Skip to main content

Noninvasive Imaging Techniques of Metal Nanoparticles and Their Future Diagnostic Applications

  • Chapter
  • First Online:

Abstract

Bio-imaging offers visualization of complex living systems for clinical diagnosis and detection of the diseases. The critical challenges that are associated with conventional contrasting agents or imaging probes are toxic effects and shorter circulation time in the body. Therefore, bio-imaging requires advancements in imaging probes and contrast agents for better understanding of the biological architectures to diagnose the disease. Recent advancements of nanoscience and nanotechnology have changed the paradigm of bio-imaging by providing the better resolution, high contrast images to diagnose the diseases at the molecular level. Also, nanotechnology offers the theranostic approach to diagnose and treat the disease using various nanomaterials that are functionalized with imaging agents and therapeutic molecules. In fact, various imaging techniques are now employing nanomaterials as sole source of imaging signal rather using as contrast objective. The present review article mainly focuses on the application of various nanomaterials in imaging modalities including MRI (magnetic resonance imaging), Raman based, luminescence upconversion imaging, CT (computed tomography), fluorescence imaging, etc. Additionally, we also review the recent advancements that occurred with the help of nanomaterials in each of these imaging techniques. Further, present clinical status of nanomaterials as imaging agents will also be discussed. We conclude with the various challenges associated with nanomaterials for clinical translation as imaging agents. Finally, we focus the insights of nanoparticle-based bio-imaging for future diagnostic applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABC:

Accelerated blood clearance

AgNPs:

Silver nanoparticles

AuNPs:

Gold nanoparticles

CARS:

Coherent anti-Stokes Raman scattering

CeO2:

Cerium dioxide

CNS:

Central nervous system

CT:

Computed tomography

ESIONs:

Extremely small iron oxide nanoparticles

FDA:

Food and drug administration

FITC:

Fluorescein isothiocyanate

FRET:

Fluorescence resonance energy transfer

GBNs:

Gadolinium based-nanoparticles

GSH:

Glutathione

IgG:

Immunoglobulin G

IGT:

Image guided therapy

LLC:

Lewis lung carcinoma

MAP:

Maximum intensity projections

MCS:

Merocyanines

MPR:

Magnetic resonance-photoacoustic-Raman

MRgFUS:

Magnetic resonance-guided focused ultrasound

MRI:

Magnetic resonance imaging

MRS:

Magnetic relaxation switch

MSOT:

Multispectral optoacoustic tomography

NIH:

NIH-3T3- Mouse embryonic fibroblast cell line

OCT:

Optical coherence tomography

PAA:

Polyacrylic acid

PAI:

Photoacoustic imaging

PEG:

Polyethylene glycol

PLGA:

Poly(lactic-co-glycolic acid)

PSMA:

Prostate-specific membrane antigen

QDs:

Quantum dots

SCC:

Squamous cell carcinoma

SERS:

Surface-enhanced Raman spectroscopy

SiNPs:

Silica nanoparticles

SKOV3:

Human breast cancer cell line

SLN:

Sentinel lymph node

SPIONs:

Superparamagnetic iron oxide nanoparticles

SP-PCL:

Spiropyran-terminated poly(ε-caprolactone)

Ti(SP)4:

Tetra spiropyran titanate

TiO2:

Titanium oxide

UCL:

Upconversion luminescence

UCNPs:

Upconversion nanoparticles

ZnO:

Zinc oxide

References

  1. Tempany CM, McNeil BJ. Advances in biomedical imaging. JAMA. 2001;285:562–7.

    Article  Google Scholar 

  2. Sun Z, Ng KH, Ramli N. Biomedical imaging research: a fast-emerging area for interdisciplinary collaboration. Biomed Imag Interv J. 2011;7:e21.

    Google Scholar 

  3. Babic RR, Stankovic Babic G, et al. 120 years since the discovery of x-rays. Med Pregled. 2016;69:323–30.

    Article  Google Scholar 

  4. Ding H, Wu F. Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics. 2012;2:1040–53.

    Article  Google Scholar 

  5. Mettler FA Jr, Thomadsen BR, Bhargavan M, et al. Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys. 2008;95:502–7.

    Article  Google Scholar 

  6. Power SP, Moloney F, Twomey M, et al. Computed tomography and patient risk: facts, perceptions and uncertainties. World J Radiol. 2016;8:902–15.

    Article  Google Scholar 

  7. Larabell CA, Nugent KA. Imaging cellular architecture with X-rays. Curr Opin Struct Biol. 2010;20:623–31.

    Article  Google Scholar 

  8. Grover VPB, Tognarelli JM, Crossey MME, et al. Magnetic resonance imaging: principles and techniques: lessons for clinicians. J Clin Exp Hepatol. 2015;5:246–55.

    Article  Google Scholar 

  9. DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:548–64.

    Article  Google Scholar 

  10. Godin B, Sakamoto JH, Serda RE, et al. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci. 2010;31:199–205.

    Article  Google Scholar 

  11. Wang X, Yang L, Chen Z, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin. 2008;58:97–110.

    Article  Google Scholar 

  12. Yoon HY, Jeon S, You DG, et al. Inorganic nanoparticles for image-guided therapy. Bioconjug Chem. 2017;28:124–34.

    Article  Google Scholar 

  13. Bigio IJ, Mourant JR. Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. Phys Med Biol. 1997;42:803–14.

    Article  Google Scholar 

  14. Kollias N, Zonios G, Stamatas GN. Fluorescence spectroscopy of skin. Vib Spectrosc. 2002;28:17–23.

    Article  Google Scholar 

  15. Lai JP, Shah BP, Garfunkel E, Lee KB. Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS Nano. 2013;7:2741–50.

    Article  Google Scholar 

  16. Nakamura M, Hayashi K, Nakano M, et al. Identification of polyethylene glycol-resistant macrophages on stealth imaging in vitro using fluorescent organosilica nanoparticles. ACS Nano. 2015;9:1058–71.

    Article  Google Scholar 

  17. Bhunia SK, Saha A, Maity AR, et al. Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep. 2013;3:1473.

    Article  Google Scholar 

  18. Li Y, Zeng S, Hao J. Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1500 nm. ACS Nano. 2019;13:248–59.

    Article  Google Scholar 

  19. Kunjachan S, Ehling J, Storm G, et al. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev. 2015;115:10907–37.

    Article  Google Scholar 

  20. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7:603–14.

    Article  Google Scholar 

  21. Hu S, Wang LV. Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt. 2010;15:011101.

    Article  Google Scholar 

  22. Kim C, Cho EC, Chen JY, et al. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano. 2010;4:4559–64.

    Article  Google Scholar 

  23. Song KH, Kim CH, Cobley CM, et al. Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett. 2009;9:183–8.

    Article  ADS  Google Scholar 

  24. Chen YS, Frey W, Kim S, et al. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011;11:348–54.

    Article  ADS  Google Scholar 

  25. Repenko T, Fokong S, De Laporte L, et al. Water-soluble dopamine-based polymers for photoacoustic imaging. Chem Commun. 2015;51:6084–7.

    Article  Google Scholar 

  26. De La Zerda A, Zavaleta C, Keren S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008;3:557–62.

    Article  ADS  Google Scholar 

  27. Wu L, Cai X, Nelson K, et al. A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res. 2013;6:312–25.

    Article  ADS  Google Scholar 

  28. Kircher MF, de la Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34.

    Article  Google Scholar 

  29. Beziere N, Lozano N, Nunes A, et al. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials. 2015;37:415–24.

    Article  Google Scholar 

  30. Ho CJH, Balasundaram G, Driessen W, et al. Multifunctional photosensitizer-based contrast agents for photoacoustic imaging. Sci Rep. 2014;4:5342.

    Article  Google Scholar 

  31. Nie LM, Wang SJ, Wang XY, et al. In vivo volumetric photoacoustic molecular angiography and therapeutic monitoring with targeted plasmonic nanostars. Small. 2014;10:1585–93.

    Article  Google Scholar 

  32. Kundu PP, Narayana C. Raman based imaging in biological application-a perspective. J Med Allied Sci. 2012;2:41.

    Google Scholar 

  33. Lu W, Singh AK, Khan SA, et al. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc. 2010;132:18103–14.

    Article  Google Scholar 

  34. Moger J, Johnston BD, Tyler CR. Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Opt Express. 2008;16:3408–19.

    Article  ADS  Google Scholar 

  35. Lin L, Nufer K, Tomihara S, Prow T. Non-invasive nanoparticle imaging technologies for cosmetic and skin care products. Cosmetics. 2015;2:196–210.

    Article  Google Scholar 

  36. Vanden-Hehir S, Tipping WJ, Lee M, et al. Raman imaging of nanocarriers for drug delivery. Nanomaterials (Basel). 2019;9:341.

    Article  Google Scholar 

  37. Brown MA, Semelka RC, Dale BM. MRI: basic principles and applications. New York: Wiley; 2015.

    Google Scholar 

  38. Bulte JWM, Modo MMJ. Molecular and cellular MR imaging. Hoboken: CRC Press; 2007.

    Google Scholar 

  39. Bulte JWM, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17:484–99.

    Article  Google Scholar 

  40. Giovagnoni A, Fabbri A, Maccioni F. Oral contrast agents in MRI of the gastrointestinal tract. Abdom Imaging. 2002;27:367–75.

    Article  Google Scholar 

  41. Penfield JG, Reilly RF. What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol. 2007;3:654–68.

    Article  Google Scholar 

  42. Kim BH, Lee N, Kim H, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc. 2011;133:12624–31.

    Article  Google Scholar 

  43. Lee N, Kim H, Choi SH, et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Nat Acad Sci U S A. 2011;108:2662–7.

    Article  ADS  Google Scholar 

  44. Lee N, Choi Y, Lee Y, et al. Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo mri of tumors. Nano Lett. 2012;12:3127–31.

    Article  ADS  Google Scholar 

  45. Shin TH, Choi JS, Yun S, et al. T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano. 2014;8:3393–401.

    Article  Google Scholar 

  46. Ling D, Park W, Park SJ, et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc. 2014;136:5647–55.

    Article  Google Scholar 

  47. Ma D, et al. NaGdF4:Yb3+/Er3+@NaGdF4:Nd3+@sodium-gluconate: multifunctional and biocompatible ultrasmall core–shell nanohybrids for UCL/MR/CT multimodal imaging. ACS Appl Mater Interfaces. 2015;7:16257–65.

    Article  Google Scholar 

  48. Zhang XH, Blasiak B, Marenco AJ, et al. Design and regulation of NaHoF4 and NaDyF4 nanoparticles for high-field magnetic resonance imaging. Chem Mater. 2016;28:3060–72.

    Article  Google Scholar 

  49. Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater. 2013;25:2641–60.

    Article  Google Scholar 

  50. Choudhury H, Cary R. Barium and barium compounds. Geneva: World Health Organization; 2001.. http://www.who.int/iris/handle/10665/42398

    Google Scholar 

  51. Galper MW, Saung MT, Fuster V, et al. Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast. Investig Radiol. 2012;47:475–81.

    Article  Google Scholar 

  52. Stacul F, van der Molen AJ, Reimer P, et al. Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur Radiol. 2011;21:2527–41.

    Article  Google Scholar 

  53. Reuveni T, Motiei M, Romman Z, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine. 2011;6:2859–64.

    Google Scholar 

  54. Bernstein AL, Dhanantwari A, Jurcova M, et al. Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods. Sci Rep. 2016;6:26177.

    Article  ADS  Google Scholar 

  55. Kim D, Park SJ, Lee JH, et al. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc. 2007;129:7661–5.

    Article  Google Scholar 

  56. Manohar N, Reynoso FJ, Diagaradjane P, et al. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography. Sci Rep. 2016;6:22079.

    Article  ADS  Google Scholar 

  57. Giepmans BNG, Adams SR, Ellisman MH, et al. Review - the fluorescent toolbox for assessing protein location and function. Science. 2006;312:217–24.

    Article  ADS  Google Scholar 

  58. Kobayashi H, Ogawa M, Alford R, et al. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110:2620–40.

    Article  Google Scholar 

  59. Gamelin DR, Gudel HU. Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy. Acc Chem Res. 2000;33:235–42.

    Article  Google Scholar 

  60. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19:316–7.

    Article  Google Scholar 

  61. Larson DR, Zipfel WR, Williams RM, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003;300:1434–6.

    Article  ADS  Google Scholar 

  62. Yu JH, Kwon SH, Petrasek Z, et al. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat Mater. 2013;12:359–66.

    Article  ADS  Google Scholar 

  63. Cichy B, Wawrzynczyk D, Bednarkiewicz A, et al. Optical nonlinearities and two-photon excited time-resolved luminescence in colloidal quantum-confined CuInS2/ZnS heterostructures. RSC Adv. 2014;4:34065–72.

    Article  Google Scholar 

  64. Subha R, Nalla V, Yu JH, et al. Efficient photoluminescence of Mn2+−doped ZnS quantum dots excited by two-photon absorption in near-infrared window II. J Phys Chem C. 2013;117:20905–11.

    Article  Google Scholar 

  65. Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.

    Article  ADS  Google Scholar 

  66. Sochacki KA, Shtengel G, van Engelenburg SB, et al. Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat Methods. 2014;11:305–U278.

    Article  Google Scholar 

  67. Zhu MQ, Zhang GF, Hu Z, et al. Reversible fluorescence switching of spiropyran-conjugated biodegradable nanoparticles for super-resolution fluorescence imaging. Macromolecules. 2014;47:1543–52.

    Article  ADS  Google Scholar 

  68. Lin H, Choi Y, Lee Y, et al. Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy. Chem Phys Chem. 2012;13:973–81.

    Article  Google Scholar 

  69. Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev. 2004;104:139–73.

    Article  Google Scholar 

  70. Lu YQ, Zhao JB, Zhang R, et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics. 2014;8:33–7.

    ADS  Google Scholar 

  71. Bunzli JCG, Piguet C. Taking advantage of luminescent lanthanide ions. Chem Soc Rev. 2005;34:1048–77.

    Article  Google Scholar 

  72. Zhang F, Shi QH, Zhang YC, et al. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. Adv Mater. 2011;23:3775–9.

    Google Scholar 

  73. Zheng XL, Zhu XJ, Lu YQ, et al. High-contrast visualization of upconversion luminescence in mice using time-gating approach. Anal Chem. 2016;88:3449–54.

    Article  Google Scholar 

  74. Lee J, Yoo B, Lee H, et al. Ultra-wideband multi-dye-sensitized upconverting nanoparticles for information security application. Adv Mater. 2017;29:1603169.

    Article  Google Scholar 

  75. Wu X, Zhang YW, Takle K, et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano. 2016;10:1060–6.

    Article  Google Scholar 

  76. Wang F, Liu XG. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc. 2008;130:5642.

    Article  Google Scholar 

  77. Xie XJ, Gao NY, Deng RR, et al. Mechanistic investigation of photon upconversion in nd3+−sensitized core-shell nanoparticles. J Am Chem Soc. 2013;135:12608–11.

    Article  Google Scholar 

  78. Park HS, Nam SH, Kim J, et al. Clear-cut observation of clearance of sustainable upconverting nanoparticles from lymphatic system of small living mice. Sci Rep. 2016;6:27407.

    Article  ADS  Google Scholar 

  79. Jayakumar MKG, Bansal A, Li BN, et al. Mesoporous silica-coated upconversion nanocrystals for near infrared light-triggered control of gene expression in zebrafish. Nanomedicine. 2015;10:1051–61.

    Article  Google Scholar 

  80. Yong-Dong K, Park TE, Singh B, et al. Image-guided nanoparticle-based siRNA delivery for cancer therapy. Curr Pharm Des. 2015;21:4637–56.

    Article  Google Scholar 

  81. Iyer AK, He J, Amiji MM. Image-guided nanosystems for targeted delivery in cancer therapy. Curr Med Chem. 2012;19:3230–40.

    Article  Google Scholar 

  82. Yu MK, Kim D, Lee IH, et al. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011;7:2241–9.

    Article  Google Scholar 

  83. Tomitaka A, Arami H, Raymond A, et al. Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale. 2017;9:764–73.

    Article  Google Scholar 

  84. Satpathy M, Wang L, Zielinski RJ, et al. Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using her2-targeted theranostic nanoparticles. Theranostics. 2019;9:778–95.

    Article  Google Scholar 

  85. Le Duc G, Miladi I, Alric C, et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano. 2011;5:9566–74.

    Article  Google Scholar 

  86. Gao S, et al. Hybrid graphene/au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials. 2016;79:36–45.

    Article  Google Scholar 

  87. Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:e1449.

    Article  Google Scholar 

  88. Etame AB, Diaz RJ, O'Reilly MA, Smith CA, Mainprize TG, Hynynen K, Rutka JT. Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine. 2012;8:1133–42.

    Article  Google Scholar 

  89. Mukherjee S, Chowdhury D, Kotcherlakota R, et al. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4:316–35.

    Article  Google Scholar 

  90. Patra CR, Mukherjee S, Kotcherlakota R. Biosynthesized silver nanoparticles: a step forward for cancer theranostics. Nanomedicine (Lond). 2014;9:1445–8.

    Article  Google Scholar 

  91. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1:10–29.

    Article  Google Scholar 

  92. Thakor AS, Jokerst JV, Ghanouni P, et al. Clinically approved nanoparticle imaging agents. J Nucl Med. 2016;57:1833–7.

    Article  Google Scholar 

  93. Scott LJ. Verigene® gram-positive blood culture nucleic acid test. Mol Diagn Ther. 2013;17:117–22.

    Article  Google Scholar 

  94. Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev. 2012;64:129–37.

    Article  Google Scholar 

  95. Yildirimer L, Thanh NTK, Loizidou M, et al. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6:585–607.

    Article  Google Scholar 

Download references

Acknowledgments

The Authors are thankful to the Director, CSIR-IICT for his support and encouragement and for his keen interest in this work. IICT communication number IICT/Pubs./2019/113 dated March 25th 2019 for this manuscript is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitta Ranjan Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S., Kotcherlakota, R., Patra, C.R. (2019). Noninvasive Imaging Techniques of Metal Nanoparticles and Their Future Diagnostic Applications. In: Shukla, A. (eds) Medical Imaging Methods. Springer, Singapore. https://doi.org/10.1007/978-981-13-9121-7_5

Download citation

Publish with us

Policies and ethics