Skip to main content

Bioprospecting of Fungal Entomo- and Myco-Pathogens

  • Chapter
  • First Online:
Advancing Frontiers in Mycology & Mycotechnology

Abstract

The pest and pathogen control in the field using fungi and their metabolites has indeed gone beyond ‘proof of concept’. However, in view of the performances of these biocontrol fungi in the fields, moreover, acceptability by the end users regarding cost-effectiveness, shelf life, intellectual property rights (IPR), the additional roles, and possible applications are being explored. Dual pathogenicity, viz. entomopathogenesis and mycoparasitism, has added the advantage of wide-spectrum biocontrol in single-crop system. In addition to plant protection, these fungi can promote plant growth. Further, in integrated pest management, the bioremediation of pesticide residues, if any, can also be achieved by these organisms. For value addition, use of cuticle-degrading and mycolytic enzymes produced as killing components can be explored in food, detergent, organic synthesis, and pharmaceutical industries. While exploring the additional applications, the safety to beneficial insects and fungi, biodiversity, and humans, in general, is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Ghany TM, Masmali IA (2016) Fungal biodegradation of organophosphorus insecticides and their impact on soil microbial population. J Plant Pathol Microbiol 7:349

    Google Scholar 

  • Abedinzadeh M, Gaeini M, Sardari S (2015) Natural antimicrobial peptides against Mycobacterium tuberculosis. J Antimicrob Chemother 70:1285–1289

    Article  CAS  PubMed  Google Scholar 

  • Aranda-Martinez A, Ortiz MAN, García ISA, Zavala-Gonzalez EA, Lopez-Llorca LV (2017) Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Microbiol Res 204:30–39

    Article  CAS  PubMed  Google Scholar 

  • Aranda-Martinez A, Grifoll-Romero L, Aragunde H, Sancho-Vaello E, Biarnés X, Lopez-Llorca LV, Planas A (2018) Expression and specificity of a chitin deacetylase from the nematophagous fungus Pochonia chlamydosporia potentially involved in pathogenicity. Sci Rep 8:2170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Askary H, Carrière Y, Bélange RR, Brodeur J (1998) Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontr Sci Technol 8:23–32

    Article  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Nutrient transfer in plant-fungal symbioses. Trends Plant Sci 19:734–740

    Article  CAS  PubMed  Google Scholar 

  • Bernabé M, Salvachúa D, Jiménez-Barbero J, Leal JA, Prieto A (2011) Structures of wall heterogalactomannans isolated from three genera of entomopathogenic fungi. Fungal Biol 115:862–870

    Article  PubMed  CAS  Google Scholar 

  • Beys Silva WO, Mitidieri S, Schrank A, Vainstein MH (2005) Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochem 40:321–326

    Article  CAS  Google Scholar 

  • Bidochka MJ, Kamp AM, Lavender TM, DeKoning J, De Croos JNA (2001) Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Appl Environ Microbiol 67:1335–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binod P, Palkhiwala P, Gaikaiwari R, Nampoothiri KM, Duggal A, Dey K, Pandey A (2013) Industrial enzymes- present status and future perspectives for India. J Sci Ind Res 72:271–286

    CAS  Google Scholar 

  • Butt TM, Copping LG (2000) Fungal biological agents. Pestic Outlook 11:186–191

    Article  Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Fungal biocontrol agents: progress, problems and potential. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CABI Publishing, Oxon, p 389

    Google Scholar 

  • Chavan S, Kolomiets E, Kuptsov V, Mandrik M, Kulkarni M, Deshpande MV (2009) Significance of cuticle-degrading enzymes with special reference to lipase in biocontrol of sugarcane woolly aphids. J Mycol Plant Pathol 39:118–123

    CAS  Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The Mycota IV: environmental and microbial relationships. Springer, Berlin, pp 165–184

    Google Scholar 

  • Dara SK, Dara SSR, Dara SS (2017) Impact of entomopathogenic fungi on the growth, development, and health of cabbage growing under water stress. Am J Plant Sci 8:1224–1233

    Article  CAS  Google Scholar 

  • Fang W, Vega RJ, Ghosh AK, Jacobs-LM KA, St. Leger RJ (2011) Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331:1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia JE, Posadas JB, Perticari A, Lecuona RE (2011) Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Adv Biol Res 5:22–27

    Google Scholar 

  • Garrido-Jurado I, Ruano F, Campos M, Quesada-Moraga E (2011) Effects of soil treatments with entomopathogenic fungi on soil-dwelling non-target arthropods at a commercial olive orchard. Biol Control 59:239–244

    Article  Google Scholar 

  • Ghormade V, Kulkarni S, Doiphode N, Rajamohanan PR, Deshpande MV (2010) Chitin deacetylase: a comprehensive account on its role in nature and its biotechnological applications. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex research center, Badajoz, pp 1054–1066

    Google Scholar 

  • Ginsberg HS, Lebrun RA, Heyer K, Zhioua E (2002) Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae). Environ Entomol 31:1191–1196

    Article  Google Scholar 

  • Hajek AE, Goettel MS (2007) Guidelines for evaluating effects of entomopathogens on non-target organisms. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 816–833

    Chapter  Google Scholar 

  • Harish R, Supreeth M, Chauhan JB (2013) Biodegradation of organophosphate pesticide by soil fungi. Adv BioTech 9:4–8

    Google Scholar 

  • Harman GE, Bjorkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman G, Kubicek C (eds) Trichoderma and Gliocladium. Taylor and Francis, London, pp 229–265

    Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line M017 and effects of these interactions on disease caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    Article  PubMed  Google Scholar 

  • Hu X, Xiao G, Zheng P, Shang Y (2014) Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci U S A 111:16796–16801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaka M, Kittakoop P, Kirtikara K, Hywel-jones NL, Thebtaranonth Y (2005a) Bioactive substances from insect pathogenic fungi. Acc Chem Res 38:813–823

    Article  CAS  PubMed  Google Scholar 

  • Isaka M, Palasarn S, Sriklung K, Kocharin K (2005b) Cyclohexadepsipeptides from the insect pathogenic fungus Hirsutella nivea BCC 2594. J Nat Prod 68:1680–1682

    Article  CAS  PubMed  Google Scholar 

  • Isaka M, Palasarn S, Rachtawee P, Vimuttipong S, Kongsaeree P (2005c) Unique diketopiperazine dimers from the insect pathogenic fungus Verticillium hemipterigenum BCC 1449. Org Lett 7:2257–2260

    Article  CAS  PubMed  Google Scholar 

  • Isaka M, Prathumpai W, Wongsa P, Tanticharoen M (2006) Hirsutellone F, a dimer of antitubercular alkaloids from the seed fungus Trichoderma species BCC 7579. Org Lett 8:2815–2817

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P (1997) In the Mycota IV, environmental and microbial relationships (ed. W. Soderstrom). Springer, Berlin, pp 149–163

    Google Scholar 

  • Kabaluk JT, Ericsson JD (2007) Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron J 99:1377–1381

    Article  Google Scholar 

  • Kapoor M, Pawar PV, Joseph M, Sen A, Deshpande MV (2013) Evaluation of biocontrol potential of Metarhizium anisopliae strains against larvae and adults of Aedes aegypti (L.). J Biol Control 27:194–203

    Google Scholar 

  • Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB (2014) Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 98:533–544

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Khan SA, Kang SM, Shinwari ZK, Kamran M, Ur Rehman S, Kim JG, Lee IJ (2012) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28:1483–1494

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696. https://doi.org/10.4061/2011/280696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni SA, Ghormade V, Kulkarni G, Kapoor M, Chavan SB, Rajendran A, Patil SK, Shouche Y, Deshpande MV (2008) Comparison of Metarhizium isolates for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. Biocontrol Sci Tech 18:809–828

    Article  Google Scholar 

  • Liu SF, Wang GJ, Nong XQ, Liu B, Wang MM, Li SL, Cao GC, Zhang ZH (2017) Entomopathogen Metarhizium anisopliae promotes the early development of peanut root. Plant Protect Sci 53:101–107

    Article  CAS  Google Scholar 

  • Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mane SR, Ghormad V, Rajamohanan PR, Badiger MV, Deshpande MV (2017) Isolation of low molecular weight chitosan from agriculturally important ascomycetous fungi Metarhizium anisopliae and Myrothecium verrucaria. Asian Chitin J 13:31–38

    Google Scholar 

  • Miles LA, Lopera CA, Gonzalez S, Cepero de Garcia MC, Franco AE, Restrepo S (2012) Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. Biol Control 57:697–710

    Google Scholar 

  • Nahar PB, Kulye M, Yadav P, Hassani M, Tuor U, Keller S, Deshpande MV (2003) Comparative evaluation of indigenous fungal isolates, Metarhizium anisopliae M34412, Beauveria bassiana B3301 and Nomuraea rileyi N812 for the control of Helicoverpa armigera (Hub) on Chickpea. J Mycol Plant Pathol. 33:372–377

    Google Scholar 

  • Nahar PB, Ghormade V, Deshpande MV (2004) The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomo-pathogenic fungi in the bio-control of insect pest. J Invertebr Pathol 85:80–88

    Article  CAS  PubMed  Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270

    Article  CAS  PubMed  Google Scholar 

  • Pathan EK, Deshpande MV (2019) The puzzle of highly virulent Metarhizium anisopliae strains from Annona squamosa fields against Helicoverpa armigera. J Basic Microbiol 59:392–401. https://doi.org/10.1002/jobm.201800631

    Article  CAS  PubMed  Google Scholar 

  • Pechy-Tarr M, Bruck DJ, Maurhofer M, Fischer E (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10:2368–2386

    Article  CAS  PubMed  Google Scholar 

  • Porto ALM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world – pesticides use and management. InTeck, Shangai, pp 407–438

    Google Scholar 

  • Pruksakorn P, Arai M, Kotoku N, Vilchze C, Baughn AD, Moodley P, Jacobs WR, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663

    Article  CAS  PubMed  Google Scholar 

  • Raya-DõÂaz S, SaÂnchez-RodrõÂguez AR, Segura-FernaÂndez JM, del Campillo MC, Quesada-Moraga E (2017) Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PLoS One 12:e0185903

    Article  CAS  Google Scholar 

  • Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99:101–107

    Article  PubMed  Google Scholar 

  • Senthil Kumar CM, Jacob TK, Devasahayam S, Thomas S, Geethu C (2018) Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae. Microbiol Res 207:153–160

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sharma M, Raja M, Singh DV, Srivastava M (2016) Use of Trichoderma spp. in biodegradation of Carbendazim. Indian J Agri Sci 86:891–894

    Google Scholar 

  • Shrestha B, Sung GH, Sunga JM (2017) Current nomenclatural changes in Cordyceps sensu lato and its multidisciplinary impacts. Mycol 8:293–302

    Article  Google Scholar 

  • Silva WOB, Mitidieri S, Schrank A, Vainstein MH (2015) Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochem 40:321–326

    Article  CAS  Google Scholar 

  • Steyaert JM, Ridgway HJ, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. New Zeal J Crop Hort 31:281–291

    Article  Google Scholar 

  • Sylwia R, Julia P, Marta W, Cezary T, DÅ‚ugoÅ„ski J (2013) Utilization of 4-n-nonylphenol by Metarhizium sp. isolates. Acta Biochim Pol 60:677–682

    Google Scholar 

  • Tan NH, Zhou J (2006) Plant cyclopeptides. J Chem Rev 106:840–895

    Article  CAS  Google Scholar 

  • Tanaka A, Tapper B, Popay A, Parker EJ (2005) A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 57:1036–1050

    Article  CAS  PubMed  Google Scholar 

  • Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20:1381–1389

    Article  CAS  PubMed  Google Scholar 

  • Tupe SG, Pathan EK, Deshpande MV (2017) Development of Metarhizium anisopliae as a mycoinsecticide: from isolation to field performance. J Vis Exp 125:e55272

    Google Scholar 

  • Usuki F, Narisawa H (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    Article  CAS  PubMed  Google Scholar 

  • Valero-Jiménez CA, Wiegers H, Zwaan BJ, Koenraadt CJ, van Kan JA (2016) Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 133:41–49

    Article  PubMed  CAS  Google Scholar 

  • Varma A, Verma S, Sudha Sahay N, Butehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110:4–30

    PubMed  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB Publishing Co., Oxon, pp 311–346

    Chapter  Google Scholar 

  • Vidhate R, Singh J, Ghormade V, Chavan S, Patil A, Deshpande MV (2015) Use of hydrolytic enzymes of Myrothecium verrucaria and conidia of Metarhizium anisopliae, singly and sequentially to control pest and pathogens in grapes and their compatibility with pesticides used in the field. Biopestic Int 11:48–60

    Google Scholar 

  • Vimala Devi PS, Prasad YG, Chowdary DA, Rao LM, Balakrishnan K (2003) Identification of virulent isolates of the entomopathogenic fungus Nomuraea rileyi (F) Samson for the management of Helicoverpa armigera and Spodoptera litura (identification of virulent isolates of N. rileyi). Mycopathologia 156:365–373

    Article  Google Scholar 

  • Vongvanich N, Kittakoop P, Isaka M, Trakulnaleamsai S, Vimuttipong S, Tanticharoen M, Thebtaranonth Y (2002) Hirsutellide A, a new antimycobacterial cyclohexadepsipeptide from the entomopathogenic fungus Hirsutella kobayasii. J Nat Prod 65:1346–1348

    Article  CAS  PubMed  Google Scholar 

  • Vyas PR, Deshpande MV (1991) Enzymatic hydrolysis of chitin by Myrothecium verrucaria chitinase complex and its utilization to produce SCP. J Gen Appl Microbiol 37:267–275

    Article  CAS  Google Scholar 

  • Vyas N, Dua KK, Prakash S (2015) Metabolites of Metarhizium anisopliae against malaria vector and non-target organisms. Entomol Ornithol Herpetol 4:147

    Article  Google Scholar 

  • Wang C, St Leger RJ (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25:1455–1456

    Article  CAS  PubMed  Google Scholar 

  • Wang JB, St Leger RJ, Wang C (2016) Advances in genomics of entomopathogenic Fungi. Adv Genet 94:67–105

    Article  CAS  PubMed  Google Scholar 

  • Weindling R (1941) Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology 31:991–1003

    CAS  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. The Open Mycol J 8:71–126

    Article  Google Scholar 

  • Wu S, Gao Y, Zhang Y, Wang E, Xu X, Lei Z (2014) An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: evidence from laboratory bioassay and scanning electron microscopic observation. PLoS One 9:e84732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y-J, Luo F, Li B, Shang Y, Wang C (2016) Metabolic conservation and diversification of Metarhizium species correlate with fungal host-specificity. Front Microbiol 7:2020

    PubMed  PubMed Central  Google Scholar 

  • Yadav P, Deshpande MV (2010) Fungus- fungus and fungus–insect interactions. Biopestic Int. 6:21–35

    Google Scholar 

  • Yadav P, Deshpande MV (2012) Control of beet armyworm, Spodoptora litura (Fabricius) by entomopathogenic fungi, Metarhizium anisopliae M34412, Beauveria bassiana B3301 and Nomuraea rileyi N812. Biopestic Int 8:107–114

    Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Bio 1:227–234

    PubMed  PubMed Central  Google Scholar 

  • Zhao H, Xu C, Lu H-L, Chen X, St. Leger RJ, Fang W (2014) Host-to-pathogen gene transfer facilitated infection of insects by a pathogenic fungus. PLoS Pathog 10(4):e1004009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

MVD is grateful to CSIR, New Delhi for Emeritus Scientist Scheme [21(0962)/13/EMR2] and Department of Biotechnology (DBT-BIRAC), New Delhi for financial support. We wish to thank Rajiv Gandhi Science and Technology Commission (RGSTC, Mumbai), Government of Maharashtra, for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Deshpande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathan, E.K., Patil, A.V., Deshpande, M.V. (2019). Bioprospecting of Fungal Entomo- and Myco-Pathogens. In: Satyanarayana, T., Deshmukh, S., Deshpande, M. (eds) Advancing Frontiers in Mycology & Mycotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9349-5_20

Download citation

Publish with us

Policies and ethics