Skip to main content

Nanomaterial-Immobilized Biocatalysts for Biofuel Production from Lignocellulose Biomass

  • Chapter
  • First Online:

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Enzymes are employed in several fields of basic and applied research as biocatalysts in green chemistry, biosensor, nanobioelectronics, biofuel, and pharmaceutical, agricultural, and biotechnological industries. In present scenario, the diminution of fossil fuels gained the attention of researchers for substitute and sustainable renewable energy resources for biofuel production to combat worldwide energy consumption. The enzyme immobilization as biocatalysts for biofuel applications from lignocellulosic biomasses is found to produce highest percentage of bioethanol. The enzyme immobilization is a fundamental tool to reduce the cost and harness their benefits. The stabilization of enzymes using immobilization helps in efficient recovery from the reaction conditions after biocatalysis and hence makes laborious separation steps easy and permits repetitive use of enzymes. Besides this, it offers several other advantages such as stabilization against harsh reaction conditions, thermodynamic and kinetic stability, surface- and volume-confined enzyme environments, ability to design multi-step reaction, and reduced formation of undesired products which makes easy separation of soluble end products than free enzymes. The different methods of enzyme immobilization either involve adsorption or covalent bonding or encapsulation or a combination of different methods. Several types of nanoparticles and nanocomposites are being used for the stabilization of enzymes which retain the enzyme activity even after immobilization. This book chapter will cover the developments in coupled strategies and the deeper knowledge in stabilization of enzymes with special emphasis on the possibilities of nanomaterial coupled immobilization for operational stabilities in biofuel application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90

    PubMed  PubMed Central  Google Scholar 

  • Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4(2):178. https://doi.org/10.4172/2161-1009.1000178

    Article  CAS  Google Scholar 

  • Ali M, Winterer M (2010) ZnO nanocrystals: surprisingly alive. Chem Mater 22:85–91

    CAS  Google Scholar 

  • Alper H, Stephanopoulous G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723

    CAS  PubMed  Google Scholar 

  • Andrade LH, Rebelo LP, Netto CGCM, Toma HE (2010) Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilized methodologies on superparamagnetic nanoparticles. J Mol Catal B Enzym 66:55–62

    CAS  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523. https://doi.org/10.1016/j.biotechadv.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Ansorge-Schumacher MB, Slusarczyk H, Schumers J, Hirtz D (2006) Directed evolution of formate dehydrogenase from Candida boidinii for improved stability during entrapment in polyacrylamide. FEBS J 273:3938–3945

    CAS  PubMed  Google Scholar 

  • Antrim RR, Auterinen A-L (1986) A new regenerable immobilized glucose isomerase. Stärke 38:132–137

    CAS  Google Scholar 

  • Arico AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    CAS  PubMed  Google Scholar 

  • Asuri P, Karajanagi SS, Sellitto E, Kim DY, Kane RS, Dordick JS (2006) Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng 95:804–811

    CAS  PubMed  Google Scholar 

  • Asuri P, Bale SS, Pangule RC, Shah DA, Kane RS, Dordick JS (2007) Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23(24):12318–12321. https://doi.org/10.1021/la702091c

    Article  CAS  PubMed  Google Scholar 

  • Avnir D, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16:1013–1030

    CAS  Google Scholar 

  • Babaki M, Youse M, Habibi Z, Mohammadi M, Youse P, Mohammadi J, Brask J (2016) Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t -butanol and blue silica gel contents. 91:196–206. https://doi.org/10.1016/j.renene.2016.01.053

  • Balcao VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: state of the art. Enzym Microb Technol 18:392–416

    CAS  Google Scholar 

  • Baskar G, Kumar RN, Melvin XH, Aiswarya R, Soumya S (2016) Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew Energy 98:23–28. https://doi.org/10.1016/j.renene.2016.04.035

    Article  CAS  Google Scholar 

  • Bell G, Halling PJ, Moore BD, Partridge J, Rees DG (1995) Biocatalyst behaviour in low-water systems. Trends Biotechnol 13:468–473

    CAS  Google Scholar 

  • Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572

    CAS  PubMed  Google Scholar 

  • Bhat RR, Genzer J, Chaney BN, Sugg HW, Liebmann-Vinson A (2003) Controlling the assembly of nanoparticles using surface grafted molecular and macromolecular gradients. Nanotechnology 14:1145–1152

    CAS  Google Scholar 

  • Bilitewski U (2006) Protein-sensing assay formats and devices. Anal Chim Acta 568:232

    CAS  PubMed  Google Scholar 

  • Bisen PS, Sanodiya BS, Thakur GS, Baghed RK, Prasad GB (2010) Biodiesel production with special emphasis on lipase-catalysed transesterification. Biotechnol Lett 32:1019–1030

    CAS  PubMed  Google Scholar 

  • Bordini E, Hamdan M, Righetti PG (2000) Probing acrylamide alkylation sites in cysteine-free proteins by matrix-assisted laser desorption/ionisation time-of-flight. Rapid Commun Mass SP 14:840–848

    CAS  Google Scholar 

  • Bosio VE, Islan GA, Martínez YN, Durán N, Castro GR (2016) Nanodevices for the immobilization of therapeutic enzymes. Crit Rev Biotechnol 36(3):447–464

    CAS  PubMed  Google Scholar 

  • Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650

    CAS  PubMed  Google Scholar 

  • Brandt B, Hidalgo A, Bornscheuer UT (2006) Immobilization of enzymes in microtiter plate scale. J Biotechnol 1:582–587

    CAS  Google Scholar 

  • Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Guisan JM (ed) Methods in biotechnology: immobilization of enzymes and cells. Humana Press Inc, New York, pp 15–30

    Google Scholar 

  • Bryjak J, Trochimczuk AW (2006) Immobilization of lipase and penicillin acylase on hydrophobic acrylic carriers. Enzym Microb Technol 39:573–578

    CAS  Google Scholar 

  • Buchholz K, Kasche V (1997) Biokatalysatoren und Enzymtechnologie. VCH, Weinheim, pp 166–185

    Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2009) Utilization of cross-linked laccase aggregates in a perfusion basket reactor for the continuous elimination of endocrine- disrupting chemicals. Biotechnol Bioeng 102:1582–1592

    CAS  PubMed  Google Scholar 

  • Cantone S, Ferrario V, Corici L, Ebert C, Fattor D et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42:6262–6276

    CAS  PubMed  Google Scholar 

  • Caruso F, Mohwald H (1999) Protein multilayer formation on colloids through a stepwise self- assembly technique. J Am Chem Soc 121:6039–6046

    CAS  Google Scholar 

  • Carvalho NB, Vidal BT, Barbosa AS, Pereira MM, Mattedi S, Freitas LDS, Lima ÁS, Soares CMF (2018, Jun 21) Lipase immobilization on silica xerogel treated with protic ionic liquid and its application in biodiesel production from different oils. Int J Mol Sci. 19(7). pii: E1829. https://doi.org/10.3390/ijms19071829

  • Chandel AK, Chandrasekhar G, Silva MB, Silva SSD (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32:187–202

    CAS  PubMed  Google Scholar 

  • Chen RJ, Bangsaruntip S, Drouvalakais KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci 100:4984–4989

    CAS  PubMed  Google Scholar 

  • Chiari M, Righetti PG, Negri A, Ceciliani F, Ronchi S (1992) Preincubation with cysteine prevents modification of sulfhydryl groups in proteins by unreacted acrylamide in a gel. Electrophoresis 13:882–884

    CAS  PubMed  Google Scholar 

  • Cho EJ, Jung S, Kim HJ et al (2012) Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun 48:886–888

    CAS  Google Scholar 

  • Chronopoulou L, Kamel G, Sparago C et al (2011) Structure-activity relationships of Candida rugosa lipase immobilized on polylactic acid nanoparticles. Soft Matter 7:2653–2662

    CAS  Google Scholar 

  • Colín-Luna JA, Zamora-Rodea EG, González-Brambila MM, Barrera-Calva E, Rosas-Cedillo R, Medina-Mendoza AK, García-Martínez JC (2018) Biodiesel production using immobilized lipase supported on a zirconium-pillared clay. Effect Immobilization Method Intl J Chem Reactor Eng. https://doi.org/10.1515/ijcre-2017-0260

  • Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzym Microb Technol 2011(49):326–346

    Google Scholar 

  • Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23:321–329

    CAS  PubMed  Google Scholar 

  • Crespilho FN, GhicaME FM, Nart FC, Oliveira ON, Brett CMA (2006) A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem Commun 8:1665–1670

    CAS  Google Scholar 

  • Cruz JC, Pfromm PH, Tomich JM, Rezac ME (2010) Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: I. tertiary structure. Colloid Surf B 79:97–104

    CAS  Google Scholar 

  • Cui T, Zhang J, Wang J et al (2005) CdS nanoparticles/polymer composite shells on silica nanospheres grown by atom transfer radical polymerization. Adv Funct Mater 15:481–486

    CAS  Google Scholar 

  • D’Souza SF (1999) Immobilized enzymes in bioprocess. Curr Sci 77:69–79

    Google Scholar 

  • Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. Biotech 3:1–9

    Google Scholar 

  • Deshpande A, D’souza SF, Nadkarni GB (1987) Co-immobilization of D- amino acid oxidase and catalase by entrapment of Trigonopsis variabilis in radiation polymerised Polyacrylamide beads. J Biosci 11:137–144

    CAS  Google Scholar 

  • Diána W (2015) Nanostructured systems for enzyme immobilization. PhD Thesis

    Google Scholar 

  • Ding S, Cargill AA, Medintz IL, Claussen JC (2015) Increasing the activity of immobilized enzymes with nanoparticle conjugation. Curr Opin Biotechnol 34:242–250. https://doi.org/10.1016/j.copbio.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  • Dobryszycki P, Rymarczuk M, Bulai G, Kochman M (1999) Effect of acrylamide on aldolase structure 1. Induction of intermediate states. Biochim Biophys Acta 1431:338–350

    CAS  PubMed  Google Scholar 

  • Dordick JS, Kane RS, Asuri P, et al (2012) Enhanced stability of proteins immobilized on nanoparticles. US Patent, 302870

    Google Scholar 

  • Drager G, Kiss C, Kunz U, Kirschning A (2007) Enzyme-purification and catalytic transformations in a microstructured PASSflow reactor using a new tyrosine-based Ni-NTA linker system attached to a polyvinylpyrrolidinone-based matrix. Org Biomol Chem 5:3657

    PubMed  Google Scholar 

  • Drechsler U, Fischer NO, Frankamp BL, Rotello V (2004) Highly efficient biocatalysts via covalent immobilization of Candida rugosa lipase on ethylene glycol modified gold-silica nanocomposites. Adv Mater 16:271

    CAS  Google Scholar 

  • Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM et al (2003) Activity of Candida rugosa lipase immobilized on Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1685–1686

    Google Scholar 

  • End N, Schoning KU (2004) Immobilized biocatalysts in industrial research and production. Top Curr Chem 242:273

    CAS  PubMed  Google Scholar 

  • English BP, Min W, van Oijen AM, Lee KT, Luo G, Sun H, Cherayil BJ, Kou SC, Xie XS (2006) Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nat Chem Biol 2:87

    CAS  PubMed  Google Scholar 

  • Fernandes EGR, Queiroz AAAD, Abraham GA, Roman JS (2006) Anti-thrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J Mater Sci Mater Med 17:105–111

    CAS  PubMed  Google Scholar 

  • Fernandez-Lafuente R (2009) Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzym Microb Technol 45:405–418

    CAS  Google Scholar 

  • Fernández-Lorente G, Palomo JM, Cabrera Z, GuisánJM F-LR (2007) Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enzym Microb Technol 41:565–569

    Google Scholar 

  • Figallo E, Cannizzaro C, Gerecht S, Burdick JA, Langer R, Elvassore N et al (2007) Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7:710–719

    CAS  PubMed  Google Scholar 

  • Fornera S, Bauer T, Schlüter AD, Walde P (2012a) Simple enzyme immobilization inside glass tubes for enzymatic cascade reactions. J Mater Chem 22:502–511

    CAS  Google Scholar 

  • Fornera S et al (2012b) Sequential immobilization of enzymes in microfluidic channels for cascade reactions. ChemPlusChem 77:98–101

    CAS  Google Scholar 

  • Frenkel-Mullerad H, Avnir D (2005) Sol-gel materials as efficient enzyme protectors: preserving the activity of phosphatases under extreme pH conditions. J Am Chem Soc 27(2005):8077–8081

    Google Scholar 

  • Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6:e18692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes M, Mateo C, Fernández-Lafuente R, Guisán JM (2006) Detection of polyclonal antibody against any area of the protein-antigen using immobilized protein- antigens: the critical role of the immobilization protocol. Biomacromolecules 7:540–544

    CAS  PubMed  Google Scholar 

  • Gaberc-Porekar V, Menart V (2001) Perspectives of immobilized-metal affinity chromatography: a review. J Biochem Biophys Methods 49:335–360

    CAS  PubMed  Google Scholar 

  • Ganesan A, Moore BD, Kelly SM et al (2009) Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. Chem Phys Chem 10:1492–1499

    CAS  PubMed  Google Scholar 

  • Gao SL, Wang YJ, Diao X et al (2010) Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresour Technol 101:3830–3837

    CAS  PubMed  Google Scholar 

  • Gardimalla HMR, Mandal D, Stevens PD, Yen M, Gao Y (2005) Superparamagnetic nanoparticle-supported enzymatic resolution of racemic carboxylates. Chem Commun 37:4432–4434

    Google Scholar 

  • Garvey M, Klose H, Fischer R et al (2013) Cellulases for biomass degradation: comparing recombinant cellulose expression platforms. Trends Biotechnol 31:581–589

    CAS  PubMed  Google Scholar 

  • Gebreyohannes AY, Dharmjeet M, Swusten T, Mertens M, Verspreet J, Verbiest T, Courtin CM, Vankelecom IFJ (2018) Simultaneous glucose production from cellulose and fouling reduction using a magnetic responsive membrane reactor with superparamagnetic nanoparticles carrying cellulolytic enzymes. Bioresour Technol 263:532–540. https://doi.org/10.1016/j.biortech.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  • Georgelin T, Maurice V, Malezieux B et al (2010) Design of multifunctionalized g-Fe2O3@SiO2 core-shell nanoparticles for enzymes immobilization. J Nanopart Res 12:675–680

    CAS  Google Scholar 

  • Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011) Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One 6(6):e21442. https://doi.org/10.1371/journal.pone.0021442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosová Z, Rosenberg M, Rebros M, Sipocz M, Sedlácková B (2008) Entrapment of beta-galactosidase in polyvinylalcohol hydrogel. Biotechnol Lett 30:763–767

    PubMed  Google Scholar 

  • Guncheva M, Tashev E, Zhiryakova D, Tosheva T, Tzokova N (2011) Immobilization of lipase from Candida rugosa on novel phosphorous-containing polyurethanes: application in wax ester synthesis. Process Biochem 46:923–930

    CAS  Google Scholar 

  • Gupta MN, Kaloti M, Kapoor M, Solanki K (2011) Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Substit Biotechnol 39(2):98–109. https://doi.org/10.3109/10731199.2010.516259

    Article  CAS  Google Scholar 

  • Hama S, Yamaji H, Fukumizu T et al (2007) Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34:273–278

    CAS  Google Scholar 

  • Hamachi I, Fujita A, Kunitake T (1994) Enhanced N-demethylase activity of cytochrome C bound to a phosphate-bearing synthetic bilayer membrane. J Am Chem Soc 116:8811–8812

    CAS  Google Scholar 

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    CAS  Google Scholar 

  • Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas-benefits and challenges. Chem Soc Rev 42:6277–6289

    CAS  PubMed  Google Scholar 

  • Hernandez K, Fernandez-Lafuente R (2016) LCA studies comparing alkaline and immobilized enzyme catalyst processes for biodiesel production under Brazilian conditions. Enzym Microb Technol 2011(48):107–122

    Google Scholar 

  • Herricks TE, Kim SH, Kim J, Li D, Kwak JH, Grate JW, Kim SH, Xia Y (2005) Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning. J Mater Chem 14:3241–3245

    Google Scholar 

  • Ho L-F, Li S-Y, Lin S-C, Hsu W-H (2004) Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents. Process Biochem 39:1573–1581

    CAS  Google Scholar 

  • Ho KM, Mao X, Gu L, Li P (2008) Facile route to enzyme immobilization: core–shell nanoenzyme particles consisting of well-defined poly (methyl methacrylate) cores and cellulase shells. Langmuir 24:11036–11042

    CAS  PubMed  Google Scholar 

  • Huang XJ, Chen PC, Huang F et al (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100

    CAS  Google Scholar 

  • Hudson S, Cooney J, Magner E (2008) Proteins in mesoporous silicates. Angew Chem Int Ed Eng 47:8582–8594

    CAS  Google Scholar 

  • Hung SW, Hwang JK, Tseng F, Chang JM, Chen CC, Chieng CC (2006) Molecular dynamics simulation of the enhancement of cobra cardiotoxin and E6 protein binding on mixed self-assembled monolayer molecules. Nanotechnology 17:S8–S13

    CAS  PubMed  Google Scholar 

  • Husain Q (2017) Nanomaterials as novel supports for the immobilization of amylolytic enzymes and their applications: a review. Biocatalysis 3(1):37–53. https://doi.org/10.1515/boca-2017-0004

    Article  Google Scholar 

  • Husain Q, Ansari SA, Alam F, Azam A (2011) Immobilization of Aspergillus oryzae β-galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. Int J Biol Macromol 49:37–43

    CAS  PubMed  Google Scholar 

  • Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61

    CAS  Google Scholar 

  • Igor Alberto Peñarrubia Fernandez, De-Hua Liu, Jinsong Zhao (2016) LCA studies comparing alkaline and immobilized enzyme catalyst processes for biodiesel production under Brazilian conditions. Conserv Recycl 119:117–127. https://doi.org/10.1016/j.resconrec.2016.05.009

    Article  Google Scholar 

  • Iyer PV, Ananthnarayan L (2008) Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochem 43(10):1019–1032. https://doi.org/10.1016/j.procbio.2008.06.004

  • Ji PJ, Tan HS, Xu X, Feng W (2010) Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent. AICHE J 56:3005–3011

    CAS  Google Scholar 

  • Jia H, Zhu G, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 84:406–414

    CAS  PubMed  Google Scholar 

  • Jin Q, Li X, Deng C, Zhang Q, Yi D, Wang X et al (2018) Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly. J Colloid Interface Sci 531:555–563. https://doi.org/10.1016/j.jcis.2018.07.035

    Article  CAS  PubMed  Google Scholar 

  • Johnson RD, Wang ZG, Arnold FH (1996) Surface site heterogeneity and lateral interactions in multipoint protein adsorption. J Phys Chem 100:5134–5139

    CAS  Google Scholar 

  • Johnson AK, Zawadzka AM, Deobald LA, Crawford RL, Paszczynski AJ (2008) Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res 10:1009–1025

    CAS  Google Scholar 

  • Johnson PA, Park HJ, Driscoll AJ (2011) Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization. Methods Mol Biol 679:183–191

    CAS  PubMed  Google Scholar 

  • Jordan BJ, Hong R, Gider B, Hill J, Emrick T, Rotello VM (2006) Stabilization ofα-chymotrypsin at air–water interface through surface binding to gold nanoparticle scaffolds. Soft Matter 2:558–560

    CAS  Google Scholar 

  • Jun L, Zhou W, Kumbhar J, Wiemann J, Fang J, Carpentier EE et al (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization and magnetic field induced self-assembly. Sol State Chem 159:26–31

    Google Scholar 

  • Kaieda M, Samukawa T, Kondo A, Fukuda H (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91:12–15

    CAS  PubMed  Google Scholar 

  • Karajanagi SS, Vertegel AA, Kane RS, Dordick JS (2004) Structures and functions of enzymes adsorbed onto single walled carbon nanotubes. Langmuir 20:11594–11599

    CAS  PubMed  Google Scholar 

  • Karel Hernandez RFL (1980) Control of protein immobilization: coupling immobilization and site-directed mutagenesis. BJOG Int J Obstet Gynaecol 87(11):1015–1021. https://doi.org/10.1016/j.enzmictec.2010.10.003

    Article  CAS  Google Scholar 

  • Katchalski-Katzir E (1993) Immobilized enzymes - learning from past successes and failures. Trends Biotechnol 11(11):471–478. https://doi.org/10.1016/0167-7799(93)90080-S

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JF, Melo EHM (1990) Immobilised enzymes and cells. Chem Eng Prog 86:81–89

    CAS  Google Scholar 

  • Khosla K, Rathour R, Maurya R, Maheshwari N, Gnansounou E, Larroche C, Thakur IS (2017) Biodiesel production from lipid of carbon dioxide sequestrating bacterium and lipase of psychrotolerant Pseudomonas sp. ISTPL3 immobilized on biochar. Bioresour Technol 245(Pt A):743–750. https://doi.org/10.1016/j.biortech.2017.08.194

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Grate JW (2003) Single-Enzyme nanoparticles armored by a nanometer-scale organic / inorganic network. Nano Lett 3(9):1219–1222. https://doi.org/10.1021/nl034404b

    Article  CAS  Google Scholar 

  • Kim BC, Nair S, Kim J, Kwak JH, Grate JW, Kim SH et al (2005a) Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. Nanotechnology 16:S382–S388

    PubMed  Google Scholar 

  • Kim BK, Kim YH, Won K, Chang H, Choi Y, Kong K et al (2005b) Electrical properties of polyaniline nanofibre synthesized with biocatalyst. Nanotechnology 16:1177–1181

    CAS  Google Scholar 

  • Kim J, Grate JW, Wang P (2006a) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    CAS  Google Scholar 

  • Kim J, Jia H, Wang P (2006b) Challenges in biocatalysis for enzyme based biofuel cells. Biotechnol Adv 24:296–308

    CAS  PubMed  Google Scholar 

  • Kim MI, Ham HO, Oh SD, Park HG, Chang HN, Choi SH (2006c) Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J Mol Catal B Enzym 39:62–68

    CAS  Google Scholar 

  • Kim MI, Kim J, Lee J et al (2007) Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: a simple and effective method for enzyme stabilization. Biotechnol Bioeng 96:210–218

    CAS  PubMed  Google Scholar 

  • Kim J, Grate JW, Wang P (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol 26:639–646

    CAS  PubMed  Google Scholar 

  • Kin MH, Xuepu M, Lianquan G, Li P (2008) Facile route to enzyme immobilization: core–shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells. Langmuir 24:11036–11042

    Google Scholar 

  • Kingsmore SF (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5:310–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirupa Sankar M, Ravikumar R, Naresh Kumar M, Sivakumar U (2018) Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential. Bioresour Technol 269:227–236. https://doi.org/10.1016/j.biortech.2018.08.091

    Article  CAS  PubMed  Google Scholar 

  • Klein MP, Nunes MR, Rodrigues RC et al (2012) Effect of the support size on the properties of b-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13:2456–2464

    CAS  PubMed  Google Scholar 

  • Koneracka M, Kopcansky P, Antalmk M, Timko M, Ramchand CN, Lobo D et al (1999) Immobilization of proteins and enzymes to the magnetic particles. J Magn Magn Mater 201:427–430

    CAS  Google Scholar 

  • Koneracka M, Kopcansky P, Timko M, Ramchand CN (2002) Direct binding procedure of proteins and enzymes to fine magnetic particles. J Magn Mater 252:409–411

    CAS  Google Scholar 

  • Konwarh R, Karak N, Rai SK, Mukherjee AK (2009) Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnology 20:225–235

    Google Scholar 

  • Kopp W, da Costa TP, Pereira SC, Jafelicci MJ, Giordano RC, Marques RFC et al (2014) Easily handling penicillin G acylase magnetic cross-linked enzymes aggregates: catalytic and morphological studies. Process Biochem 49:38–46. https://doi.org/10.1016/j.procbio.2013.09.024

    Article  CAS  Google Scholar 

  • Kouassi GK, Irudayaraj J, McCarty G (2005) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnol 3:1–9

    Google Scholar 

  • Krumov N, Perner-Nochta I, Oder S et al (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026–1035

    CAS  Google Scholar 

  • Küchler A, Adamcik J, Mezzenga R, Schlüter AD, Walde P (2015a) Enzyme immobilization on silicate glass through simple adsorption of dendronized polymer-enzyme conjugates for localized enzymatic cascade reactions. RSC Adv 5:44530–44544

    Google Scholar 

  • Küchler A, Bleich JN, Sebastian B, Dittrich PS, Walde P (2015b) Stable and simple immobilization of proteinase K inside glass tubes and microfluidic channels. ACS Appl Mater Interfaces 7:25970–25980

    PubMed  Google Scholar 

  • Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P (2016) Enzymatic reactions in confined environments. Nat Nanotechnol 11(5):409–420. https://doi.org/10.1038/nnano.2016.54

    Article  CAS  PubMed  Google Scholar 

  • Kumar CV, McLendon GL (1997) Nanoencapsulation of cytochrome c and horseradish peroxidase at the galleries of a-zirconium phosphate. Chem Mater 9:863–870

    CAS  Google Scholar 

  • Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M (2003) Fractal gold nanostructures produced by the spontaneous reduction of chloroaurate ions in thermally evaporated hexadecylaniline thin films. Langmuir 9:6277–6282

    Google Scholar 

  • Kuroiwa T, Noguchi Y, Nakajima M, Sato S, Mukataka S, Ichikawa S (2008) Production of chitosan oligosaccharides using chitosanase immobilized on amylase coated magnetic nanoparticles. Process Biochem 43:62–69

    CAS  Google Scholar 

  • Lalonde J, Margolin A (2002) In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis, vol 1, 2nd edn. Wiley-VCH, Weinheim, pp 163–184

    Google Scholar 

  • Lee DG, Ponvel KM, Kim M et al (2009) Immobilization of lipase on hydrophobic nano-sized magnetite particles. J Mol Catal B Enzym 57:62–66

    CAS  Google Scholar 

  • Lee SM, Jin LH, Kim JH et al (2010) Beta-glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess Biosyst Eng 33:141–147

    CAS  PubMed  Google Scholar 

  • Lei CH, Shin YS, Magnuson JK, Fryxell G, Lasure LL, Elliott DC et al (2006) Characterization of functionalized nanoporous supports for protein confinement. Nanotechnology 17:5531–5538

    CAS  PubMed  Google Scholar 

  • Li Y, Wang H, Lu J, Chu A, Zhang L, Ding Z et al (2019) Preparation of immobilized lipase by modified polyacrylonitrile hollow membrane using nitrile-click chemistry. Bioresour Technol 274:9–17. https://doi.org/10.1016/j.biortech.2018.11.075

    Article  CAS  PubMed  Google Scholar 

  • Li SF, Fan YH, Hu RF, Wu WT (2011) Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J Mol Catal B Enzym 72:40–45

    CAS  Google Scholar 

  • Lia Y, Schluesenerb HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:29–41

    Google Scholar 

  • Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249. https://doi.org/10.1039/c3cs35511j

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Jin W, Wang J, Cai Z, Wu S, Zhang GA (2018) Novel method for simultaneous purification and immobilization of a xylanase-lichenase chimera via SpyTag/SpyCatcher spontaneous reaction. Enzym Microb Technol 115:29–36. https://doi.org/10.1016/j.enzmictec.2018.04.007

    Article  CAS  Google Scholar 

  • Liu CH, Huang CC, Wang YW et al (2012) Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Appl Energy 100:41–46

    CAS  Google Scholar 

  • Liu C, Yuan J, Gao H, Liu C (2016) Biodiesel production from waste cooking oil by immobilized lipase on superparamagnetic Fe3O4 hollow sub-microspheres. Biocatal Biotransformation 34(6):283–290. https://doi.org/10.1080/10242422.2016.1265948

  • Liu LH, Shih YH, Liu WL, Lin CH, Huang HY (2017) Enzyme immobilized on nanoporous carbon derived from metal-organic framework: a new support for biodiesel synthesis. 10(7):1364–1369. https://doi.org/10.1002/cssc.201700142

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malcata FXH, Reyes R, Garcia HS, Hill CG Jr, Amundson CH (1997) Enzym Microb Technol 14:426–446

    Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M et al (2009) New improvements for lignocellulose ethanol. Curr Opin Biotechnol 20:372–380

    CAS  PubMed  Google Scholar 

  • Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29–37

    CAS  PubMed  Google Scholar 

  • Matano Y, Hasunuma T, Kondo A (2013) Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulose- displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol 135:403–409

    CAS  PubMed  Google Scholar 

  • Mateo C, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzym Microb Technol 26:509–515

    CAS  Google Scholar 

  • Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G et al (2005) Some special features of glyoxyl supports to immobilize proteins. Enzym Microb Technol 37:456–462

    CAS  Google Scholar 

  • Mateo C, Palomo JM, Fuentes M, Betancor L, Grazu V, López-Gallego F et al (2006) Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzym Microb Technol 39:274–280

    CAS  Google Scholar 

  • Mateo C, Grazu V, Palomo JM, Lopez-Gallego F, Fernandez-Lafuente R, Guisan JM (2007a) Immobilization of enzymes on heterofunctional epoxy supports. Nat Protoc 2:1022–1033

    CAS  PubMed  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007b) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463

    CAS  Google Scholar 

  • Matsunaga T, Kamiya S (1987) Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol 26:328–332. https://doi.org/10.1007/BF00256663

    Article  CAS  Google Scholar 

  • Mehta RV, Upadhyay RV, Charles SW, Ramchand CN (1997) Direct binding of protein to magnetic particles. Biotechnol Tech 11:493–496

    CAS  Google Scholar 

  • Mehrasbi MR, Mohammadi J, Peyda M, Mohammadi MM (2017) Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew Energy 101:593–602. https://doi.org/10.1016/j.renene.2016.09.022

    CAS  Google Scholar 

  • Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Soderlund H et al (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865

    CAS  PubMed  Google Scholar 

  • Montes T, Grazú V, López-Gallego F, Hermoso JA, García JL, Manso I et al (2007) Genetic modification of the penicillin G acylase surface to improve its reversible immobilization on ionic exchangers. Appl Environ Microbiol 73:312–319

    CAS  PubMed  Google Scholar 

  • Moser BR (2011) Biodiesel production, properties, and feedstocks. In: Tomes D, Lakshmanan P, Sonstad D (eds) Biofuels. Springer, New York, pp 285–347

    Google Scholar 

  • Murillo G, Ali SS, Sun J, Yan Y, Bartoccie P, El-Zawawy N, Azab M, He Y, Fantozzi F (2019) Ultrasonic emulsification assisted immobilized Burkholderia cepacia lipase catalyzed transesterification of soybean oil for biodiesel production in a novel reactor design SC. Renew Energy 135:1025–1034. https://doi.org/10.1016/j.renene.2018.12.080

    Article  CAS  Google Scholar 

  • Murty VR, Bhat J, Muniswaran PKA (2002) Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnol Bioprocess Eng 7:57–66

    CAS  Google Scholar 

  • Naresh S, Shuit SH, Kunasundari B, Peng YH, Qi HN, Teoh YP (2018) Immobilization of cellulase from Bacillus subtilis UniMAP-KB01 on multi-walled carbon nanotubes for biofuel production. IOP Conf Ser: Mater Sci Eng 318. https://doi.org/10.1088/1757-899X/318/1/012008

  • Nelson JM, Griffin EG (1916) Adsorption of Invertase. J Am Chem Soc 38:1109–1115

    CAS  Google Scholar 

  • Ngo TPN, Li A, Tiew KW, Li Z (2013) Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour Technol 145:233–239

    CAS  PubMed  Google Scholar 

  • Ni Y, Cao X, Wu G, Hu G, Yang Z, Wei X (2007) Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method. Nanotechnology 18:155–161

    Google Scholar 

  • Ottolina G, Carrea G, Riva S, Sartore L, Veronese FM (1992) Effect of the enzyme form on the activity, stability and enantioselectivity of lipoprotein lipase in toluene. Biotechnol Lett 14:947–952

    CAS  Google Scholar 

  • Öztürk B (2001) Immobilization of lipase from Candida rugosa on hydrophobic and hydrophilic supports. (Master thesis). İzmir Institute of Technology, Turkey

    Google Scholar 

  • Palazzo G, Colafemmina G, Guzzoni Iudice C, Mallardi A (2014) Three immobilized enzymes acting in series in layer by layer assemblies: exploiting the trehalase-glucose oxidase-horseradish peroxidase cascade reactions for the optical determination of trehalose. Sensors Actuators B 202:217–223

    CAS  Google Scholar 

  • Palocci C, Chronopoulou L, Venditti I, Cernia E, Diociaiuti M, Fratoddi I, Russo MV (2007) Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles. Biomacromolecules 8:3047–3053

    CAS  PubMed  Google Scholar 

  • Palomo JM (2009) Modulation of enzymes selectivity via immobilization. Curr Org Synth 6:1–14

    CAS  Google Scholar 

  • Palomo JM, Fernandez-Lorente G, Mateo C, Ortiz C, Fernandez-Lafuente R, Guisan JM (2002) Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzym Microb Technol 31:775–783

    CAS  Google Scholar 

  • Palomo JM, Filice M, Fernandez-Lafuente R, Terreni M, Guisan JM (2007) Regioselective hydrolysis of different peracetylated β-monosaccharides by immobilized lipases from different sources. Key role of the immobilization. Adv Synth Catal 349:1969–1976

    CAS  Google Scholar 

  • Pavlidis IV, Vorhaben T, Gournis D et al (2012a) Regulation of catalytic behaviour of hydrolases through interactions with functionalised carbon-based nanomaterials. J Nanopart Res 14:842

    Google Scholar 

  • Pavlidis IV, Vorhaben T, Tsoufis T et al (2012b) Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour Technol 115:164–171

    CAS  PubMed  Google Scholar 

  • Persichetti RA, Clair NLS, Griffith JP, Navia MA, Margolin AL (1995) Cross-linked enzyme crystals (CLECs) of Thermolysin in the synthesis of peptides. J Am Chem Soc 117:2732–2737

    CAS  Google Scholar 

  • Petros RA, Desimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 8:615–627. https://doi.org/10.1038/nrd2591

    Article  CAS  Google Scholar 

  • Phadtare S, Kumar A, Vinod VP, Dash C, Palaskar DV, Rao M et al (2003) Direct assembly of gold nanoparticle “shells” on polyurethane microsphere “cores” and their application as enzyme immobilization templates. Chem Mater 15:1944–1949

    CAS  Google Scholar 

  • Phadtare S, Vinod VP, Mukhopadhyay K, Kumar A, Rao M, Chaudhari RV et al (2004) Immobilization and biocatalytic activity of fungal protease on gold nanoparticle-loaded zeolite microspheres. Biotechnol Bioeng 85:629–637

    CAS  PubMed  Google Scholar 

  • Pimentel MCB, Leao ABF, Melo EHM, Ledingham WM, Lima-Filho JL, Sivewright M (2007) Immobilization of Candida rugosa lipase on magnetized dacron: kinetic study. Art Cell Blood Substit Biotechnol 35:221–235

    CAS  Google Scholar 

  • Pišvejcová A, Rossi C, Hušáková L, Křen V, Riva S, Monti D (2006) β-1,4-Galactosyltransferase-catalyzed glycosylation of sugar derivatives: modulation of the enzyme activity by α-lactalbumin, immobilization and solvent tolerance. J Mol Catal B Enzym 39:98–104

    Google Scholar 

  • Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Chem Biol 11:220–225

    CAS  PubMed  Google Scholar 

  • Prakasham RS, Sarala DG, Rajya LK, Subba R (2007) Novel synthesis of ferric impregnated silica nanoparticles and their evaluation as a matrix for enzyme immobilization. J Phys Chem C 111:3842–3847

    CAS  Google Scholar 

  • Puri M, Abraham RE, Barrow CJ (2012) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sust Energ Rev 16:6022–6031

    CAS  Google Scholar 

  • Rai M et al (2016) Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol Rev 5(2):231–250

    CAS  Google Scholar 

  • Rao SV, Anderson KW, Bachas LG (1998) Oriented immobilization of proteins. Microchim Acta 128:127–143

    Google Scholar 

  • Rao A, Sathiavelu A, Mythili S (2017) Mini review on nanoimmobilization of lipase and cellulase for biofuel production. Biofuel 7269(July). https://doi.org/10.1080/17597269.2017.1348187

  • Rempel A, de Souza SF, Margarites AC, Astolfi AL, Steinmetz RLR, Kunz A, Treichel H, Colla LM (2019, Sep) Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy efficient approach. Bioresour Technol 288:121588. https://doi.org/10.1016/j.biortech.2019.121588

    Article  CAS  PubMed  Google Scholar 

  • Richter O, Hoffmann H, Kraushaar-Czarnetzki B (2008) Effect of the rotor shape on the mixing characteristics of a continuous flow Taylor-vortex reactor. Chem Eng Sci 63:3504–3513

    CAS  Google Scholar 

  • Robinson PJ, Dunnill P, Lilly MD (1973) The properties of magnetic supports in relation to immobilized enzyme reactors. Biotechnol Bioeng 15:603–606

    CAS  Google Scholar 

  • Rodrigues RC, Berenguer-Murcia A, Fernandez- Lafuente R (2011) Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv Synth Catal 353:2216–2238

    CAS  Google Scholar 

  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42(15):6290–6307. https://doi.org/10.1039/c2cs35231a

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues ÉF, Ficanha AMM, Dallago RM, Treichel H, Reinehr CO, Machado TP, Nunes GB, Colla LM (2017) Production and purification of amylolytic enzymes for saccharification of microalgal biomass. Bioresour Technol 225:134–141. https://doi.org/10.1016/j.biortech.2016.11.047

    Article  CAS  PubMed  Google Scholar 

  • Rostro-Alanis MJ, Mancera-Andrade EI, Patiño MBG, Arrieta-Baez D, Cardenas B, Martinez-Chapa SO, Saldívar RP (2016) Nanobiocatalysis: nanostructured materials -a mini-review. Biocatalysis 2:1–24

    Google Scholar 

  • Rozenberga BA, Tenne R (2008) Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci 33:40–112

    Google Scholar 

  • Rubin-Pitel SB, Zhao H (2006) Recent advances in biocatalysis by directed enzyme evolution. Comb Chem High-Throughput Screen 9:247–257

    CAS  PubMed  Google Scholar 

  • Rusetski AN, Ruuge EK (1990) Magnetic fluid as a possible drug carrier for thrombosis treatment. J Magn Magn Mater 85:299–302

    Google Scholar 

  • Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1775–1789

    CAS  PubMed  Google Scholar 

  • Saifuddin N, Raziah AZ, Junizah AR (2013) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem 18:18. Article ID 676815

    Google Scholar 

  • Saiyed ZM, Telang SD, Ramchand CN (2003) Application of magnetic techniques in the field of drug discovery and biomedicine. Biomagn Res Technol 1:2–8

    PubMed  PubMed Central  Google Scholar 

  • Saiyed ZM, Sharma S, Godawat R, Telang SD, Ramchand CN (2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). J Biotechnol 131(3):240–244. https://doi.org/10.1016/j.jbiotec.2007.06.017

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P, López G, Saade H, Medina-Morales MA, Ramos-González R, Aguilar CN, Ilyina A (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40(1):9–22. https://doi.org/10.1007/s00449-016-1670-1

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Rao M, Ganesh KN (2002) Electrostatic assembly of nanoparticles and biomacromolecules. Acc Chem Res 35:847–855

    CAS  PubMed  Google Scholar 

  • Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75:955–962

    CAS  PubMed  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolt M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268. https://doi.org/10.1038/35051736

    Article  CAS  PubMed  Google Scholar 

  • Schmitke JL, Wescott CR, Klibanov AM (1996) The mechanistic dissection of the plunge in enzymatic activity upon transition from water to anhydrous solvents. J Am Chem Soc 118:3360–3365

    CAS  Google Scholar 

  • Schuler C, Caruso F (2000) Preparation of enzyme multilayers on colloids for biocatalysis. Macromol Rapid Commun 21:750–753

    CAS  Google Scholar 

  • Shah S, Solanki K, Gupta MN (2007) Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J 1:30

    PubMed  PubMed Central  Google Scholar 

  • Shang W, Nuffer JH, Dordick JS, Siegel RW (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett 7:1991–1995

    CAS  PubMed  Google Scholar 

  • Sharp CA, Howell SA, Jobe J (2000) The effect of biodiesel fuels on transient emissions from modern diesel engines, Part II, unregulated emissions and chemical characterization. SAE Technical Paper. No. 2000-01-1968

    Google Scholar 

  • Shaw SY, Chen YJ, Ou JJ, Ho L (2006) Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzym Microb Technol 39:1089–1095

    CAS  Google Scholar 

  • Sheelu G, Kavitha G, Fadnavis NW (2008) Efficient immobilization of Lecitase in Gelatin hydrogel and degumming of rice bran oil using a spinning basket reactor. J Am Oil Chem Soc 85:739–748

    CAS  Google Scholar 

  • Sheldon RA (2007a) Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583–1587

    CAS  PubMed  Google Scholar 

  • Sheldon RA (2007b) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    CAS  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    CAS  PubMed  Google Scholar 

  • Shim M, Kam NWS, Chem RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    CAS  Google Scholar 

  • Silman IH, Katchalski E (1966) Water-insoluble derivatives of enzymes, antigens, and antibodies. Annu Rev Biochem 35:873–908

    CAS  PubMed  Google Scholar 

  • Singh V, Sardar M, Gupta MN (2013) Immobilization of enzymes by bioaffinity layering. In: Immobilization of enzymes and cells, 3rd edn. Springer/Humana Press, Totawa

    Google Scholar 

  • Siqueira JR Jr, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON Jr (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25:1254–1263

    CAS  PubMed  Google Scholar 

  • Srivastava A, Prasad AR (2000) Triglycerides-based diesel fuels. Renew Sust Energ Rev 4:111–133

    CAS  Google Scholar 

  • Stoytcheva M, Monstero G, Toscano L, Gochev V, Valdez B (2011) The immobilized lipases in biodiesel production. In: Stoytcheva M (ed) Biodiesel – feed- stocks and processing technologies. InTech, Rijeka, pp 397–410

    Google Scholar 

  • Temporini C, Bonomi P, Serra I, Tagliani A, Bavaro T, Ubiali D et al (2010) Characterization and study of the orientation of immobilized enzymes by tryptic digestion and HPLC-MS: design of an efficient catalyst for the synthesis of cephalosporins. Biomacromolecules 11:1623–1632

    CAS  PubMed  Google Scholar 

  • Terreni M, Pagani G, Ubiali D, Fernández-Lafuente R, Mateo C, Guisán JM (2001) Modulation of penicillin acylase properties via immobilization techniques: one-pot chemo enzymatic synthesis of Cephamandole from Cephalosporin C. Bioorg Med Chem Lett 11:2429–2432

    CAS  PubMed  Google Scholar 

  • Thanh LT, Oitsu K, Sadanaga Y et al (2011) A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresour Technol 101:639–645

    Google Scholar 

  • Tischer W (1992) In: Finn RK et al (eds) Biotechnology focus 3: fundamentals, applications, information. Hanser, Munich, pp 237–259

    Google Scholar 

  • Tischer W, Kasche V (1999) Immobilized enzymes: crystals or carriers? Trends Biotechnol 17(8):326–335. https://doi.org/10.1016/S0167-7799(99)01322-0

    Article  CAS  PubMed  Google Scholar 

  • Troitsky VI, Berzina TS, Pastorino L, Bernasconi E, Nicolini C (2003) A new approach to the de- position of nanostructured biocatalytic films. Nanotechnology 14:597–602

    CAS  Google Scholar 

  • Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:567–573

    CAS  PubMed  Google Scholar 

  • Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT (2014) Immobilization of antibodies and enzymes on 3-aminopropyltriethoxysilane-functionalized bioanalytical platforms for biosensors and diagnostics. Chem Rev 114:11083–11130

    CAS  PubMed  Google Scholar 

  • Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39

    CAS  PubMed  Google Scholar 

  • Verma ML, Puri M, Barrow CJ (2014) Recent trends in nanomaterials immobilised enzymes for biofuel production, vol 8551, pp 1–12. https://doi.org/10.3109/07388551.2014.928811

    Book  Google Scholar 

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807

    CAS  PubMed  Google Scholar 

  • Vianello F, Zennaro L, Di Paolo ML, Rigo A, Malacarne C et al (2000) Preparation, morphological characterization, and activity of thin films of horseradish peroxidase. Biotechnol Bioeng 68:488–495

    CAS  PubMed  Google Scholar 

  • Wang P (2006) Nanoscale biocatalyst systems. Curr Opin Biotechnol 17:574–579

    CAS  PubMed  Google Scholar 

  • Wang L, Jiang R (2011) Reversible His-tagged enzyme immobilization on functionalized carbon nanotubes as nanoscale biocatalyst. Methods Mol Biol 743:95–106

    CAS  PubMed  Google Scholar 

  • Wang P, Sergeeva MV, Lim L, Dordick JS (1997) Biocatalytic plastics as active and stable materials for biotransformations. Nat Biotechnol 15:789–793

    CAS  PubMed  Google Scholar 

  • Wang X, Dou P, Zhao P et al (2009) Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. ChemSusChem 2:947–950

    CAS  PubMed  Google Scholar 

  • Wang X, Liu X, Zhao C et al (2011a) Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite. Bioresor Technol 102:6352–6355

    CAS  Google Scholar 

  • Wang X, Liu X, Yan X et al (2011b) Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability. PLoS One 6:e24207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Qin X, Li D, Yang B, Wang Y (2017) One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. Bioresour Technol 235:18–24. https://doi.org/10.1016/j.biortech.2017.03.086

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Shimmada Y, Sugihara A et al (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77:355–360

    CAS  Google Scholar 

  • White CA, Kennedy JF (1980) Popular matrices for enzyme and other immobilizations. Enzym Microb Technol 2:82–90

    CAS  Google Scholar 

  • Willner I, Baron R, Willer B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18:1109–1120

    CAS  Google Scholar 

  • Wong LS, Khan F, Micklefield J (2009) Selective covalent protein immobilization: strategies and applications. Chem Rev 109(9):4025–4053. https://doi.org/10.1021/cr8004668

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Ma N (2009) Immobilised lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuel 23:1347–1353

    CAS  Google Scholar 

  • Xie W, Ma N (2010) Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 34:890–896

    CAS  Google Scholar 

  • Xin BJ, Si SF, Xing GW (2010) Protease immobilization on γ-Fe2O3/Fe3O4 magnetic nanoparticles for the synthesis of oligopeptides in organic solvents. Chem Asian J 5:1389–1394. https://doi.org/10.1002/asia.200900696

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zeng F, Wu S, Liu X, Hou C, Tong Z (2007) Gold nanoparticles bound on microgel particles and their application as an enzyme support. Nanotechnology 18:265–273

    Google Scholar 

  • Yamashita I (2001) Fabrication of a two-dimensional array of nanoparticles using ferritin molecule. Thin Solid Films 393:12–18

    CAS  Google Scholar 

  • Yang Z, Si S, Zhang C (2008) Magnetic single-enzyme nanoparticles with high activity and stability. Biochem Biophys Res Commun 367:169–175. https://doi.org/10.1016/j.bbrc.2007.12.113

    Article  CAS  PubMed  Google Scholar 

  • Yim TJ, Kim DY, Karajanagi SS, Lu TM, Kane R, Dordick JS (2003) Silicon nanocolumns as novel nanostructured supports for enzyme immobilization. J Nanosci Nanotechnol 3:479–482

    CAS  PubMed  Google Scholar 

  • Yiu HHP, Keane MA (2012) Enzyme-magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol 87:583–594

    CAS  Google Scholar 

  • Yiu HHP, Wright PAJ (2005) Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid. Mater Chem 15:3690–3700

    CAS  Google Scholar 

  • Yong Y, Bai Y-X, Li Y-F, Lin L, Cui Y-J et al (2008) Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity. Process Biochem 43:1179–1185

    CAS  Google Scholar 

  • Yu LT, Banerjee IA, Gao XY et al (2005) Fabrication and application of enzyme-incorporated peptide nanotubes. Bioconjug Chem 16:1484–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Diehl MR, Tirrell DA (2005) Artificial polypeptide scaffold for protein immobilization. J Am Chem Soc 127:10136–10137

    CAS  PubMed  Google Scholar 

  • Zhao B, Liu X, Jiang Y, Zhou L, He Y, Gao J (2014) Immobilized lipase from Candida sp. 99-125 on hydrophobic silicate: characterization and applications. Appl Biochem Biotechnol 173(7):1802–1814. https://doi.org/10.1007/s12010-014-0967-2

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Qi F, Yuan C, Du W, Liu D (2015) Lipase-catalyzed process for biodiesel production: enzyme immobilization, process simulation and optimization. Renew Sust Energ Rev 44:182–197. https://doi.org/10.1016/j.rser.2014.12.021

    Article  CAS  Google Scholar 

  • Zhao K, Cao X, Di Q, Wang M, Cao H, Deng L et al (2017) Synthesis, characterization and optimization of a two-step immobilized lipase. Renew Energy 103:383–387. https://doi.org/10.1016/j.renene.2016.11.035

    Article  CAS  Google Scholar 

  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors are thankful to SEED division, DST, GOI for the award of project under Scheme for Young Scientists and Technologists (SEED-TIASN-023-2018).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salwan, R., Sharma, A., Sharma, V. (2020). Nanomaterial-Immobilized Biocatalysts for Biofuel Production from Lignocellulose Biomass. In: Srivastava, M., Srivastava, N., Mishra, P., Gupta, V. (eds) Nanomaterials in Biofuels Research. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-9333-4_9

Download citation

Publish with us

Policies and ethics