Skip to main content

Trace Element Geochemistry

  • Chapter
  • First Online:
Book cover Road from Geochemistry to Geochemometrics
  • 674 Accesses

Abstract

This chapter covers the basic concepts of trace element geochemistry. We document the shortcomings of the existing bivariate and ternary trace element diagrams for tectonic discrimination. The need for normalization in multi-element diagrams is made clear. This is followed by quantitative applications of trace elements in multi-element normalised diagrams. A worldwide compilation of the Nb and Ta anomalies is presented and its importance for the petrogenesis of areas having conflicting or complex tectonic settings, such as the Mexican Volcanic Belt, is pointed out. The chapter ends with the presentation and usefulness of combined ratio parameters for drastically reducing the number of bivariate or ternary diagrams and providing a better innovative geochemometric alternative for the handling of geochemical data. It is interesting to see how all these quantititative parameters are useful for solving geological problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, S., Guevara, M., & Verma, S. P. (2008). Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements. International Geology Review, 50, 1057–1079.

    Article  Google Scholar 

  • Albarède, F. (2018). Geochemistry: An Introduction. Cambridge, United Kingdom: Cambridge University Press.

    Google Scholar 

  • Bhatia, M. R., & Crook, A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.

    Article  Google Scholar 

  • Butler, J. C., & Woronow, A. (1986). Discrimination among tectonic settings using trace element abundances of basalts. Journal of Geophysical Research, 91, 10289–10300.

    Google Scholar 

  • Cabanis, B., & Lecolle, M. (1989). Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Compte Rendu Academy Sciences Paris, 309, 2023–2029.

    Google Scholar 

  • Coryell, C. D., Chase, J. W., & Winchester, J. W. (1963). A procedure for geochemical interpretation of terrestrial rare-earth abundance patterns. Journal of Geophysical Research, 68, 559–566.

    Google Scholar 

  • Harkins, W. D. (1917). The evolution of the elements and the stability of complex atoms. Journal of the American Chemical Society, 39, 856.

    Article  Google Scholar 

  • Kim, W. H., Clayton, R. W., & Keppie, F. (2011). Evidence of a collision between the Yucatán block and Mexico in the Miocene. Geophysical Journal International, 187, 989–1000.

    Article  Google Scholar 

  • Masuda, A. (1962). Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse separation-index patterns of some minerals. Journal of Earth Science, Nagoya University, 10, 173–187.

    Google Scholar 

  • McDonough, W. F., & Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.

    Article  Google Scholar 

  • Meschede, M. (1986). A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56, 207–218.

    Article  Google Scholar 

  • Oddo, G. (1914). Die molekularstruktur der radioaktiven atome. Zeitschrift für Anorganische Chemie, 87, 253.

    Article  Google Scholar 

  • Pacheco, J. F., & Singh, S. K. (2010). Seismicity and state of stress in Guerrero segment of the Mexican subduction zone. Journal of Geophysical Research, 115. https://doi.org/10.1029/2009jb006453.

  • Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In R. S. Thorpe (Ed.) Andesites (pp. 525–548). Chichester: Wiley.

    Google Scholar 

  • Pearce, J. A., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19, 290–300.

    Google Scholar 

  • Pearce, J. A., & Gale, G. H. (1977). Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. Geological Society, London, Special Publications, 7, 14–24.

    Google Scholar 

  • Pearce, J. A., & Norry, M. J. (1979). Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33–47.

    Article  Google Scholar 

  • Pérez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., et al. (2008). Horizontal subduction and truncation of the Cocos plate beneath central Mexico. Geophysical Research Letters, 35, L18303.

    Article  Google Scholar 

  • Rock, N. M. S. (1987). The need for standardization of normalized multi-element diagrams in geochemistry: A comment. Geochemical Journal, 21, 75–84.

    Article  Google Scholar 

  • Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation. Essex: Longman Scientific Technical.

    Google Scholar 

  • Shervais, J. W. (1982). Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59, 101–118.

    Article  Google Scholar 

  • Verma, S. P. (2002). Absence of Cocos plate subduction-related basic volcanism in southern Mexico: A unique case on Earth? Geology, 30, 1095–1098.

    Article  Google Scholar 

  • Verma, S. P. (2006). Extension-related origin of magmas from a garnet-bearing source in the Los Tuxtlas volcanic field, Mexico. International Journal of Earth Sciences, 95, 871–901.

    Article  Google Scholar 

  • Verma, S. P. (2009). Continental rift setting for the central part of the Mexican Volcanic Belt: A statistical approach. Open Geology Journal, 3, 8–29.

    Article  Google Scholar 

  • Verma, S. P. (2010). Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal of Earth Sciences, 19, 185–238.

    Google Scholar 

  • Verma, S. P. (2015a). Present state of knowledge and new geochemical constraints on the central part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc in terms of near and far trench magmas. Turkish Journal of Earth Sciences, 24, 399–460.

    Article  Google Scholar 

  • Verma, S. P. (2015b). Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochemical Journal, 49, 393–412.

    Article  Google Scholar 

  • Verma, S. P., & Agrawal, S. (2011). New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Revista Mexicana de Ciencias Geológicas, 28, 24–44.

    Google Scholar 

  • Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.

    Article  Google Scholar 

  • Verma, S. P., & Verma, S. K. (2013). First 15 probability-based multi-dimensional discrimination diagrams for intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic processes. Turkish Journal of Earth Sciences, 22, 931–995.

    Google Scholar 

  • Verma, S. P., & Verma, S. K. (2018). Petrogenetic and tectonic implications of major and trace element and radiogenic isotope geochemistry of Pliocene to Holocene rocks from the Tacaná Volcanic Complex and Chiapanecan Volcanic Belt, southern Mexico. Lithos, 312–313, 274–289.

    Article  Google Scholar 

  • Verma, S. P., Andaverde, J., & Santoyo, E. (2006). Statistical evaluation of methods for the calculation of static formation temperatures in geothermal and oil wells using an extension of the error propagation theory. Journal of Geochemical Exploration, 89, 398–404.

    Google Scholar 

  • Verma, S. P., Cruz-Huicochea, R., & Díaz-González, L. (2013). Univariate data analysis system: Deciphering mean compositions of island and continental arc magmas, and influence of underlying crust. International Geology Review, 55, 1922–1940.

    Google Scholar 

  • Verma, S. P., Pandarinath, K., & Rivera-Gómez, M. A. (2016). Evaluation of the ongoing rifting and subduction processes in the geochemistry of magmas from the western part of the Mexican Volcanic Belt. Journal of South American Earth Sciences, 66, 125–148.

    Article  Google Scholar 

  • Verma, S. P., Rosales-Rivera, M., Díaz-González, L., & Quiroz-Ruiz, A. (2017). Improved composition of Hawaiian basalt BHVO-1 from the application of two new and three conventional recursive discordancy tests. Turkish Journal of Earth Sciences, 26, 331–353.

    Article  Google Scholar 

  • White, W. M. (2013). Geochemistry. Hoboken, United States: Wiley.

    Google Scholar 

  • Wood, D. A. (1980). The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 50, 11–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra P. Verma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S.P. (2020). Trace Element Geochemistry. In: Road from Geochemistry to Geochemometrics. Springer, Singapore. https://doi.org/10.1007/978-981-13-9278-8_3

Download citation

Publish with us

Policies and ethics