Skip to main content

Diagnostic Imaging Techniques in Oral Diseases

  • Chapter
  • First Online:
Medical Imaging Methods

Abstract

In the context of oral diseases, the diagnosis essentially consists of an analysis of clinical case history and evaluation of diagnostic records complemented by the results of relevant investigations so as to confirm the presence of disease, identification of its type and the cause of its initiation. Oral imaging plays an integral and vital role in the assessment of oral diseases, thereby facilitating treatment planning. Newer imaging techniques have progressed beyond the confines of conventional radiological techniques to encompass even the non-radiological techniques in its ambit. Modern imaging techniques have been able to bring in speed, detail and precision at the same time to bring in a paradigm shift in oral care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker HK. The origins of the history and physical examination. 1990.

    Google Scholar 

  2. Kornman KS. Diagnostic and prognostic tests for oral diseases: practical applications. J Dent Educ. 2005;69(5):498–508.

    Google Scholar 

  3. Gopalakrishnan S, Udayshankar P, Rama R. Standard treatment guidelines in primary healthcare practice. J Family Med Prim Care. 2014;3(4):424.

    Article  Google Scholar 

  4. Smith-Bindman R, Miglioretti DL, Larson EB. Rising use of diagnostic medical imaging in a large integrated health system. Health Aff (Millwood). 2008;27(6):1491–502.

    Article  Google Scholar 

  5. Looking back on the millennium in medicine. N Engl J Med, 2000. 342(1): p. 42–9.

    Google Scholar 

  6. Benson BW, et al. Advances in diagnostic imaging for pathologic conditions of the jaws. Head Neck Pathol. 2014;8(4):383–91.

    Article  Google Scholar 

  7. Rezai RF. Otto Walkhoff--renaissance man of dentistry. Bull Hist Dent. 1986;34(2):115–21.

    Google Scholar 

  8. Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794–807.

    Article  Google Scholar 

  9. Suomalainen A, Pakbaznejad Esmaeili E, Robinson S. Dentomaxillofacial imaging with panoramic views and cone beam CT. Insights Imaging. 2015;6(1):1–16.

    Article  Google Scholar 

  10. Forsberg J. A comparison of the paralleling and bisecting-angle radiographic techniques in endodontics. Int Endod J. 1987;20(4):177–82.

    Article  Google Scholar 

  11. Maciejewska I, Chomik E. Antoni Cieszynski: a pioneering dentist. J Hist Dent. 2012;60(1):18–22.

    Google Scholar 

  12. Callaghan D, Crocker C. The role of bitewing radiographs--a review of current guidelines. J Ir Dent Assoc. 2007;53(2):92–5.

    Google Scholar 

  13. Pitts NB. The use of bitewing radiographs in the management of dental caries: scientific and practical considerations. Dentomaxillofac Radiol. 1996;25(1):5–16.

    Article  Google Scholar 

  14. Hallikainen D. History of panoramic radiography. Acta Radiol. 1996;37(3 Pt 2):441–5.

    Article  Google Scholar 

  15. Paatero YV. Pantomography of spherical layers. Acta Radiol. 1957;48(3):181–7.

    Article  Google Scholar 

  16. Kaffe I, Fishel D, Gorsky M. Panoramic radiography in dentistry. Refuat Hapeh Vehashinayim. 1977;26(2):25–30.. 19-22

    Google Scholar 

  17. Reddy MS, et al. A comparison of the diagnostic advantages of panoramic radiography and computed tomography scanning for placement of root form dental implants. Clin Oral Implants Res. 1994;5(4):229–38.

    Article  MathSciNet  Google Scholar 

  18. Forsyth DB, Shaw WC, Richmond S. Digital imaging of cephalometric radiography, part 1: advantages and limitations of digital imaging. Angle Orthod. 1996;66(1):37–42.

    Google Scholar 

  19. Gilbert DB, et al. Analysis of condylar position changes: a test of validity of posteroanterior cephalometric and 20-degree lateral cephalometric techniques enhanced by digital subtraction. Int J Adult Orthodon Orthognath Surg. 1994;9(4):311–21.

    Google Scholar 

  20. Shokri A, et al. Effect of changing the head position on accuracy of transverse measurements of the maxillofacial region made on cone beam computed tomography and conventional posterior-anterior cephalograms. Dentomaxillofac Radiol. 2017;46(5):20160180.

    Article  Google Scholar 

  21. Lenza MA, et al. Radiographic evaluation of orthodontic treatment by means of four different cephalometric superimposition methods. Dental Press J Orthod. 2015;20(3):29–36.

    Article  Google Scholar 

  22. Konen E, et al. The value of the occipitomental (Waters') view in diagnosis of sinusitis: a comparative study with computed tomography. Clin Radiol. 2000;55(11):856–60.

    Article  Google Scholar 

  23. Williams JW Jr, et al. Diagnosing sinusitis by X-ray: is a single waters view adequate? J Gen Intern Med. 1992;7(5):481–5.

    Article  Google Scholar 

  24. Maglione M, Costantinides F. Localization of basicranium midline by submentovertex projection for the evaluation of condylar asymmetry. Int J Dent. 2012;2012:285693.

    Article  Google Scholar 

  25. Reddy MS, Jeffcoat MK. Digital subtraction radiography. Dent Clin N Am. 1993;37(4):553–65.

    Google Scholar 

  26. Ort MG, Gregg EC, Kaufman B. Subtraction radiography: techniques and limitations. Radiology. 1977;124(1):65–72.

    Article  Google Scholar 

  27. Mehra A, et al. Digital subtraction radiography—a technique revisited. J Indian Acad Oral Med Radiol. 2007;19(4):517–22.

    MathSciNet  Google Scholar 

  28. Gröndahl H-G, Gröndahl K, Webber RL. A digital subtraction technique for dental radiography. Oral Surg Oral Med Oral Pathol Oral Radiol. 1983;55(1):96–102.

    Article  Google Scholar 

  29. Hausmann E, et al. Usefulness of subtraction radiography in the evaluation of periodontal therapy. J Periodontol. 1985;56(11 Suppl):4–7.

    Article  Google Scholar 

  30. van der Stelt PF. Filmless imaging: the uses of digital radiography in dental practice. J Am Dent Assoc. 2005;136(10):1379–87.

    Article  Google Scholar 

  31. Jayachandran S. Digital imaging in dentistry: a review. Contemp Clin Dent. 2017;8(2):193–4.

    Article  Google Scholar 

  32. Anas A, Asaad J, Tarboush K. A comparison of intra-oral digital imaging modalities: charged couple device versus storage phosphor plate. Int J Health Sci (Qassim). 2010;4(2):156–67.

    Google Scholar 

  33. Takeshita WM, et al. Comparison of the diagnostic accuracy of direct digital radiography system, filtered images, and subtraction radiography. Contemp Clin Dent. 2013;4(3):338–42.

    Article  Google Scholar 

  34. Caliskan A, Sumer AP. Definition, classification and retrospective analysis of photostimulable phosphor image artefacts and errors in intraoral dental radiography. Dentomaxillofac Radiol. 2017;46(3):20160188.

    Article  Google Scholar 

  35. Ilic DV, Stojanovic LS. Application of radiovisiography (digital radiology) in dental clinical practice. Vojnosanit Pregl. 2012;69(1):81–4.

    Article  Google Scholar 

  36. Brennan J. An introduction to digital radiography in dentistry. J Orthod. 2002;29(1):66–9.

    Article  MathSciNet  Google Scholar 

  37. Bhattacharyya KB. Godfrey Newbold Hounsfield (1919-2004): the man who revolutionized neuroimaging. Ann Indian Acad Neurol. 2016;19(4):448–50.

    Article  Google Scholar 

  38. Surapaneni H, et al. Role of computed tomography imaging in dental implantology: an overview. J Oral Maxillofac Radiol. 2013;1(2):43–7.

    Article  Google Scholar 

  39. Worthington P, Rubenstein J, Hatcher DC. The role of cone-beam computed tomography in the planning and placement of implants. J Am Dent Assoc. 2010;141(Suppl 3):19S–24S.

    Article  Google Scholar 

  40. Aboudara C, et al. Comparison of airway space with conventional lateral headfilms and 3-dimensional reconstruction from cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2009;135(4):468–79.

    Article  Google Scholar 

  41. Venkatesh E, Elluru SV. Cone beam computed tomography: basics and applications in dentistry. J Istanb Univ Fac Dent. 2017;51(3 Suppl 1):S102–21.

    Google Scholar 

  42. Ghoneima A, Kula K. Accuracy and reliability of cone-beam computed tomography for airway volume analysis. Eur J Orthod. 2013;35(2):256–61.

    Article  Google Scholar 

  43. Gupta J, Ali SP. Cone beam computed tomography in oral implants. Natl J Maxillofac Surg. 2013;4(1):2–6.

    Article  Google Scholar 

  44. Nagarajappa AK, Dwivedi N, Tiwari R. Artifacts: the downturn of CBCT image. J Int Soc Prev Community Dent. 2015;5(6):440–5.

    Article  Google Scholar 

  45. Patcas R, et al. Accuracy of linear intraoral measurements using cone beam CT and multidetector CT: a tale of two CTs. Dentomaxillofac Radiol. 2012;41(8):637–44.

    Article  Google Scholar 

  46. Patrick S, et al. Comparison of gray values of cone-beam computed tomography with hounsfield units of multislice computed tomography: an in vitro study. Indian J Dent Res. 2017;28(1):66–70.

    Article  Google Scholar 

  47. Niraj LK, et al. MRI in dentistry- a future towards radiation free imaging - systematic review. J Clin Diagn Res. 2016;10(10):ZE14–9.

    MathSciNet  Google Scholar 

  48. Schoppe, C., et al., Comparison of computed tomography and high-field (3.0 T) magnetic resonance imaging of age-related variances in selected equine maxillary cheek teeth and adjacent tissues. BMC Veterin Res 2017. 13(1): 280.

    Google Scholar 

  49. Sustercic D, Sersa I. Human tooth pulp anatomy visualization by 3D magnetic resonance microscopy. Radiol Oncol. 2012;46(1):1–7.

    Article  Google Scholar 

  50. Bag AK, et al. Imaging of the temporomandibular joint: an update. World J Radiol. 2014;6(8):567–82.

    Article  Google Scholar 

  51. Larheim TA. Role of magnetic resonance imaging in the clinical diagnosis of the temporomandibular joint. Cells Tissues Organs. 2005;180(1):6–21.

    Article  Google Scholar 

  52. Singh A, et al. Role of MRI in evaluation of malignant lesions of tongue and Oral cavity. Pol J Radiol. 2017;82:92–9.

    Article  Google Scholar 

  53. Law CP, et al. Imaging the oral cavity: key concepts for the radiologist. Br J Radiol. 2011;84(1006):944–57.

    Article  Google Scholar 

  54. Agarwal SS, et al. A radiographic study of external apical root resorption in patients treated with single-phase fixed orthodontic therapy. Med J Armed Forces India. 2016;72(Suppl 1):S8–S16.

    Article  Google Scholar 

  55. Ariji Y, et al. Imaging features contributing to the diagnosis of ameloblastomas and keratocystic odontogenic tumours: logistic regression analysis. Dentomaxillofac Radiol. 2011;40(3):133–40.

    Article  Google Scholar 

  56. Gaudino C, et al. MR-imaging of teeth and periodontal apparatus: an experimental study comparing high-resolution MRI with MDCT and CBCT. Eur Radiol. 2011;21(12):2575–83.

    Article  Google Scholar 

  57. Idiyatullin D, et al. Dental magnetic resonance imaging: making the invisible visible. J Endod. 2011;37(6):745–52.

    Article  Google Scholar 

  58. Newbould RD, et al. T2 relaxation mapping MRI of healthy and inflamed gingival tissue. Dentomaxillofac Radiol. 2017;46(2):20160295.

    Article  Google Scholar 

  59. Nordbeck P, Ertl G, Ritter O. Magnetic resonance imaging safety in pacemaker and implantable cardioverter defibrillator patients: how far have we come? Eur Heart J. 2015;36(24):1505–11.

    Article  Google Scholar 

  60. Baum G, et al. Observation of internal structures of teeth by ultrasonography. Science. 1963;139(3554):495.

    Article  ADS  Google Scholar 

  61. Rockett MS, et al. Use of ultrasonography versus magnetic resonance imaging for tendon abnormalities around the ankle. Foot Ankle Int. 1998;19(9):604–12.

    Article  Google Scholar 

  62. Hayashi T. Application of ultrasonography in dentistry. Jpn Dent Sci Rev. 2012;48(1):5–13.

    Article  Google Scholar 

  63. Bialek EJ, Jakubowski W. Mistakes in ultrasound examination of salivary glands. J Ultrason. 2016;16(65):191–203.

    Article  Google Scholar 

  64. Orlandi MA, Pistorio V, Guerra PA. Ultrasound in sialadenitis. J Ultrasound. 2013;16(1):3–9.

    Article  Google Scholar 

  65. Kim DW. Ultrasound-guided fine-needle aspiration for retrojugular lymph nodes in the neck. World J Surg Oncol. 2013;11:121.

    Article  Google Scholar 

  66. Aribas BK, et al. Fine-needle aspiration biopsy of cervical lymph nodes: factors in predicting malignant diagnosis. Neoplasma. 2011;58(1):51–7.

    Article  Google Scholar 

  67. Culjat MO, et al. Ultrasound detection of submerged dental implants through soft tissue in a porcine model. J Prosthet Dent. 2008;99(3):218–24.

    Article  Google Scholar 

  68. Baur DA, Heston TF, Helman JI. Nuclear medicine in oral and maxillofacial diagnosis: a review for the practicing dental professional. J Contemp Dent Pract. 2004;5(1):94–104.

    Article  Google Scholar 

  69. Gupta SK, et al. Radionuclide bone scan SPECT-CT: lowering the dose of CT significantly reduces radiation dose without impacting CT image quality. Am J Nucl Med Mol Imaging. 2017;7(2):63–73.

    Google Scholar 

  70. Gupta V. Bone scintigraphy in the evaluation of cancer. Kathmandu Univ Med J (KUMJ). 2005;3(3):243–8.

    Google Scholar 

  71. Shintawati R, et al. Evaluation of bone scan index change over time on automated calculation in bone scintigraphy. Ann Nucl Med. 2015;29(10):911–20.

    Article  Google Scholar 

  72. Noordzij W, Glaudemans AWJM. Nuclear medicine imaging techniques. In: Glaudemans AWJM, editor. Nuclear medicine and radiologic imaging in sports injuries. Berlin: Springer; 2015. p. 25–48.

    Chapter  Google Scholar 

  73. Loutfi I, Nair MK, Ebrahim AK. Salivary gland scintigraphy: the use of semiquantitative analysis for uptake and clearance. J Nucl Med Technol. 2003;31(2):81–5.

    Google Scholar 

  74. Purohit BS, et al. FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging. 2014;5(5):585–602.

    Article  Google Scholar 

  75. Basu S, Houseni M, Alavi A. Significance of incidental fluorodeoxyglucose uptake in the parotid glands and its impact on patient management. Nucl Med Commun. 2008;29(4):367–73.

    Article  Google Scholar 

  76. Cho SG, Kim J, Song HC. Radiation safety in nuclear medicine procedures. Nucl Med Mol Imaging. 2017;51(1):11–6.

    Article  Google Scholar 

  77. Agency IAE. A guide to clinical PET in oncology: improving clinical Management of Cancer Patients, IAEA TECDOC series. Vienna: International Atomic Energy Agency; 2008.

    Google Scholar 

  78. Bell AG. Upon the production and reproduction of sound by light. Journal of the Society of Telegraph Engineers. 1880;9(34):404–26.

    Article  Google Scholar 

  79. Xi L, et al. Photoacoustic imaging based on MEMS mirror scanning. Biomed Opt Express. 2010;1(5):1278–83.

    Article  Google Scholar 

  80. Zhang Y, Hong H, Cai W. Photoacoustic imaging. Cold Spring Harb Protoc. 2011;2011:9.

    Article  Google Scholar 

  81. Yao J, Wang LV. Photoacoustic microscopy. Laser Photon Rev. 2013;7:5.

    Article  Google Scholar 

  82. Cheng R, et al. Noninvasive assessment of early dental lesion using a dual-contrast photoacoustic tomography. Sci Rep. 2016;6:21798.

    Article  ADS  Google Scholar 

  83. Liu W, et al. Quad-mode functional and molecular photoacoustic microscopy. Sci Rep. 2018;8(1):11123.

    Article  ADS  Google Scholar 

  84. Yamada A, Kakino S, Matsuura Y. Detection of Photoacoustic signals from blood in dental pulp. Optic Photon. 2016;06:229–36.

    Article  Google Scholar 

  85. Keenan JR, Keenan AV. Accuracy of dental radiographs for caries detection. Evid Based Dent. 2016;17(2):43.

    Article  Google Scholar 

  86. Analoui M, Stookey GK. Direct digital radiography for caries detection and analysis. Monogr Oral Sci. 2000;17:1–19.

    Article  Google Scholar 

  87. Corbet EF, Ho DK, Lai SM. Radiographs in periodontal disease diagnosis and management. Aust Dent J. 2009;54(Suppl 1):S27–43.

    Article  Google Scholar 

  88. Pattnaik N, et al. Interdisciplinary Management of Gingivitis Artefacta Major: a case series. Case Rep Dent. 2015;2015:678504.

    Google Scholar 

  89. Mortazavi H, Baharvand M. Review of common conditions associated with periodontal ligament widening. Imaging Sci Dent. 2016;46(4):229–37.

    Article  Google Scholar 

  90. Satpathy A, et al. Serum interleukin-1β in subjects with abdominal obesity and periodontitis. Obes Res Clin Pract. 2015;9(5):513–21.

    Article  Google Scholar 

  91. Baishya B, et al. Oral hygiene status, oral hygiene practices and periodontal health of brick kiln workers of Odisha. J Indian Soc Periodontol. 2019;23(2):163–7.

    Article  Google Scholar 

  92. Pattnaik S, et al. Clinical and antimicrobial efficacy of a controlled-release device containing chlorhexidine in the treatment of chronic periodontitis. Eur J Clin Microbiol Infect Dis. 2015;34(10):2103–10.

    Article  Google Scholar 

  93. Mohanty G, Mohanty R, Satpathy A. Simultaneous occurrence of pyogenic granuloma at multiple sites associated with bone loss: report of a rare case. J Indian Soc Periodontol. 2018;22(2):174–7.

    Article  Google Scholar 

  94. Cho CM, You HK, Jeong SN. The clinical assessment of aggressive periodontitis patients. J Periodontal Implant Sci. 2011;41(3):143–8.

    Article  Google Scholar 

  95. Heikkinen AM, et al. Periodontal initial radiological findings of genetically predisposed Finnish adolescents. J Clin Diagn Res. 2017;11(7):ZC25–8.

    Google Scholar 

  96. Satpathy A, et al. Effect of alcohol consumption status and alcohol concentration on oral pain induced by alcohol-containing mouthwash. J Oral Sci. 2013;55(2):99–105.

    Article  Google Scholar 

  97. Shamim R, et al. Kidney bean shaped peripheral Giant cell granuloma of gingiva: a case report. Adv Sci Lett. 2016;22(2):311–3.

    Article  Google Scholar 

  98. Sridevi K, et al. Dentigerous cysts of maxillofacial region- clinical, radiographic and biochemical analysis. Kathmandu Univ Med J (KUMJ). 2015;13(49):8–11.

    Article  Google Scholar 

  99. Zhu L, Yang J, Zheng JW. Radiological and clinical features of peripheral keratocystic odontogenic tumor. Int J Clin Exp Med. 2014;7(1):300–6.

    Google Scholar 

  100. Grasmuck EA, Nelson BL. Keratocystic odontogenic tumor. Head Neck Pathol. 2010;4(1):94–6.

    Article  Google Scholar 

  101. de Carvalho LF, et al. Lateral periodontal cyst: a case report and literature review. J Oral Maxillofac Res. 2011;1(4):e5.

    Google Scholar 

  102. Nelson BL, Linfesty RL. Nasopalatine duct cyst. Head Neck Pathol. 2010;4(2):121–2.

    Article  Google Scholar 

  103. Suei Y, et al. Radiographic findings and prognosis of simple bone cysts of the jaws. Dentomaxillofac Radiol. 2010;39(2):65–71.

    Article  Google Scholar 

  104. Seifert G, Donath K. Classification of the pathohistology of diseases of the salivary glands - review of 2,600 cases in the salivary gland register. Beitr Pathol. 1976;159(1):1–32.

    Article  Google Scholar 

  105. Mahapatra A, et al. Role of salivary pH and flow rate in tooth Wear: a Clinico-physicochemical study. Adv Sci Lett. 2016;22(2):494–6.

    Article  Google Scholar 

  106. Rzymska-Grala I, et al. Salivary gland calculi - contemporary methods of imaging. Pol J Radiol. 2010;75(3):25–37.

    Google Scholar 

  107. Abdel Razek AAK. And S. Mukherji, imaging of sialadenitis. Neuroradiol J. 2017;30(3):205–15.

    Article  Google Scholar 

  108. Flores RBJ, et al. Sialodochitis fibrinosa (kussmaul disease) report of 3 cases and literature review. Medicine (Baltimore). 2016;95(42):e5132.

    Article  Google Scholar 

  109. Gadodia A, et al. Bilateral parotid swelling: a radiological review. Dentomaxillofac Radiol. 2011;40(7):403–14.

    Article  Google Scholar 

  110. Lommer D. Evidence of reversibility of 3 beta-hydroxysteroiddehydrogenase-5-4-isomerase reactions in rat adrenal glands. Acta Endocrinol Suppl (Copenh). 1971;152:96.

    Google Scholar 

  111. Tartaglione T, et al. Differential diagnosis of parotid gland tumours: which magnetic resonance findings should be taken in account? Acta Otorhinolaryngol Ital. 2015;35(5):314–20.

    Google Scholar 

  112. Kashiwagi N, et al. MRI findings of mucoepidermoid carcinoma of the parotid gland: correlation with pathological features. Br J Radiol. 2012;85(1014):709–13.

    Article  Google Scholar 

  113. Kakade SP, et al. Oral manifestations of secondary hyperparathyroidism: a case report. Contemp Clin Dent. 2015;6(4):552–8.

    Article  Google Scholar 

  114. Khalekar Y, et al. Hyperparathyroidism in dentistry: issues and challenges!! Indian J Endocrinol Metab. 2016;20(4):581–2.

    Article  Google Scholar 

  115. John DR, Suthar PP. Radiological features of long-standing Hypoparathyroidism. Pol J Radiol. 2016;81:42–5.

    Article  Google Scholar 

  116. Srirangarajan S, et al. Dental manifestation of primary idiopathic hypoparathyroidism. J Indian Soc Periodontol. 2014;18(4):524–6.

    Article  Google Scholar 

  117. Atreja G, et al. Oral manifestations in growth hormone disorders. Indian J Endocrinol Metab. 2012;16(3):381–3.

    Article  Google Scholar 

  118. Sarnat H, et al. Comparison of dental findings in patients with isolated growth hormone deficiency treated with human growth hormone (hGH) and in untreated patients with Laron-type dwarfism. Oral Surg Oral Med Oral Pathol. 1988;66(5):581–6.

    Article  Google Scholar 

  119. Kosowicz J, Rzymski K. Abnormalities of tooth development in pituitary dwarfism. Oral Surg Oral Med Oral Pathol. 1977;44(6):853–63.

    Article  Google Scholar 

  120. Gupta R, et al. Oral manifestations of hypothyroidism: a case report. J Clin Diagn Res. 2014;8(5):ZD20–2.

    Google Scholar 

  121. Chandna S, Bathla M. Oral manifestations of thyroid disorders and its management. Indian J Endocrinol Metab. 2011;15(Suppl 2):S113–6.

    Article  Google Scholar 

  122. Poumpros E, Loberg E, Engstrom C. Thyroid function and root resorption. Angle Orthod. 1994;64(5):389–93.. discussion 394

    Google Scholar 

  123. Sahdev A, et al. Imaging in Cushing's syndrome. Arq Bras Endocrinol Metabol. 2007;51(8):1319–28.

    Article  Google Scholar 

  124. Dervis E. Oral implications of osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100(3):349–56.

    Article  Google Scholar 

  125. Cakur B, et al. Dental panoramic radiography in the diagnosis of osteoporosis. J Int Med Res. 2008;36(4):792–9.

    Article  Google Scholar 

  126. Ngangom A, Jain M, Verma S. Need of early dental intervention in vitamin D deficiency rickets. Indian J Dent Sci. 2018;10(4):229–32.

    Article  Google Scholar 

  127. Souza AP, et al. Dental manifestations of patient with vitamin D-resistant rickets. J Appl Oral Sci. 2013;21(6):601–6.

    Article  Google Scholar 

  128. Chang CY, et al. Imaging findings of metabolic bone disease. Radiographics. 2016;36(6):1871–87.

    Article  Google Scholar 

  129. Bloch-Zupan A, Vaysse F. Hypophosphatasia: oral cavity and dental disorders. Arch Pediatr. 2017;24(5S2):5S80–4.

    Article  Google Scholar 

  130. Schmidt T, et al. Clinical, radiographic and biochemical characteristics of adult hypophosphatasia. Osteoporos Int. 2017;28(9):2653–62.

    Article  Google Scholar 

  131. Chang JI, Som PM, Lawson W. Unique imaging findings in the facial bones of renal Osteodystrophy. Am J Neuroradiol. 2007;28(4):608.

    Google Scholar 

  132. Ganibegovic M. Dental radiographic changes in chronic renal disease. Med Arh. 2000;54(2):115–8.

    Google Scholar 

  133. Rabbani A, et al. Dental problems in hypophosphatemic rickets, a cross sectional study. Iran J Pediatr. 2012;22(4):531–4.

    Google Scholar 

  134. Souza MA, et al. Dental abnormalities and oral health in patients with Hypophosphatemic rickets. Clinics (Sao Paulo). 2010;65(10):1023–6.

    Article  Google Scholar 

  135. Sharma SS, et al. Osteopetrosis of the mandible masquerading as tubercular osteomyelitis. BMJ Case Rep. 2013;2013

    Google Scholar 

  136. Celakil T, et al. Oral rehabilitation of an Osteopetrosis patient with osteomyelitis. Case Rep Dent. 2016;2016:6930567.

    Google Scholar 

  137. Root AW, Martinez CR. Magnetic resonance imaging in patients with hypopituitarism. Trends Endocrinol Metab. 1992;3(8):283–7.

    Article  Google Scholar 

  138. White SC. Oral radiographic predictors of osteoporosis. Dentomaxillofac Radiol. 2002;31(2):84–92.

    Article  Google Scholar 

  139. Jayachandran S, Kumar MS. A paradoxical presentation of rickets and secondary osteomyelitis of the jaw in type II autosomal dominant osteopetrosis: rare case reports. Indian J Dent Res. 2016;27(6):667–71.

    Article  Google Scholar 

  140. Millan JL, Plotkin H. Hypophosphatasia - pathophysiology and treatment. Actual osteol. 2012;8(3):164–82.

    Google Scholar 

  141. Parthiban J, Aarthi Nisha V, Asokan GS, Prakash CA, Varadharaja MM. Oral manifestations in a renal osteodystrophy patient - a case report with review of literature. J Clin Diagn Res. 2014;8(8):ZD28–30.

    Google Scholar 

  142. Tohidi E, Bagherpour A. Clinicoradiological findings of benign osteopetrosis: report of two new cases. J Dent Res Dent Clin Dent Prospects. 2012;6(4):152–7.

    Google Scholar 

  143. Helmi N, et al. Thalassemia review: features, dental considerations and management. Electron Physician. 2017;9(3):4003–8.

    Article  Google Scholar 

  144. Porwal A, Satpathy A. Graphic imaging tools for precise identification of shift of neutral zone in edentulous mandibular arch. Adv Sci Lett. 2016;22(2):378–80.

    Article  Google Scholar 

  145. Masood F, et al. Findings from panoramic radiographs of the edentulous population and review of the literature. Quintessence Int. 2007;38(6):e298–305.

    Google Scholar 

  146. Gupta S, et al. Oral implant imaging: a review. Malays J Med Sci. 2015;22(3):7–17.

    MathSciNet  Google Scholar 

  147. Shelley AM, et al. The impact of CBCT imaging when placing dental implants in the anterior edentulous mandible: a before-after study. Dentomaxillofac Radiol. 2015;44(4):20140316.

    Article  Google Scholar 

  148. Naeem A, Gemal H, Reed D. Imaging in traumatic mandibular fractures. Quant Imaging Med Surg. 2017;7(4):469–79.

    Article  Google Scholar 

  149. Gupta M. Intrusive luxation in primary teeth - review of literature and report of a case. Saudi Dent J. 2011;23(4):167–76.

    Article  Google Scholar 

  150. Tezel H, Atalayin C, Kayrak G. Replantation after traumatic avulsion. Eur J Dent. 2013;7(2):229–32.

    Article  Google Scholar 

  151. Wang P, et al. Detection of dental root fractures by using cone-beam computed tomography. Dentomaxillofac Radiol. 2011;40(5):290–8.

    Article  Google Scholar 

  152. Khasnis SA, et al. Vertical root fractures and their management. J Conserv Dent. 2014;17(2):103–10.

    Article  Google Scholar 

Download references

Acknowledgements

SP is thankful to the MHRD or the financial support she received for the study. We wish to thank Dr. Diplina Barman, Dr. Vishakh Kumar Jha, Dr. Punit Bhargav, Dr. Tusar Kanti Nayak, Dr. Shayari Niyogi, and Dr. Pinali Das for contributing some of the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satpathy, A., Ranjan, R., Priyadarsini, S., Gupta, S., Mathur, P., Mishra, M. (2019). Diagnostic Imaging Techniques in Oral Diseases. In: Shukla, A. (eds) Medical Imaging Methods. Springer, Singapore. https://doi.org/10.1007/978-981-13-9121-7_3

Download citation

Publish with us

Policies and ethics