Skip to main content

Simultaneous EEG-fMRI

  • Chapter
  • First Online:
EEG Signal Processing and Feature Extraction
  • 4917 Accesses

Abstract

Simultaneous EEG-fMRI combines the advantages of high temporal resolution of EEG with high spatial resolution of fMRI. In addition, it is a noninvasive technique for the study of human brain function. However, it remains many challenges such as the low signal-to-noise ratio, poor individual comfort, and difficulty in data analysis. In this chapter, we first introduce the hardware of simultaneous EEG-fMRI system. Then a review about the advance of this technique is given, including the EEG artifacts correction, the EEG-fMRI data fusion method, and the application of EEG-fMRI. Specifically, we provide a systematic classification for the fMRI-constrained EEG and the EEG-informed fMRI from simple to complex level. Then we provide program practice for the EEG artifacts correction, which may contribute to the widespread application of this new technique. Finally, we discuss the prospects of simultaneous EEG-fMRI for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu R, Leal A, Figueiredo P. EEG-informed fMRI: a review of data analysis methods. Front Hum Neurosci. 2018;12:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Acharjee PP, Phlypo R, Wu L, Calhoun VD, Adali T. Independent vector analysis for gradient artifact removal in concurrent EEG-fMRI data. IEEE Trans Biomed Eng. 2015;62:1750–8.

    Article  PubMed  Google Scholar 

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage. 1998;8:229–39.

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage. 2000;12:230–9.

    Article  CAS  PubMed  Google Scholar 

  • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex. 2014;24:663–76.

    Article  PubMed  Google Scholar 

  • Auranen T, Nummenmaa A, Vanni S, Vehtari A, Hamalainen MS, Lampinen J, Jaaskelainen IP. Automatic fMRI-guided MEG multidipole localization for visual responses. Hum Brain Mapp. 2009;30:1087–99.

    Article  PubMed  Google Scholar 

  • Becker R, Ritter P, Moosmann M, Villringer A. Visual evoked potentials recovered from fMRI scan periods. Hum Brain Mapp. 2005;26:221–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bénar C, Aghakhani Y, Wang Y, Izenberg A, Al-Asmi A, Dubeau F, Gotman J. Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clin Neurophysiol. 2003;114:569–80.

    Article  PubMed  Google Scholar 

  • Bénar CG, Schon D, Grimault S, Nazarian B, Burle B, Roth M, Badier JM, Marquis P, Liegeois-Chauvel C, Anton JL. Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain Mapp. 2007;28:602–13.

    Article  PubMed  Google Scholar 

  • Bharath RD, Panda R, Reddam VR, Bhaskar MV, Gohel S, Bhardwaj S, Prajapati A, Pal PK. A single session of rTMS enhances small-worldness in writer’s cramp: evidence from simultaneous EEG-fMRI multi-modal brain graph. Front Hum Neurosci. 2017;11:443.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonmassar G, Purdon PL, Jaaskelainen IP, Chiappa K, Solo V, Brown EN, Belliveau JW. Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI. Neuroimage. 2002;16:1127–41.

    Article  PubMed  Google Scholar 

  • Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14:140–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AC, Feng W, Zhao H, Yin Y, Wang P. EEG default mode network in the human brain: spectral regional field powers. Neuroimage. 2008;41:561–74.

    Article  PubMed  Google Scholar 

  • Chowdhury ME, Mullinger KJ, Glover P, Bowtell R. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI. Neuroimage. 2014;84:307–19.

    Article  PubMed  Google Scholar 

  • de Munck JC, Goncalves SI, Mammoliti R, Heethaar RM, Lopes da Silva FH. Interactions between different EEG frequency bands and their effect on alpha-fMRI correlations. Neuroimage. 2009;47:69–76.

    Article  PubMed  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK. Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci. 2005;25:11730–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Engel AK. Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cognit Sci. 2006;10:558–63.

    Article  Google Scholar 

  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.

    Article  PubMed  Google Scholar 

  • Dong L, Luo C, Xiaobo L, Sisi J, Fali L, Hongshuo F, Jianfu L, Diankun G, Dezhong Y. Neuroscience information toolbox: an open source toolbox for EEG–fMRI multimodal fusion analysis. Front Neuroinf. 2018;12:56.

    Article  Google Scholar 

  • Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K. Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci U S A. 2005;102:17798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freyer F, Becker R, Anami K, Curio G, Villringer A, Ritter P. Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction. Neuroimage. 2009;48:94–108.

    Article  PubMed  Google Scholar 

  • Friston KJ, Price CJ. Dynamic representations and generative models of brain function. Brain Res Bull. 2001;54:275–285.

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ. Modalities, modes, and models in functional neuroimaging. Science. 2009;326:399–403.

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1994;2:189–210.

    Article  Google Scholar 

  • Goense JB, Logothetis NK. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol. 2008;18:631–40.

    Article  CAS  PubMed  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr, Cohen MS. Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport. 2002;13:2487–92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldman RI, Wei CY, Philiastides MG, Gerson AD, Friedman D, Brown TR, Sajda P. Single-trial discrimination for integrating simultaneous EEG and fMRI: identifying cortical areas contributing to trial-to-trial variability in the auditory oddball task. Neuroimage. 2009;47:136–47.

    Article  PubMed  Google Scholar 

  • Gotman J, Bénar CG, Dubeau F. Combining EEG and FMRI in epilepsy: methodological challenges and clinical results. J Clin Neurophysiol. 2004;21:229–40.

    Article  PubMed  Google Scholar 

  • Green JJ, Boehler CN, Roberts KC, Chen L-C, Krebs RM, Song AW, Woldorff MG. Cortical and subcortical coordination of visual spatial attention revealed by simultaneous EEG-fMRI recording. J Neurosci Off J Soc Neurosci. 2017;37:7803–10.

    Article  CAS  Google Scholar 

  • Grouiller F, Vercueil L, Krainik A, Segebarth C, Kahane P, David O. A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI. Neuroimage. 2007;38:124–37.

    Article  PubMed  Google Scholar 

  • Hamandi K, Laufs H, Noth U, Carmichael DW, Duncan JS, Lemieux L. BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage. 2008;39:608–18.

    Article  PubMed  Google Scholar 

  • He BJ. Spontaneous and task-evoked brain activity negatively interact. J Neurosci. 2013;33:4672–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH. Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A. 2009;106:11376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL. Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol. 1993;87:417–20.

    Article  CAS  PubMed  Google Scholar 

  • Jahnke K, von Wegner F, Morzelewski A, Borisov S, Maischein M, Steinmetz H, Laufs H. To wake or not to wake? the two-sided nature of the human K-complex. Neuroimage. 2012;59:1631–8.

    Article  PubMed  Google Scholar 

  • Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T. BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage. 2009;45:903–16.

    Article  CAS  PubMed  Google Scholar 

  • Jorge J, Bouloc C, Bréchet L, Michel CM, Gruetter R. Investigating the variability of cardiac pulse artifacts across heartbeats in simultaneous EEG-fMRI recordings: a 7T study. Neuroimage. 2019;191:21–35.

    Article  PubMed  Google Scholar 

  • Kaufmann C, Wehrle R, Wetter TC, Holsboer F, Auer DP, Pollmächer T, Czisch M. Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 2006;129:655–67.

    Article  CAS  PubMed  Google Scholar 

  • Krishnaswamy P, Bonmassar G, Poulsen C, Pierce ET, Purdon PL, Brown EN. Reference-free removal of EEG-fMRI ballistocardiogram artifacts with harmonic regression. Neuroimage. 2016;128:398–412.

    Article  PubMed  Google Scholar 

  • Ladenbauer J, Ladenbauer J, Kulzow N, de Boor R, Avramova E, Grittner U, Floel A. Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J Neurosci. 2017;37:7111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange N, Zeger SL. Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging. J R Stat Soc Ser C (Appl Stat). 1997;46:1–29.

    Article  Google Scholar 

  • Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci U S A. 2003;100:11053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A. Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage. 2008;40:515–28.

    Article  CAS  PubMed  Google Scholar 

  • Lei X, Yang P, Yao D. An empirical Bayesian framework for brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2009;17:521–9.

    Article  PubMed  Google Scholar 

  • Lei X, Qiu C, Xu P, Yao D. A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation. Neuroimage. 2010;52:1123–34.

    Article  PubMed  Google Scholar 

  • Lei X, Ostwald D, Hu J, Qiu C, Porcaro C, Bagshaw AP, Yao D. Multimodal functional network connectivity: an EEG-fMRI fusion in network space. Plos One. 2011a;6:e24642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei X, Xu P, Luo C, Zhao J, Zhou D, Yao D. fMRI functional networks for EEG source imaging. Hum Brain Mapp. 2011b;32:1141–60.

    Article  PubMed  Google Scholar 

  • Lei X, Hu J, Yao D. Incorporating fMRI functional networks in EEG source imaging: a Bayesian model comparison approach. Brain Topogr. 2012;25:27–38.

    Article  PubMed  Google Scholar 

  • Lei X, Wang Y, Yuan H, Mantini D. Neuronal oscillations and functional interactions between resting state networks: effects of alcohol intoxication. Hum Brain Mapp. 2014;35:3517–28.

    Article  PubMed  Google Scholar 

  • Lei X, Wang Y, Yuan H, Chen A. Brain scale-free properties in awake rest and NREM sleep: a simultaneous EEG/fMRI study. Brain Topogr. 2015;28:292–304.

    Article  PubMed  Google Scholar 

  • Leopold DA, Maier A. Ongoing physiological processes in the cerebral cortex. Neuroimage. 2012;62:2190–200.

    Article  PubMed  Google Scholar 

  • Liu AK, Belliveau JW, Dale AM. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci U S A. 1998;95:8945–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–7.

    Article  CAS  PubMed  Google Scholar 

  • Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ. Dynamic brain sources of visual evoked responses. Science. 2002;295:690–4.

    Article  CAS  PubMed  Google Scholar 

  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A. 2007;104:13170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masterton RA, Abbott DF, Fleming SW, Jackson GD. Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. Neuroimage. 2007;37:202–11.

    Article  PubMed  Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A. Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage. 2003;20:145–58.

    Article  PubMed  Google Scholar 

  • Mullinger KJ, Yan WX, Bowtell R. Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject’s axial position. Neuroimage. 2011;54:1942–50.

    Article  PubMed  Google Scholar 

  • Murta T, Leite M, Carmichael DW, Figueiredo P, Lemieux L. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI. Hum Brain Mapp. 2015;36:391–414.

    Article  PubMed  Google Scholar 

  • Nguyen VT, Breakspear M, Cunnington R. Fusing concurrent EEG-fMRI with dynamic causal modeling: application to effective connectivity during face perception. Neuroimage. 2014; https://doi.org/10.1016/j.neuroimage.2013.06.083.

    Article  PubMed  Google Scholar 

  • Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage. 2005;28:720–37.

    Article  CAS  PubMed  Google Scholar 

  • Nunez P. Neocortical dynamics and human EEG rhythms. Oxford: Oxford University Press; 1995.

    Google Scholar 

  • Phillips C, Rugg MD, Fristont KJ. Systematic regularization of linear inverse solutions of the EEG source localization problem. Neuroimage. 2002;17:287–301.

    Article  PubMed  Google Scholar 

  • Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.

    Article  CAS  PubMed  Google Scholar 

  • Ritter P, Freyer F, Curio G, Villringer A. High-frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. Neuroimage. 2008;42:483–90.

    Article  PubMed  Google Scholar 

  • Rosa MJ, Kilner J, Blankenburg F, Josephs O, Penny W. Estimating the transfer function from neuronal activity to BOLD using simultaneous EEG-fMRI. Neuroimage. 2010;49:1496–509.

    Article  CAS  PubMed  Google Scholar 

  • Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A, Degueldre C, Desseilles M, Gais S, Phillips C, Rauchs G, Schnakers C, Sterpenich V, Vandewalle G, Luxen A, Maquet P. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci. 2007;104:13164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholvinck ML, Leopold DA, Brookes MJ, Khader PH. The contribution of electrophysiology to functional connectivity mapping. Neuroimage. 2013;80:297–306.

    Article  PubMed  Google Scholar 

  • Schubert R, Ritter P, Wustenberg T, Preuschhof C, Curio G, Sommer W, Villringer A. Spatial attention related SEP amplitude modulations covary with BOLD signal in S1--a simultaneous EEG--fMRI study. Cerebral Cortex. 2008;18:2686–700.

    Article  PubMed  Google Scholar 

  • Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex. 2012;22:158–65.

    Article  CAS  PubMed  Google Scholar 

  • Stancak A, Polacek H, Vrana J, Rachmanova R, Hoechstetter K, Tintra J, Scherg M. EEG source analysis and fMRI reveal two electrical sources in the fronto-parietal operculum during subepidermal finger stimulation. Neuroimage. 2005;25:8–20.

    Article  PubMed  Google Scholar 

  • Steyrl D, Krausz G, Koschutnig K, Edlinger G, Müller-Putz GR. Online reduction of artifacts in EEG of simultaneous EEG-fMRI using reference layer adaptive filtering (RLAF). Brain Topogr. 2017;31(1):129–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamminen J, Payne JD, Stickgold R, Wamsley EJ, Gaskell MG. Sleep spindle activity is associated with the integration of new memories and existing knowledge. J Neurosci. 2010;30:14356–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo-Barreto N, Martinez-Montes E, Melie-Garcia L, Valdes-Sosa P. A symmetrical Bayesian model for fMRI and EEG/MEG neuroimage fusion. Int J Bioelectromag. 2001;3:1.

    Google Scholar 

  • Uehara T, Yamasaki T, Okamoto T, Koike T, Kan S, Miyauchi S, Kira J-I, Tobimatsu S. Efficiency of a “Small-World” brain network depends on consciousness level: a resting-state fMRI study. Cerebral Cortex. 2014;24:1529–39.

    Article  PubMed  Google Scholar 

  • Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch-Bayard J, Carbonell F, Ozaki T. Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp. 2009;30:2701–21.

    Article  PubMed  Google Scholar 

  • van der Meer JN, Pampel A, Van Someren EJW, Ramautar JR, van der Werf YD, Gomez-Herrero G, Lepsien J, Hellrung L, Hinrichs H, Moller HE, Walter M. Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections--a validation of a real-time simultaneous EEG/fMRI correction method. Neuroimage. 2016;125:880–94.

    Article  PubMed  Google Scholar 

  • Vincent JL, Larson-Prior LJ, Zempel JM, Snyder AZ. Moving GLM ballistocardiogram artifact reduction for EEG acquired simultaneously with fMRI. Clin Neurophysiol. 2007;118:981–98.

    Article  PubMed  Google Scholar 

  • Vulliemoz S, Rodionov R, Carmichael DW, Thornton R, Guye M, Lhatoo SD, Michel CM, Duncan JS, Lemieux L. Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy. Neuroimage. 2010;49:3219–29.

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Riera J, Iwata K, Takahashi M, Wakabayashi T, Kawashima R. The neural basis of the hemodynamic response nonlinearity in human primary visual cortex: Implications for neurovascular coupling mechanism. Neuroimage. 2006;32:616–25.

    Article  PubMed  Google Scholar 

  • Wang K, Li W, Dong L, Zou L, Wang C. Clustering-constrained ICA for ballistocardiogram artifacts removal in simultaneous EEG-fMRI. Front Neurosci. 2018;12:59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia H, Ruan D, Cohen MS. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP). Front Neurosci. 2014;8:218.

    PubMed  PubMed Central  Google Scholar 

  • Yu Q, Erhardt EB, Sui J, Du Y, He H, Hjelm D, Cetin MS, Rachakonda S, Miller RL, Pearlson G, Calhoun VD. Assessing dynamic brain graphs of time-varying connectivity in fMRI data: application to healthy controls and patients with schizophrenia. Neuroimage. 2015;107:345–55.

    Article  PubMed  Google Scholar 

  • Yu Q, Wu L, Bridwell DA, Erhardt EB, Du Y, He H, Chen J, Liu P, Sui J, Pearlson G, Calhoun VD. Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study. Front Hum Neurosci. 2016;10:476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zich C, Debener S, Kranczioch C, Bleichner MG, Gutberlet I, De Vos M. Real-time EEG feedback during simultaneous EEG-fMRI identifies the cortical signature of motor imagery. Neuroimage. 2015;114:438–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lei, X. (2019). Simultaneous EEG-fMRI. In: Hu, L., Zhang, Z. (eds) EEG Signal Processing and Feature Extraction. Springer, Singapore. https://doi.org/10.1007/978-981-13-9113-2_18

Download citation

Publish with us

Policies and ethics