Skip to main content

Secreted Microbial Enzymes for Organic Compound Degradation

  • Chapter
  • First Online:
Microbes and Enzymes in Soil Health and Bioremediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 16))

Abstract

Microbes in the belowground environment draw nutrition from the complex organic biomass found in the soil. Their primary means of interaction with the molecular components of their environment is via extracellular enzymes that deconstruct high molecular weight organic compounds in the soil. These include the natural carbohydrates and polyaromatic compounds of decaying plant and microbial biomass, predominantly cellulose, lignin, and chitin. Also important are several classes of organic xenobiotics of anthropogenic origin, such as polyaromatic hydrocarbons, polychlorinated biphenyls, and diverse synthetic fertilisers and pesticides. Many biotechnological processes have now been established that exploit this natural toolbox of biomass-degrading enzymes for the industrial production of biofuels or biomaterials. However, our understanding of the natural role these enzyme systems play within the soil remains limited. It is well accepted, for example, that an active microbiota is vital for productive agriculture, but the impacts of soil management regimes on the microbiota remain opaque. In this chapter, we review current knowledge on microbial enzyme secretion and activity in the soil and explore current research into the regulation of enzyme production. We summarise the range of enzyme activities found in the soil environment and their contribution to the recycling and degradation of organic compounds, a vital elemental turnover that may be impacted by a warming climate. The methods employed by microbes to maintain an effective level of enzyme activity in the extracellular environment are described. Finally, we discuss the ways in which we might make use of microbial enzymes to improve the sustainability of agriculture and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger JW, Isaksen T, Varnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A 111(17):6287–6292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8(6):626–635

    Article  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105(Suppl 1):11512

    Article  CAS  Google Scholar 

  • Anbu P, Gopinath SCB, Chaulagain BP, Lakshmipriya T (2017) Microbial enzymes and their applications in industries and medicine 2016. Biomed Res Int 2017:2195808–2195808

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnling Bååth J, Mazurkewich S, Knudsen RM, Poulsen JN, Olsson L, Lo Leggio L, Larsbrink J (2018) Biochemical and structural features of diverse bacterial glucuronoyl esterases facilitating recalcitrant biomass conversion. Biotechnol Biofuels 11:213

    Google Scholar 

  • Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29(4):719–739

    Article  CAS  PubMed  Google Scholar 

  • Barret M, Carrere H, Delgadillo L, Patureau D (2010) PAH fate during the anaerobic digestion of contaminated sludge: do bioavailability and/or cometabolism limit their biodegradation? Water Res 44(13):3797–3806

    Article  CAS  PubMed  Google Scholar 

  • Bedoya K, Coltell-Simon O, Cabarcas F, Alzate JF (2019) Metagenomic assessment of the microbial community and methanogenic pathways in biosolids from a municipal wastewater treatment plant in Medellin, Colombia. Sci Total Environ 648:572–581

    Article  CAS  PubMed  Google Scholar 

  • Bell CW, Acosta-Martinez V, McIntyre NE, Cox S, Tissue DT, Zak JC (2009) Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microb Ecol 58(4):827–842

    Article  CAS  PubMed  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    CAS  PubMed  Google Scholar 

  • Berini F, Presti I, Beltrametti F, Pedroli M, Varum KM, Pollegioni L, Sjoling S, Marinelli F (2017) Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microb Cell Factories 16(1):16

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15(1):106

    Article  CAS  Google Scholar 

  • Bissaro B, Varnai A, Røhr ÅK, Eijsink VGH (2018) Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass. Microbiol Mol Biol Rev 82(4)

    Google Scholar 

  • Blanco-Canqui H, Lal R (2009) Crop residue removal impacts on soil productivity and environmental quality. Crit Rev Plant Sci 28(3):139–163

    Article  CAS  Google Scholar 

  • Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, Vasse J, Lauber E, Arlat M (2007) Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2(2):e224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borrion AL, McManus MC, Hammond GP (2012) Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renew Sust Energ Rev 16(7):4638–4650

    Article  CAS  Google Scholar 

  • Brabcova V, Novakova M, Davidova A, Baldrian P (2016) Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 210(4):1369–1381

    Article  CAS  PubMed  Google Scholar 

  • Brockmeier U, Caspers M, Freudl R, Jockwer A, Noll T, Eggert T (2006) Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J Mol Biol 362(3):393–402

    Article  CAS  PubMed  Google Scholar 

  • Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling B, Kleijn RJ, Le Chat L, Lecointe F, Mader U, Nicolas P, Piersma S, Rugheimer F, Becher D, Bessieres P, Bidnenko E, Denham EL, Dervyn E, Devine KM, Doherty G, Drulhe S, Felicori L, Fogg MJ, Goelzer A, Hansen A, Harwood CR, Hecker M, Hubner S, Hultschig C, Jarmer H, Klipp E, Leduc A, Lewis P, Molina F, Noirot P, Peres S, Pigeonneau N, Pohl S, Rasmussen S, Rinn B, Schaffer M, Schnidder J, Schwikowski B, Van Dijl JM, Veiga P, Walsh S, Wilkinson AJ, Stelling J, Aymerich S, Sauer U (2012) Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 335(6072):1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Burns RG (2013) Microbial extracellular enzymes and the degradation of natural and synthetic polymers in soil. In: Xu J, Sparks DL (eds) Molecular environmental soil science. Springer, Dordrecht

    Google Scholar 

  • Cachada A, Pereira R, da Silva EF, Duarte AC (2014) The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. Sci Total Environ 472:463–480

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AKF, Bento HBS, Reis CER, De Castro HF (2019) Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source. Bioresour Technol 276:269–275

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AL, Dias FM, Prates JA, Nagy T, Gilbert HJ, Davies GJ, Ferreira LM, Romao MJ, Fontes CM (2003) Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proc Natl Acad Sci U S A 100(24):13809–13814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL, Liu LJ, Shi M, Song XY, Zheng CY, Chen XL, Zhang YZ (2009) Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol Lett 299(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14(4):438–443

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Punt PJ, van Luijk N, van den Hondel CA (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33(3):155–171

    Article  CAS  PubMed  Google Scholar 

  • Cretoiu MS, Kielak AM, Schluter A, van Elsas JD (2014) Bacterial communities in chitin-amended soil as revealed by 16S rRNA gene based pyrosequencing. Soil Biol Biochem 76:5–11

    Article  CAS  Google Scholar 

  • Cretoiu MS, Korthals GW, Visser JHM, van Elsas JD (2013) Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the Actinobacterial and Oxalobacteraceal communities in an experimental agricultural field. Appl Environ Microbiol 79(17):5291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui W, Han L, Suo F, Liu Z, Zhou L, Zhou Z (2018) Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 34(10):145

    Article  PubMed  CAS  Google Scholar 

  • Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A, Rogowski A, Hamilton BS, Chen R, Tolbert TJ, Piens K, Bracke D, Vervecken W, Hakki Z, Speciale G, Munoz-Munoz JL, Day A, Pena MJ, McLean R, Suits MD, Boraston AB, Atherly T, Ziemer CJ, Williams SJ, Davies GJ, Abbott DW, Martens EC, Gilbert HJ (2015) Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517(7533):165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das H, Singh SK (2004) Useful byproducts from cellulosic wastes of agriculture and food industry--a critical appraisal. Crit Rev Food Sci Nutr 44(2):77–89

    Article  PubMed  Google Scholar 

  • Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22

    Article  Google Scholar 

  • de Paula RG, Antoniêto ACC, Ribeiro LFC, Carraro CB, Nogueira KMV, Lopes DCB, Silva AC, Zerbini MT, Pedersoli WR, Costa MdN, Silva RN (2018) New genomic approaches to enhance biomass degradation by the industrial fungus Trichoderma reesei. Int J Genomics 2018:1974151–1974151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De-la-Peña C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283(37):25247–25255

    Article  PubMed  CAS  Google Scholar 

  • D’Elia JN, Salyers AA (1996) Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch. J Bacteriol 178(24):7173–7179

    Article  PubMed  PubMed Central  Google Scholar 

  • Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M, Leblond P, Dorrestein PC, Aigle B (2016) Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiol Ecol 92(8)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong X, Dong M, Lu Y, Turley A, Jin T, Wu C (2011) Antimicrobial and antioxidant activities of lignin from residue of corn Stover to ethanol production. Ind Crop Prod 34(3):1629–1634

    Article  CAS  Google Scholar 

  • Dos Santos Castro L, Pedersoli WR, Antonieto ACC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, Rossi A, Brown NA, Goldman GH, Faca VM, Persinoti GF, Silva RN (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  • Dries J, Smets BF (2002) Transformation and mineralization of benzo[a]pyrene by microbial cultures enriched on mixtures of three- and four-ring polycyclic aromatic hydrocarbons. J Ind Microbiol Biotechnol 28(2):70–73

    Article  CAS  PubMed  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18(6):1781–1796

    Article  Google Scholar 

  • Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16(6):269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eibinger M, Ganner T, Bubner P, Rošker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erakhrumen AA (2014) Growing pertinence of bioenergy in formal/informal global energy schemes: necessity for optimising awareness strategies and increased investments in renewable energy technologies. Renew Sust Energ Rev 31:305–311

    Article  Google Scholar 

  • Fahd S, Fiorentino G, Mellino S, Ulgiati S (2012) Cropping bioenergy and biomaterials in marginal land: the added value of the biorefinery concept. Energy 37(1):79–93

    Google Scholar 

  • Folse HJ 3rd, Allison SD (2012) Cooperation, competition, and coalitions in enzyme-producing microbes: social evolution and nutrient depolymerization rates. Front Microbiol 3:338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisvad JC, Moller LLH, Larsen TO, Kumar R, Arnau J (2018) Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 102(22):9481–9515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frobel J, Rose P, Lausberg F, Blummel AS, Freudl R, Muller M (2012) Transmembrane insertion of twin-arginine signal peptides is driven by TatC and regulated by TatB. Nat Commun 3:1311

    Article  PubMed  CAS  Google Scholar 

  • Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mader P, Stolze M, Smith P, Scialabba Nel H, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci U S A 109(44):18226–18231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gell K, van Groenigen J, Cayuela ML (2011) Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. J Hazard Mater 186(2):2017–2025

    Article  CAS  PubMed  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Giacomello S, Salmen F, Terebieniec BK, Vickovic S, Navarro JF, Alexeyenko A, Reimegård J, McKee LS, Mannapperuma C, Bulone V, Stahl PL, Sundstrom JF, Street NR, Lundeberg J (2017) Spatially resolved transcriptome profiling in model plant species. Nat Plants 3:17061

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63(6):1568–1576

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153(2):444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert HJ, Knox JP, Boraston AB (2013) Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol 23(5):669–677

    Article  CAS  PubMed  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94(12):2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govaerts B, Mezzalama M, Sayre KD, Crossa J, Lichter K, Troch V, Vanherck K, De Corte P, Deckers J (2008) Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Appl Soil Ecol 38(3):197–210

    Article  Google Scholar 

  • Graham MH, Haynes RJ, Meyer JH (2002) Soil organic matter content and quality: effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biol Biochem 34(1):93–102

    Article  CAS  Google Scholar 

  • Grondin JM, Tamura K, Dejean G, Abbott DW, Brumer H (2017) Polysaccharide utilization loci: fueling microbial communities. J Bacteriol 199(15)

    Google Scholar 

  • Gunl M, Kraemer F, Pauly M (2011) Oligosaccharide mass profiling (OLIMP) of cell wall polysaccharides by MALDI-TOF/MS. Methods Mol Biol 715:43–54

    Article  CAS  PubMed  Google Scholar 

  • Hadibarata T, Zubir MM, Rubiyatno, Chuang TZ (2013) Microbial transformation and sorption of anthracene in liquid culture. Bioprocess Biosyst Eng 36(9):1229–1233

    Article  CAS  PubMed  Google Scholar 

  • Hakkinen M, Arvas M, Oja M, Aro N, Penttila M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Factories 11:134

    Article  CAS  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mader P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9(5):1177–1194

    Article  PubMed  Google Scholar 

  • Hemsworth GR, Dejean G, Davies GJ, Brumer H (2016) Learning from microbial strategies for polysaccharide degradation. Biochem Soc Trans 44(1):94–108

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Driguez H, Viet C, Schülein M (1985) Synergism of Cellulases from Trichoderma reesei in the degradation of cellulose. Bio/Technology 3:722

    Article  CAS  Google Scholar 

  • Herve C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 107(34):15293–15298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Tian D, Renneckar S, Saddler JN (2018) Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase. Sci Rep 8(1):3195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • James K, Peters RE, Laird BD, Ma WK, Wickstrom M, Stephenson GL, Siciliano SD (2011) Human exposure assessment: a case study of 8 PAH contaminated soils using in vitro Digestors and the juvenile swine model. Environ Sci Technol 45(10):4586–4593

    Article  CAS  PubMed  Google Scholar 

  • Jensen MS, Fredriksen L, MacKenzie AK, Pope PB, Leiros I, Chylenski P, Williamson AK, Christopeit P, Østby H, Vaaje-Kolstad G, Eijsink VGH (2018) Discovery and characterization of a thermostable two-domain GH6 endoglucanase from a compost metagenome. PLoS One 13(5):e0197862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnsen AR, de Lipthay JR, Sorensen SJ, Ekelund F, Christensen P, Andersen O, Karlson U, Jacobsen CS (2006) Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil. Environ Microbiol 8(3):535–545

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Karlson U (2007) Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation. Appl Microbiol Biotechnol 76(3):533–543

    Article  CAS  PubMed  Google Scholar 

  • Kamimura N, Sakamoto S, Mitsuda N, Masai E, Kajita S (2018) Advances in microbial lignin degradation and its applications. Curr Opin Biotechnol 56:179–186

    Article  PubMed  CAS  Google Scholar 

  • Katz M, Hover BM, Brady SF (2016) Culture-independent discovery of natural products from soil metagenomes. J Ind Microbiol Biotechnol 43(2–3):129–141

    Article  CAS  PubMed  Google Scholar 

  • Kolton M, Frenkel O, Elad Y, Cytryn E (2014) Potential role of Flavobacterial gliding-motility and type IX secretion system complex in root colonization and plant defense. Mol Plant-Microbe Interact 27(9):1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Kouwen TR, Dubois JY, Freudl R, Quax WJ, van Dijl JM (2008) Modulation of thiol-disulfide oxidoreductases for increased production of disulfide-bond-containing proteins in Bacillus subtilis. Appl Environ Microbiol 74(24):7536–7545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kredics L, Antal Z, Szekeres A, Hatvani L, Manczinger L, Vagvolgyi C, Nagy E (2005) Extracellular proteases of Trichoderma species. A review. Acta Microbiol Immunol Hung 52(2):169–184

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. Plant Pathol 83:11–23

    CAS  Google Scholar 

  • Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2009) Soil quality impacts of residue removal for bioethanol production. Soil Till Res 102(2):233–241

    Article  Google Scholar 

  • Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN, Davies GJ, Martens EC, Brumer H (2014a) A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506(7489):498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsbrink J, Thompson AJ, Lundqvist M, Gardner JG, Davies GJ, Brumer H (2014b) A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus. Mol Microbiol 94(2):418–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsbrink J, Tuveng TR, Pope PB, Bulone V, Eijsink VG, Brumer H, McKee LS (2017) Proteomic insights into mannan degradation and protein secretion by the forest floor bacterium Chitinophaga pinensis. J Proteome 156:63–74

    Article  CAS  Google Scholar 

  • Larsbrink J, Zhu Y, Kharade SS, Kwiatkowski KJ, Eijsink VG, Koropatkin NM, McBride MJ, Pope PB (2016) A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnol Biofuels 9:260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lemke RL, VandenBygaart AJ, Campbell CA, Lafond GP, Grant B (2010) Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agric Ecosyst Environ 135(1):42–51

    Article  CAS  Google Scholar 

  • Li C, Lin F, Zhou L, Qin L, Li B, Zhou Z, Jin M, Chen Z (2017) Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose. Biotechnol Biofuels 10(1):228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Lin X, Zhang J, Wu Y, Yin R, Feng Y, Wang Y (2010) Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Curr Microbiol 60(5):336–342

    Article  CAS  PubMed  Google Scholar 

  • Liang TW, Liu CP, Wu C, Wang SL (2013) Applied development of crude enzyme from Bacillus cereus in prebiotics and microbial community changes in soil. Carbohydr Polym 92(2):2141–2148

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu L, Li J, Du G, Chen J (2019) Synthetic biology toolbox and chassis development in Bacillus subtilis. Trends Biotechnol 37:548–562

    Article  CAS  PubMed  Google Scholar 

  • Lopes AM, Ferreira Filho EX, Moreira LRS (2018) An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol 125(3):632–645

    Article  CAS  PubMed  Google Scholar 

  • Marciniak BC, Trip H, van der Veek PJ, Kuipers OP (2012) Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins. Microb Cell Factories 11:66

    Article  CAS  Google Scholar 

  • Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 284(37):24673–24677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Abad A, Berglund J, Toriz G, Gatenholm P, Henriksson G, Lindstrom M, Wohlert J, Vilaplana F (2017) Regular motifs in Xylan modulate molecular flexibility and interactions with cellulose surfaces. Plant Physiol 175(4):1579–1592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Abad A, Ruthes AC, Vilaplana F (2015) Enzymatic-assisted extraction and modification of lignocellulosic plant polysaccharides for packaging applications. J Appl Polym Sci 133(2)

    Google Scholar 

  • McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, Goltsman E, Wang W, Xu J, Hunnicutt DW, Staroscik AM, Hoover TR, Cheng YQ, Stein JL (2009) Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl Environ Microbiol 75(21):6864–6875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP (2004) Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal Biochem 326(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • McKee LS, Martinez-Abad A, Ruthes AC, Vilaplana F, Brumer H (2019) Focussed metabolism of beta-glucans by the soil Bacteroidetes Chitinophaga pinensis. Appl Environ Microbiol 85(2):pii: e02231-18

    Article  Google Scholar 

  • McKee LS, Sunner H, Anasontzis GE, Toriz G, Gatenholm P, Bulone V, Vilaplana F, Olsson L (2016) A GH115 alpha-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. Biotechnol Biofuels 9:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng F, Wei D, Wang W (2013) Heterologous protein expression in Trichoderma reesei using the cbhII promoter. Plasmid 70(2):272–276

    Article  CAS  PubMed  Google Scholar 

  • Meulenberg R, Rijnaarts HH, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152(1):45–49

    Article  CAS  PubMed  Google Scholar 

  • Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN (2013) Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Front Microbiol 4:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndeh D, Gilbert HJ (2018) Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol Rev 42(2):146–164

    Article  CAS  PubMed  Google Scholar 

  • Nelson CE, Attia MA, Rogowski A, Morland C, Brumer H, Gardner JG (2017) Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification. Environ Microbiol 19(12):5025–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MS, Sadowsky MJ (2015) Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci 6(491)

    Google Scholar 

  • Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi- are we expecting too much? Front Microbiol 5:75–75

    PubMed  PubMed Central  Google Scholar 

  • Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Hartig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rugheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stulke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Volker U, Bessieres P, Noirot P (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335(6072):1103–1106

    Article  CAS  PubMed  Google Scholar 

  • Nitsos C, Lazaridis P, Mach-Aigner A, Matis K, Triantafyllidis K (2019) Increasing the efficiency of lignocellulosic biomass enzymatic hydrolysis: hydrothermal pretreatment, extraction of surface lignin, wet milling and production of cellulolytic enzymes. ChemSusChem 12:1179

    Article  CAS  PubMed  Google Scholar 

  • Okere UV, Schuster JK, Ogbonnaya UO, Jones KC, Semple KT (2017) Indigenous (14)C-phenanthrene biodegradation in “pristine” woodland and grassland soils from Norway and the United Kingdom. Environ Sci Process Impacts 19(11):1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Ortseifen V, Stolze Y, Maus I, Sczyrba A, Bremges A, Albaum SP, Jaenicke S, Fracowiak J, Puhler A, Schluter A (2016) An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant. J Biotechnol 231:268–279

    Article  CAS  PubMed  Google Scholar 

  • Otto A, Bernhardt J, Meyer H, Schaffer M, Herbst F-A, Siebourg J, Mäder U, Lalk M, Hecker M, Becher D (2010) Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat Commun 1:137

    Article  PubMed  CAS  Google Scholar 

  • Patil RS, Ghormade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzyme Microb Technol 26(7):473–483

    Article  CAS  PubMed  Google Scholar 

  • Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282(7):1190–1213

    Article  CAS  PubMed  Google Scholar 

  • Qasemian L, Guiral D, Ziarelli F, Ruaudel F, Farnet AM (2012) Does anthracene affect microbial activities and organic matter decomposition? A comparative study in Pinus halepensis litters from Mediterranean coastal and inland areas. Chemosphere 89(5):548–555

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jorgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108(37):15079–15084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rantasalo A, Landowski CP, Kuivanen J, Korppoo A, Reuter L, Koivistoinen O, Valkonen M, Penttila M, Jantti J, Mojzita D (2018) A universal gene expression system for fungi. Nucleic Acids Res 46(18):e111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotech 56(1):16–30

    Article  CAS  Google Scholar 

  • Reeves AR, Wang GR, Salyers AA (1997) Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179(3):643–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reijnders L (2013) Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review. Environ Technol 34(13–14):1725–1734

    Article  CAS  PubMed  Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7(1):89–123

    Article  CAS  Google Scholar 

  • Rinkes ZL, Weintraub MN, DeForest JL, Moorhead DL (2011) Microbial substrate preference and community dynamics during decomposition of Acer saccharum. Fungal Ecol 4(6):396–407

    Article  Google Scholar 

  • Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotech 56(2):174–187

    Article  CAS  Google Scholar 

  • Rogers SW, Ong SK, Kjartanson BH, Golchin J, Stenback GA (2002) Natural attenuation of polycyclic aromatic hydrocarbon-contaminated sites. Pract Period Hazard Toxic Radioact Waste Manage 6(3):141–155

    Article  CAS  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Sawulski P, Clipson N, Doyle E (2014) Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil. Biodegradation 25(6):835–847

    Article  CAS  PubMed  Google Scholar 

  • Schimel J, Schaeffer S (2012) Microbial control over carbon cycling in soil. Front Microbiol 3(348)

    Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma PK, Gothalwal R (2017) Trichoderma: a potent fungus as biological control agent. In: Singh JS, Seneviratne G (eds) Agro-environmental sustainability: volume 1: managing crop health. Springer, Cham, pp 113–125

    Chapter  Google Scholar 

  • Shipman JA, Berleman JE, Salyers AA (2000) Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J Bacteriol 182(19):5365–5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvia Cretoiu M, Korthals GW, Visser JHM, van Elsas JD (2013) Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the Actinobacterial and Oxalobacteraceal communities in an experimental agricultural field. Appl Environ Microbiol 79(17):5291–5301

    Article  CAS  Google Scholar 

  • Smil V (2000) PHOSPHORUS IN THE ENVIRONMENT: natural flows and human interferences. Annu Rev Energ Environ 25(1):53–88

    Article  Google Scholar 

  • Smith P (2012) Soils and climate change. Curr Opin Env Sust 4(5):539–544

    Article  Google Scholar 

  • Srivastava V, McKee LS, Bulone V (2017) Plant cell walls, eLS: essentials for life science. Chichester, Wiley

    Google Scholar 

  • Strakowska J, Blaszczyk L, Chelkowski J (2014) The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J Basic Microbiol 54(Suppl 1):S2–S13

    Article  CAS  PubMed  Google Scholar 

  • Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38:190–197

    Article  CAS  PubMed  Google Scholar 

  • Taillefer M, Arntzen MØ, Henrissat B, Pope PB, Larsbrink J (2018) Proteomic dissection of the cellulolytic machineries used by soil-dwelling bacteroidetes. mSystems 3(6)

    Google Scholar 

  • Tandrup T, Frandsen KEH, Johansen KS, Berrin JG, Lo Leggio L (2018) Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochem Soc Trans 46(6):1431–1447

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671

    Article  CAS  PubMed  Google Scholar 

  • Toymentseva AA, Schrecke K, Sharipova MR, Mascher T (2012) The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter. Microb Cell Factories 11(1):143

    Article  CAS  Google Scholar 

  • Traving SJ, Thygesen UH, Riemann L, Stedmon CA (2015) A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl Environ Microbiol 81(21):7385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijl J, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Factories 12(1):3

    Article  CAS  Google Scholar 

  • Verhertbruggen Y, Marcus SE, Haeger A, Verhoef R, Schols HA, McCleary BV, McKee L, Gilbert HJ, Knox JP (2009) Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. Plant J 59(3):413–425

    Article  CAS  PubMed  Google Scholar 

  • von Blottnitz H, Curran MA (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J Clean Prod 15(7):607–619

    Article  Google Scholar 

  • von Freiesleben P, Spodsberg N, Stenbaek A, Stalbrand H, Krogh K, Meyer AS (2018) Boosting of enzymatic softwood saccharification by fungal GH5 and GH26 endomannanases. Biotechnol Biofuels 11:194

    Article  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32(13):1837–1846

    Article  CAS  Google Scholar 

  • Wallenstein MD, Burns RG (2011) Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community-driven process. In: Dick RP (ed) Methods of soil enzymology. Soil Science Society of Americ, Inc., Madison

    Google Scholar 

  • Wang W, Zhong Z, Wang Q, Wang H, Fu Y, He X (2017) Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles. Sci Rep 7(1):13003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang X, Yao B, Su X (2018) Linking enzymatic oxidative degradation of lignin to organics detoxification. Int J Mol Sci 19(11)

    Article  PubMed Central  CAS  Google Scholar 

  • Westereng B, Cannella D, Wittrup Agger J, Jorgensen H, Larsen Andersen M, Eijsink VG, Felby C (2015) Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci Rep 5:18561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westereng B, Loose JSM, Vaaje-Kolstad G, Aachmann FL, Sorlie M, Eijsink VGH (2018) Analytical tools for characterizing cellulose-active lytic polysaccharide monooxygenases (LPMOs). Methods Mol Biol 1796:219–246

    Article  CAS  PubMed  Google Scholar 

  • Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Wang L, Fu PP, Yu H (2009) Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat Res 557(1):99–108

    Article  CAS  Google Scholar 

  • Ye J, Yin H, Peng H, Bai J, Li Y (2014) Pyrene removal and transformation by joint application of alfalfa and exogenous microorganisms and their influence on soil microbial community. Ecotoxicol Environ Saf 110:129–135

    Article  CAS  PubMed  Google Scholar 

  • You Y, Wang J, Huang X, Tang Z, Liu S, Sun OJ (2014) Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecol Evol 4(5):633–647

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YHP (2011) What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem 46(11):2091–2110

    Article  CAS  Google Scholar 

  • Zhou H, Gu W, Sun W, Hay AG (2018) A microbial community snapshot of windrows from a commercial composting facility. Appl Microbiol Biotechnol 102(18):8069–8077

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, McBride MJ (2014) Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Appl Microbiol Biotechnol 98(2):763–775

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, McBride MJ (2017) The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii. Appl Microbiol Biotechnol 101(19):7113–7127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter can be considered as a successor to Richard G. Burns’s earlier contribution to the Springer book Molecular Environmental Soil Science. Richard’s chapter, entitled Microbial Extracellular Enzymes and the Degradation of Natural and Synthetic Polymers in Soil (Burns 2013), is an excellent summary of the field. We are also grateful to Dr. Vaibhav Srivastava of KTH Glycoscience for providing helpful feedback on our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Sara McKee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McKee, L.S., Inman, A.R. (2019). Secreted Microbial Enzymes for Organic Compound Degradation. In: Kumar, A., Sharma, S. (eds) Microbes and Enzymes in Soil Health and Bioremediation. Microorganisms for Sustainability, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-9117-0_10

Download citation

Publish with us

Policies and ethics