Skip to main content

Connectivity Analysis

  • Chapter
  • First Online:
EEG Signal Processing and Feature Extraction

Abstract

The EEG signals could be used to assess the communication between brain regions. Various techniques have been developed in order to quantify the EEG connectivity of scalp-level EEG signals or source-level activities. Briefly speaking, four kinds of EEG connectivity measures are evaluated in literatures, including coherence-based measures, phase synchronization-based measures, generalized synchronization-based measures, and granger causality-based measures. All measures have their own advantages and disadvantages. Here, we illustrated the common sources problem in EEG analysis, the measures in EEG connectivity analysis, how to conduct EEG connectivity analysis using resting-state EEG signals and event-related EEG signals, and source-level connectivity. Moreover, we provided two examples of EEG connectivity, along with the EEG datasets and MATLAB codes, which are focused on the EEG connectivity of resting-state signals and event-related signals, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams DA, Lynch CJ, Cheng KM, Phillips J, Supekar K, Ryali S, Uddin LQ, Menon V. Underconnectivity between voice-selective cortex and reward circuitry in children with autism. Proc Natl Acad Sci U S A. 2013;110(29):12060–5.

    Article  CAS  Google Scholar 

  • Astolfi L, Cincotti F, Mattia D, Salinari S, Babiloni C, Basilisco A, Rossini PM, Ding L, Ni Y, He B, Marciani MG, Babiloni F. Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG. Magn Reson Imaging. 2004;22(10):1457–70.

    Article  Google Scholar 

  • Baccalá LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol Cybern. 2001;84(6):463–74.

    Article  Google Scholar 

  • Buckner RL, Andrewshanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124(1):1–38.

    Article  Google Scholar 

  • Cohen MX. Effects of time lag and frequency matching on phase-based connectivity. J Neurosci Methods. 2015;250:137–46.

    Article  Google Scholar 

  • Dhamala M, Rangarajan G, Ding M. Analyzing information flow in brain networks with nonparametric Granger causality. NeuroImage. 2008;41(2):354–62.

    Article  Google Scholar 

  • Ding M, Bressler SL, Yang W, Liang H. Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biol Cybern. 2000;83(1):35–45.

    Article  CAS  Google Scholar 

  • Duann JR, Ide JX. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. J Neurosci. 2009;29(32):10171–9.

    Article  CAS  Google Scholar 

  • Ercan ES, Suren S, Bacanlı A, Yazıcı KU, Callı C, Ardic UA, Aygunes D, Kosova B, Ozyurt O, Aydın C, ROhde LA. Altered structural connectivity is related to attention deficit/hyperactivity subtypes: a DTI study. Psychiatry Res Neuroimaging. 2016;256:57–64.

    Article  Google Scholar 

  • Friston KJ, Harrison LM, Penny WD. Dynamic causal modeling. NeuroImage. 2003;19(4):1273–302.

    Article  CAS  Google Scholar 

  • Gao Q, Duan X, Chen H. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. NeuroImage. 2011;54(2):1280–8.

    Article  Google Scholar 

  • Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37(3):424–38.

    Article  Google Scholar 

  • Heise V, Filippini N, Trachtenberg AJ, Suri S, Ebmeier KP, Mackay CE. Apolipoprotein E genotype, gender and age modulate connectivity of the hippocampus in healthy adults. NeuroImage. 2014;98(7):23–30.

    Article  CAS  Google Scholar 

  • Huster RJ, Plis SM, Lavallee CF, Calhoun VD, Herrmann CS. Functional and effective connectivity of stopping. NeuroImage. 2014;94(6):120–8.

    Article  Google Scholar 

  • KamiÅ„ski MJ, Blinowska KJ. A new method of the description of the information ow in the brain structures. Biol Cybern. 1991;65(3):203–10.

    Article  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8(4):194–208.

    Article  CAS  Google Scholar 

  • Lutkepohl H. New introduction to multiple time series analysis. Berlin: Springer; 2005.

    Book  Google Scholar 

  • Niso G, Bruña R, Pereda E, Gutiérrez R, Bajo R, Maestú F, del-Pozo F. HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics. 2013;11(4):405–34.

    Article  Google Scholar 

  • Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115(10):2292–307.

    Article  Google Scholar 

  • Nolte G, Ziehe A, Nikulin VV, Schlögl A, Krämer N, Brismar T, Müller KR. Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett. 2007;100(23):234101.

    Article  Google Scholar 

  • Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ. EEG coherency : I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol. 1997;103(5):499–515.

    Article  CAS  Google Scholar 

  • O’Reilly C, Lewis JD, Elsabbagh M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS One. 2017;12(5):e0175870.

    Article  Google Scholar 

  • Rasero J, Amoroso N, La Rocca M, Tangaro S, Bellotti R, Stramaglia S. Multivariate regression analysis of structural MRI connectivity matrices in Alzheimer’s disease. PLoS One. 2017;12(11):e0187281.

    Article  Google Scholar 

  • Sommerlade L, Henschel K, Wohlmuth J, Jachan M, Amtage F, Hellwig B, Lücking CH, Timmer J, Schelter B. Time-variant estimation of directed influences during Parkinsonian tremor. J Physiol-Paris. 2009;103(6):348–52.

    Article  Google Scholar 

  • Srinivasan R, Winter WR, Ding J, Nunez PL. EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods. 2007;166(1):41–52.

    Article  Google Scholar 

  • Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp. 2007;28(11):1178–93.

    Article  Google Scholar 

  • Stam CJ, van Dijk BW. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D. 2002;163(3):236–51.

    Article  Google Scholar 

  • Sun Y, Lim J, Kwok K, Bezerianos A. Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in small-world networks. Brain Cogn. 2014;85(1):220–30.

    Article  Google Scholar 

  • van den Broek SP, Reinders F, Donderwinkel M, Peters MJ. Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol. 1998;106(6):522–34.

    Article  Google Scholar 

  • Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy--a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci. 2011;30(1):45–67.

    Article  Google Scholar 

  • Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage. 2011;55(4):1548–65.

    Article  Google Scholar 

  • Wiener N. The theory of prediction. In: Beckenbach EF, editor. Modern mathematics for the engineer. New York: McGraw-Hill; 1956.

    Google Scholar 

  • Yao D, Wang L, Arendt-Nielsen L, Chen ACN. The effect of reference choices on the spatio-temporal analysis of brain evoked potentials: the use of infinite reference. Comput Biol Med. 2007;37(11):1529–38.

    Article  Google Scholar 

  • Yao D, Wang L, Oostenveld R, Nielsen KD, Arendtnielsen L, Chen AC. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference. Physiol Meas. 2005;26(3):173–84.

    Article  Google Scholar 

  • Yu D. Additional brain functional network in adults with attention-deficit/hyperactivity disorder: a phase synchrony analysis. PLoS One. 2013;8(8):e54516.

    Article  CAS  Google Scholar 

  • Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. NeuroImage. 2010;53(4):1197–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

12.1 Supplementary Electronic Material (S)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, H. (2019). Connectivity Analysis. In: Hu, L., Zhang, Z. (eds) EEG Signal Processing and Feature Extraction. Springer, Singapore. https://doi.org/10.1007/978-981-13-9113-2_12

Download citation

Publish with us

Policies and ethics