Skip to main content

Free Radicals and Reactive Oxygen Species in Cardiovascular Pathophysiology: An Overview

  • Chapter
  • First Online:
Book cover Modulation of Oxidative Stress in Heart Disease
  • 374 Accesses

Abstract

Oxidative stress has long been attributed to the pathobiology of various degenerative diseases. However, despite its wide acceptance among the researchers and the clinicians, the mechanistic insight into the contribution of various oxidants to the aetiology of those disorders remained enigmatic for a long time. Also, the use of antioxidants as therapeutics had very limited success. In the past decade, a significant progress has been made in understanding the chemistry of various reactive oxygen and nitrogen species, their enzymatic mechanisms, their generation, their cellular locations and their targets of action. While some of the highly reactive species, viz. hydroxyl radical and peroxynitrite, are deleterious for the cell, others like hydrogen peroxide and superoxide often act as bona fide signalling molecules. Such knowledge has revealed that a close network of redox reactions mediated by these species intricately regulate cellular functions. Any perturbation in those circuitries affects the cell physiology, causing distress for the related tissue and the organ. This review summarizes the present-day knowledge of those redox processes in the context of certain cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  Google Scholar 

  2. Harman D (1957) Atherosclerosis: a hypothesis concerning the initiating steps on pathogenesis. J Gerontol 12:199–202

    CAS  PubMed  Google Scholar 

  3. Harman D (1960) The free radical theory of aging: the effect of age on serum mercaptan levels. J Gerontol 15:38–40

    CAS  PubMed  Google Scholar 

  4. Harman D (1961) Mutation, cancer, and ageing. Lancet 1:200–201

    CAS  PubMed  Google Scholar 

  5. Harman D (1961) Prolongation of the normal lifespan and inhibition of spontaneous cancer by antioxidants. J Gerontol 16:247–254

    CAS  PubMed  Google Scholar 

  6. Harman D, Heidrick ML, Eddy DE (1977) Free radical theory of aging: effect of free-radical-reaction inhibitors on the immune response. J Am Geriatr Soc 25:400–407

    CAS  PubMed  Google Scholar 

  7. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  Google Scholar 

  8. Harman D (1991) The aging process: major risk factor for disease and death. Proc Natl Acad Sci USA 88:5360–5363

    CAS  PubMed  Google Scholar 

  9. Liang Y, Wang Z (2018) Which is the most reasonable anti-aging strategy: meta-analysis. Adv Exp Med Biol 1086:267–282

    CAS  PubMed  Google Scholar 

  10. Gianfredi V, Vannini S, Moretti M, Villarini M, Bragazzi NL, Izzotti A, Nucci D (2017) Sulforaphane and epigallocatechin gallate restore estrogen receptor expression by modulating epigenetic events in the breast cancer cell line MDA-MB-231: a systematic review and meta-analysis. J Nutrigenet Nutrigenomics 10:126–135

    CAS  PubMed  Google Scholar 

  11. Moser MA, Chun OK (2016) Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci 17:1328

    PubMed Central  Google Scholar 

  12. Buffenstein R, Edrey YH, Yang T, Mele J (2008) The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. Age (Dordr) 30:99–109

    CAS  Google Scholar 

  13. Guengerich FP, Liebler DC (1985) Enzymatic activation of chemicals to toxic metabolites. Crit Rev Toxicol 14:259–307

    CAS  PubMed  Google Scholar 

  14. Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 1–8

    Google Scholar 

  15. van Kuijk FJ, Dratz EA (1987) Detection of phospholipid peroxides in biological samples. Free Radic Biol Med 3:349–354

    PubMed  Google Scholar 

  16. Hennig B, Chow CK (1988) Lipid peroxidation and endothelial cell injury: implications in atherosclerosis. Free Radic Biol Med 4:99–106

    CAS  PubMed  Google Scholar 

  17. Halliwell B, Grootveld M (1987) The measurement of free radical reactions in humans. Some thoughts for future experimentation. FEBS Lett 213:9–14

    CAS  PubMed  Google Scholar 

  18. Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90:8905–8909

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569

    CAS  PubMed  Google Scholar 

  20. Ye Y, Li J, Yuan Z (2013) Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS One 8(2):e56803

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    CAS  PubMed  Google Scholar 

  22. Saran M (2003) To what end does nature produce superoxide? NADPH oxidase as an autocrine modifier of membrane phospholipids generating paracrine lipid messengers. Free Radic Res 37:1045–1059

    CAS  PubMed  Google Scholar 

  23. Scialò F, Fernández-Ayala DJ, Sanz A (2017) Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol 8:428

    PubMed  PubMed Central  Google Scholar 

  24. Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22:5734–5754

    CAS  PubMed  Google Scholar 

  25. Jones DP, Go YM, Anderson CL, Ziegler TR, Kinkade JM Jr, Kirlin WG (2004) Cysteine/cysteine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 18:1246–1248

    CAS  PubMed  Google Scholar 

  26. Di Marzo N, Chisci E, Giovannoni R (2018) The role of hydrogen peroxide in redox-dependent signaling: homeostatic and pathological responses in mammalian cells. Cell 7:156

    Google Scholar 

  27. Silva-Islas CA, Maldonado PD (2018) Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res 134:92–99

    CAS  PubMed  Google Scholar 

  28. Foyer CH, Wilson MH, Wright MH (2018) Redox regulation of cell proliferation: bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators. Free Radic Biol Med 122:137–149

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomol Ther 5:472–484

    CAS  Google Scholar 

  30. Yang J, Carroll KS, Liebler DC (2016) The expanding landscape of the thiol redox proteome. Mol Cell Proteomics 15:1–11

    PubMed  Google Scholar 

  31. Devarie-Baez NO, Silva Lopez EI, Furdui CM (2016) Biological chemistry and functionality of protein sulfenic acids and related thiol modifications. Free Radic Res 50:172–194

    CAS  PubMed  Google Scholar 

  32. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    CAS  Google Scholar 

  33. Zielonka J, Kalyanaraman B (2018) Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol Med 128:3–22

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Buettner GR (2011) Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anti Cancer Agents Med Chem 11:341–346

    CAS  Google Scholar 

  35. Buettner GR, Wagner BA, Rodgers VG (2013) Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem Biophys 67:477–483

    CAS  PubMed  Google Scholar 

  36. Li Y, Pagano PJ (2017) Microvascular NADPH oxidase in health and disease. Free Radic Biol Med 109:33–47

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sirokmány G, Donkó Á, Geiszt M (2016) Nox/Duox family of NADPH oxidases: lessons from knockout mouse models. Trends Pharmacol Sci 37:318–327

    PubMed  Google Scholar 

  38. Altenhöfer S, Radermacher KA, Kleikers PW, Wingler K, Schmidt HH (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal 23(5):406–427

    PubMed  PubMed Central  Google Scholar 

  39. García-Redondo AB, Aguado A, Briones AM, Salaices M (2016) NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 114:110–120

    PubMed  Google Scholar 

  40. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163:560–569

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cadenas S (2018) ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 117:76–89

    CAS  PubMed  Google Scholar 

  42. Battelli MG, Bolognesi A, Polito L (1842) Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim Biophys Acta 2014:1502–1517

    Google Scholar 

  43. Bredemeier M, Lopes LM, Eisenreich MA, Hickmann S, Bongiorno GK, d’Avila R, Morsch ALB, da Silva SF, Campos GGD (2018) Xanthine oxidase inhibitors for prevention of cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 18(1):24

    PubMed  PubMed Central  Google Scholar 

  44. Banerjee R (2017) Introduction to the Thematic Minireview Series: redox metabolism and signaling. J Biol Chem 292:16802–16803

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217(6):1915–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    CAS  PubMed  Google Scholar 

  47. He L, He T, Farrar S, Ji L, Liu T, Ma X (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553

    PubMed  Google Scholar 

  48. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    CAS  PubMed  Google Scholar 

  49. Day BJ (2014) Antioxidant therapeutics: pandora’s box. Free Radic Biol Med 66:58–64

    CAS  PubMed  Google Scholar 

  50. Hawk MA, Schafer ZT (2018) Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment. J Biol Chem 293:7531–7537

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA (2013) Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 1:483–491

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    CAS  PubMed  Google Scholar 

  53. Pimentel DR, Adachi T, Ido Y, Heibeck T, Jiang B, Lee Y et al (2006) Strain-stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species-dependent Ras S-glutathiolation. J Mol Cell Cardiol 41:613–622

    CAS  PubMed  Google Scholar 

  54. Sag CM, Wagner S, Maier LS (2013) Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic Biol Med 63:338–349

    CAS  PubMed  Google Scholar 

  55. Donoso P, Sanchez G, Bull R, Hidalgo C (2011) Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci (Landmark Edition) 16:553–567

    CAS  Google Scholar 

  56. Zhu H, Shan L, Schiller PW, Mai A, Peng T (2010) Histone deacetylase-3 activation promotes tumor necrosis factor-alpha (TNF-alpha) expression in cardiomyocytes during lipopolysaccharide stimulation. J Biol Chem 285:9429–9436

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Takahashi M, Suzuki E, Takeda R, Oba S, Nishimatsu H, Kimura K et al (2008) Angiotensin II and tumor necrosis factor-alpha synergistically promote monocyte chemoattractant protein-1 expression: roles of NF-kappaB, p38, and reactive oxygen species. Am J Physiology Heart Circ Physiol 294:H2879–H2888

    CAS  Google Scholar 

  58. Förstermann U, Xia N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120:713–735

    PubMed  Google Scholar 

  59. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C (2012) The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 10:4–18

    CAS  PubMed  Google Scholar 

  60. Gimbrone MA Jr, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118:620–636

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Poulos TL, Li H (2017) Nitric oxide synthase and structure-based inhibitor design. Nitric Oxide 63:68–77

    CAS  PubMed  Google Scholar 

  62. Sun J, Druhan LJ, Zweier JL (2010) Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch Biochem Biophys 494:130–137

    CAS  PubMed  Google Scholar 

  63. Roe ND, Ren J (2012) Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vasc Pharmacol 57:168–172

    CAS  Google Scholar 

  64. Alem MM (2018) Allopurinol and endothelial function: a systematic review with meta-analysis of randomized controlled trials. Cardiovasc Ther 36:e12432

    PubMed  PubMed Central  Google Scholar 

  65. Sobey CG, Judkins CP, Rivera J, Lewis CV, Diep H, Lee HW, Kemp-Harper BK, Broughton BR, Selemidis S, Gaspari TA, Samuel CS, Drummond GR (2015) NOX1 deficiency in apolipoprotein E-knockout mice is associated with elevated plasma lipids and enhanced atherosclerosis. Free Radic Res 49:186–198

    CAS  PubMed  Google Scholar 

  66. Schürmann C, Rezende F, Kruse C, Yasar Y, Löwe O, Fork C, van de Sluis B, Bremer R, Weissmann N, Shah AM, Jo H, Brandes RP, Schröder K (2015) The NADPH oxidase Nox4 has anti-atherosclerotic functions. Eur Heart J 36:3447–3456

    PubMed  PubMed Central  Google Scholar 

  67. Manea A, Manea SA, Gan AM, Constantin A, Fenyo IM, Raicu M, Muresian H, Simionescu M (2015) Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem Biophys Res Commun 461:172–179

    CAS  PubMed  Google Scholar 

  68. Yang H, Roberts LJ, Shi MJ, Zhou LC, Ballard BR, Richardson A, Guo ZM (2004) Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ Res 95:1075–1081

    CAS  PubMed  Google Scholar 

  69. Tan SM, Sharma A, Yuen DY, Stefanovic N, Krippner G, Mugesh G, Chai Z, de Haan JB (2013) The modified selenenyl amide, M-hydroxy ebselen, attenuates diabetic nephropathy and diabetes-associated atherosclerosis in ApoE/GPx1 double knockout mice. PLoS One 8:e69193

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X (2018) New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 20:247–260

    PubMed  PubMed Central  Google Scholar 

  71. Vieceli Dalla Sega F, Aquila G, Fortini F, Vaccarezza M, Secchiero P, Rizzo P, Campo G (2017) Context-dependent function of ROS in the vascular endothelium: the role of the Notch pathway and shear stress. Biofactors 43:475–485

    CAS  PubMed  Google Scholar 

  72. Byon CH, Heath JM, Chen Y (2016) Redox signaling in cardiovascular pathophysiology: a focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol 9:244–253

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Murray TV, Ahmad A, Brewer AC (2014) Reactive oxygen at the heart of metabolism. Trends Cardiovasc Med 24:113–120

    CAS  PubMed  Google Scholar 

  74. Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D (2014) Bonaduce D β-Adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol 4:396

    PubMed  PubMed Central  Google Scholar 

  75. Ciccarelli M, Santulli G, Pascale V, Trimarco B, Iaccarino G (2013) Adrenergic receptors and metabolism: role in development of cardiovascular disease. Front Physiol 4:265

    PubMed  PubMed Central  Google Scholar 

  76. Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61(4):269–280

    CAS  PubMed  Google Scholar 

  77. Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341(17):1276–1283

    CAS  PubMed  Google Scholar 

  78. Singh K, Xiao L, Remondino A, Sawyer DB, Colucci WS (2001) Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189(3):257–265

    CAS  PubMed  Google Scholar 

  79. Xiao L, Pimental DR, Amin JK, Singh K, Sawyer DB, Colucci WS (2001) MEK1/2-ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33(4):779–787

    CAS  PubMed  Google Scholar 

  80. Siwik DA, Tzortzis JD, Pimental DR, Chang DL, Pagano PJ, Singh K, Sawyer DB, Colucci WS (1999) Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res 85(2):147–153

    CAS  PubMed  Google Scholar 

  81. Clerk A (2003) The radical balance between life and death. J Mol Cell Cardiol 35:599–602

    CAS  PubMed  Google Scholar 

  82. Fu YC, Chi CS, Yin SC, Hwang B, Chiu YT, Hsu SL (2004) Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNF alpha-caspase signaling pathway. Cardiovasc Res 62:558–567

    CAS  PubMed  Google Scholar 

  83. Gupta MK, Neelakantan TV, Sanghamitra M, Tyagi RK, Dinda A, Maulik S, Mukhopadhyay CK, Goswami SK (2006) An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts Antioxid. Redox Signal 8:1081–1093

    CAS  Google Scholar 

  84. Jindal E, Goswami SK (2011) In cardiac myoblasts, cellular redox regulates FosB and Fra-1 through multiple cis-regulatory modules. Free Radic Biol Med 51(8):1512–1521

    CAS  PubMed  Google Scholar 

  85. Thakur A, Alam MJ, Ajayakumar MR, Ghaskadbi S, Sharma M, Goswami SK (2015) Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation. Redox Biol 5:243–252

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Saleem N, Goswami SK (2017) Activation of adrenergic receptor in H9c2 cardiac myoblasts co-stimulates Nox2 and the derived ROS mediate the downstream responses. Mol Cell Biochem 436(1–2):167–178

    CAS  PubMed  Google Scholar 

  87. Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J (2018) Teaching the basics of reactive oxygen species and their relevance to cancer biology: mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 15:347–362

    CAS  PubMed  Google Scholar 

  88. Kalyanaraman B (2017) Teaching the basics of cancer metabolism: developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol 12:833–842

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goswami, S.K. (2019). Free Radicals and Reactive Oxygen Species in Cardiovascular Pathophysiology: An Overview. In: Chakraborti, S., Dhalla, N., Dikshit, M., Ganguly, N. (eds) Modulation of Oxidative Stress in Heart Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8946-7_17

Download citation

Publish with us

Policies and ethics