation potential of Palmaria Palmata (Linnaeus) Weber & Mohr and Saccharina Latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders adjacent to fish farm cages in Northwest Scotland. Aquaculture 354–355:128–135

    Article  Google Scholar 

  • Seghetta M, Hou X, Bastianoni S, Bjerre A-B, Thomsen M (2016a) Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers – a step towards a regenerative bioeconomy. J Clean Prod 137:1158–1169

    Article  CAS  Google Scholar 

  • Seghetta M, Marchi M, Thomsen M, Bjerre AB, Bastianoni S (2016b) Modelling biogenic carbon flow in a macroalgal biorefinery system. Algal Res 18:144–155

    Article  Google Scholar 

  • Seghetta M, Romeo D, D’Este M, Alvarado-Morales M, Angelidaki I, Bastianoni S, Thomsen M (2017) Seaweed as innovative feedstock for energy and feed – evaluating the impacts through a life cycle assessment. J Clean Prod 150:1–15

    Article  CAS  Google Scholar 

  • Singh HB, Jha A, Keswani C (eds) (2016) Intellectual property issues in biotechnology. CABI, Wallingford. 304 pages, ISBN-13:9781780646534

    Google Scholar 

  • Star-coliBRi (2011) European biorefinery joint strategic research roadmap for 2020. https://cordis.europa.eu/project/rcn/93170/reporting/en

    Google Scholar 

  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  CAS  Google Scholar 

  • Stichnothe H, Meier D, de Bari I (2016) Biorefineries: industry status and economics. Dev Glob Bioeconomy:41–67. https://rdm.pure.elsevier.com/it/publications/biorefineries-industry-status-and-economics

  • Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J (2015) Macroalgae in biofuel production. Phycol Res 63(1):1–18

    Article  CAS  Google Scholar 

  • Szetela EJ, Krascella NL, Blecher WA, Christopher GL (1976) Evaluation of a marine energy farm concept. Am Chem Soc, Div Fuel Chem, Prepr.; (United States) 19:4

    Google Scholar 

  • Taheripour F, Hertel TW, Tyner WE, Beckman JF, Birur DK (2010) Biofuels and their by-products: global economic and environmental implications. Biomass Bioenergy 34:278–289

    Article  CAS  Google Scholar 

  • Trivedi N, Baghel RS, Bothwell J, Gupta V, Reddy CRK, Lali AM, Jha B (2016) An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep 6:30728

    Article  CAS  Google Scholar 

  • Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang JG (2009) Ecological engineering in aquaculture – potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297(1–4):1–9

    Article  Google Scholar 

  • Valderrama D, Cai J, Hishamunda N, Ridler N, Neish IC, Hurtado AQ, Msuya FE, Krishnan M, Narayanakumar R, Kronen M et al (2015) The economics of kappaphycus seaweed cultivation in developing countries: a comparative analysis of farming systems. Aquac Econ Manag 19(2):251–277

    Article  Google Scholar 

  • van den Burg S, Stuiver M, Veenstra F, Bikker P, López Contreras A, Palstra A, Broeze J, Jansen H, Jak R, Gerritsen A, et al (2013) A triple P review of the feasibility of sustainable offshore seaweed production in the North Sea. https://library.wur.nl/WebQuery/wurpubs/442638

    Google Scholar 

  • van der Wal H, Sperber BLHMHM, Houweling-Tan B, Bakker RRCC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva Lactuca. Bioresour Technol 128:431–437

    Article  CAS  Google Scholar 

  • Van Hal JW, Huijgen WJJ, López-Contreras AM (2014) Opportunities and challenges for seaweed in the biobased economy. Trends Biotechnol 32:231–233

    Article  CAS  Google Scholar 

  • van Oirschot R, Thomas J-BE, Gröndahl F, Fortuin KPJ, Brandenburg W, Potting J (2017) Explorative environmental life cycle assessment for system design of seaweed cultivation and drying. Algal Res 27:43–54

    Article  Google Scholar 

  • Wahlström N, Harrysson H, Undeland I, Edlund U (2018) A strategy for the sequential recovery of biomacromolecules from Red Macroalgae Porphyra Umbilicalis Kützing. Ind Eng Chem Res 57(1):42–53

    Article  CAS  Google Scholar 

  • Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB et al (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313

    Article  CAS  Google Scholar 

  • Wei N, Quarterman J, Jin Y-S (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31(2):70–77

    Article  CAS  Google Scholar 

  • Xie EY, Liu DC, Jia C, Chen XL, Yang B (2013) Artificial seed production and cultivation of the edible brown alga Sargassum Naozhouense Tseng et Lu. J Appl Phycol 25(2):513–522

    Article  Google Scholar 

  • Yokoyama S, Jonouchi K, Imou K (2007) Energy production from marine biomass : fuel cell power generation driven by methane produced from seaweed. Int J Marine Environ Sci 1(4):320–323

    Google Scholar 

  • Yuan Y, Macquarrie DJ (2015) Microwave Assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresour Technol 198:819–827

    Article  CAS  Google Scholar 

  • Zhang H, Liu Q, Cao Y, Feng X, Zheng Y, Zou H, Liu H, Yang J, Xian M (2014) Microbial production of sabinene–a new terpene-based precursor of advanced biofuel. Microb Cell Factories 13:20

    Article  CAS  Google Scholar 

  • Zilberman D, Lu L, Reardon T (2019) Innovation-induced food supply chain design. Food Policy, Elsevier 83(C):289–297

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Israel Ministry of Energy, Israel Ministry of Science and Technology, and Israel Innovation Authority for the support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golberg, A., Zollmann, M., Prabhu, M., Palatnik, R.R. (2020). Enabling Bioeconomy with Offshore Macroalgae Biorefineries. In: Keswani, C. (eds) Bioeconomy for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-9431-7_10

Download citation

Publish with us

Policies and ethics