Skip to main content

Conservation Agriculture for Rehabilitation of Agro-ecosystems

  • Chapter
  • First Online:
  • 571 Accesses

Abstract

Conservation agriculture (CA) is promoted as a solution for the problem of poor agro-ecosystem productivity, land degradation, and climate change impact in most sub-Saharan Africa, South Asia, Latin America, and many tropical island nations. It is characterized by continuous minimum mechanical soil disturbance, permanent organic soil cover, and diversified crop rotations in the case of annual crops or plant associations in the case of perennial crops. This chapter describes the benefits of CA, a suggested improvement over conventional tillage, where no-till, mulch, and rotations significantly improved soil properties, moisture retention, and other biotic factors. More significantly CA permits higher rates of carbon sequestration, organic matter accumulation, reduction in soil erosion, and its associated improvement in soil biological properties. Further reduction in greenhouse gas emission as a result of CA is also reviewed. Implementation of CA practices particularly in areas facing land degradation and depleting resources presents a win-win scenario due to improved crop yield and trends of increasing soil fertility and scope for climate change adaptation. This chapter presents evidences in favour of CA for many of the tropical countries to recuperate degraded soils and improve ecosystem services.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angers DA, Bolinder MA, Carter MR, Gregorich EG, Drury CF, Liang BC, Voroney RP, Simard RR, Donald RG, Beyaert RP, Martel J (1997) Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil Tillage Res 41:191–201

    Article  Google Scholar 

  • Baudron E, Tittonell P, Corbeels M, Letourmy P, Giller KE (2012) Comparative performance of conservation agriculture and current smallholder farming practices in semi-arid Zimbabwe. Field Crops Res 132:117–128. https://doi.org/10.1016/j.fcr.2011.09.008

    Article  Google Scholar 

  • Bayer C, Mielniczuck J, Amado TJC, Martin-Neto L, Fernandes SBV (2000) Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil Tillage Res 54:101–109

    Article  Google Scholar 

  • Beare MH, Hendrix PF, Coleman DC (1994) Water-stable aggregates and organic matter fractions in conventional and no-tillage soils. Soil Sci Soc Am J 58:777–786

    Article  Google Scholar 

  • Bernoux M, Cerri CC, Cerri CEP, Siqueira Neto M, Metay A, Perrin AS, Scopel E, Blavet D, Piccolo MC, Pavei M, Milne E (2006) Cropping systems, carbon sequestration and erosion in Brazil, a review. Agron Sustain Dev 26:1–8. https://doi.org/10.1051/agro:2005055

    Article  CAS  Google Scholar 

  • Bhagat RM, Verma TS (1991) Impact of rice straw management on soil physical properties and wheat yield. Soil Sci 152:108–115

    Article  Google Scholar 

  • Blanchart E, Albrecht A, Chevallier T, Hartmann C (2004) The respective roles of biota (roots and earthworms) in the restoration of physical properties in vertisol under a Digitaria decumbens pasture (Martinique). Agric Ecosyst Environ 103:343–355

    Article  Google Scholar 

  • Blanchart E, Bernoux M, Sarda X, Siqueira Neto M, Cerri CC, Piccolo M, Douzet JM, Scopel E, Feller C (2007) Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric Conspec Sci 72:81

    Google Scholar 

  • Blanco-Canqui H, Lal R (2007) Impacts of long-term wheat straw management on soil hydraulic properties under no-tillage. Soil Sci Soc Am J 71:1166–1173

    Article  CAS  Google Scholar 

  • Boddey RM, Jantalia CP, Conceicao PC, Zanatta JA, Bayer C, Mielniczuk J, Dieckow J, Dos Santos HP, Denardin JE, Aita C, Giacomini SJ, Alves BJR, Urquiaga S (2009) A carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture. Glob Chang Biol 16(2):784–795

    Article  Google Scholar 

  • Bolliger A, Magid J, Amado JCT, Skora Neto F, Ribeiro MFDS, Calegari A, Ralisch R, De Neergaard A (2006) Taking stock of the Brazilian “Zero-Till Revolution”: a review of landmark research and farmers’ practice. Adv Agron 91:47–110

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Brown GG, Pasini A, Benito NP, De Aquino AM, Correia MEF (2001) Diversity and functional role of soil macrofauna communities in Brazilian no-tillage agroecosystems: a preliminary analysis. In: International symposium on managing biodiversity in agricultural ecosystems, Montreal, Canada, 8–10 November 2001

    Google Scholar 

  • Bustamante MMC, Corbeels M, Scopel E, Roscoe R (2006) Soil carbon storage and sequestration potential in the Cerrado region of Brazil. In: Lal R, Cerri CC, Bernoux M, Etchevers J (eds) Soil carbon sequestration and global climate change: mitigation potential of soils of Latin America. Harworth, Binghamton, pp 285–304

    Google Scholar 

  • Cassel DK, Raczkowski CW, Denton HP (1995) Tillage effects on corn production and soil physical conditions. Soil Sci Soc Am J 59:1436–1443

    Article  CAS  Google Scholar 

  • Choudhury SG, Srivastava S, Singh R, Choudhuri SK, Sharma DK, Singh SK, Sarkar D (2014) Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice-wheat cropping system under reclaimed sodic soils. Soil Tillage Res 136:76–83

    Article  Google Scholar 

  • Corbeels M, Scopel E, Cardoso A, Bernoux M, Douzet JM, Siqueira Neto M (2006) Soil carbon storage potential of direct seeding mulch-based cropping systems in the Cerrados of Brazil. Glob Chang Biol 12:1–15. https://doi.org/10.1111/j.1365-2486.2006.01233.x

    Article  Google Scholar 

  • Da Silva FD, Amado TJC, Ferreira AO, Assmann JM, Anghinoni I, Carvalho PCDF (2014) Soil carbon indices as affected by 10 years of integrated crop-livestock production with different pasture grazing intensities in Southern Brazil. Agric Ecosyst Environ 190:60–69. https://doi.org/10.1016/j.agee.2013.12.005

    Article  CAS  Google Scholar 

  • Derpsch R (2005) The extent of conservation agriculture adoption worldwide: implications and impact. In: Proceedings of the third world congress on conservation agriculture: linking production, livelihoods and conservation, Nairobi, Kenya, 3–7 October 2005

    Google Scholar 

  • Derpsch R, Moriya K (1999) Implications of soil preparation as compared to no-tillage on the sustainability of crop production: experiences from South America. In: Reddy MV (ed) Management of tropical agro-ecosystems and the beneficial soil biota. Science Publishers, Enfield, pp 49–65

    Google Scholar 

  • Erenstein O (2002) Crop residue mulching in tropical and semi-tropical countries: an evaluation of residue availability and other technological implications. Soil Till Res 67(2):115–133

    Article  Google Scholar 

  • Erenstein O (2009) Adoption and impact of conservation agriculture-based resource conservation technologies. In: 4th world congress on conservation agriculture held on 4–7 February (2009) in New Delhi, organised by the National Academy of Agricultural Sciences, vol Lead Papers. p 439–444

    Google Scholar 

  • Erenstein O, Laxmi V (2008) Zero tillage impacts in India’s rice-wheat systems: a review. Soil Till Res 100:1–14. https://doi.org/10.1016/j.still.2008.05.001

    Article  Google Scholar 

  • FAO (2000) Conservation agriculture. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/ag/ca/ (accessed on 18 June 2017

    Google Scholar 

  • FAO (2001) Conservation agriculture – case studies in Latin America and Africa. FAO Soil Bulletin 78, Rome, Italy

    Google Scholar 

  • FAO (2007) Tropical crop–livestock systems in conservation agriculture. The Brazilian experience, Integrated Crop Management, vol 5. Food and Agriculture Organization of the United Nations, Rome, p 106

    Google Scholar 

  • FAO (2012) What is CA”? “Principles of CA”, “Benefits of CA. Available at: http://www.fao.org/ag/ca/index.html

  • FAO (2015) Conservation agriculture. http://www.fao.org/ag/ca/index.html

  • Ghosh BN, Dogra P, Sharma NK, Bhattacharyya R, Mishra PK (2015) Conservation agriculture impact for soil conservation in maize–wheat cropping system in the Indian Sub-Himalayas. Int Soil Water Conserv Res. https://doi.org/10.1016/j.iswcr.2015.05.001

  • Gicheru PT, Gachene CKK, Mbuvi JP (2006) Effects of soil management practices and tillage systems on soil moisture conservation and maize yield on a sandy loam in semi-arid Kenya. J Sustain Agric 27:77–92. https://doi.org/10.1300/J064v27n03_06

    Article  Google Scholar 

  • Giller KE, Witter E, Corbeels M, T ittonell P (2009) Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crop Res 114:23–34. https://doi.org/10.1016/j.fcr.2009.06.017

    Article  Google Scholar 

  • Giller KE, Andersson JA, Corbeels M, Kirkegaard J, Mortensen D, Erenstein O, Vanlauwe B (2015) Beyond conservation agriculture. Front Plant Sci 6:870. https://doi.org/10.3389/fpls.2015.00870

    Article  PubMed  PubMed Central  Google Scholar 

  • Govaerts B, Mezzalama M, Sayre KD, Crossa J, Nicol JM, Deckers J (2006) Long-term consequences of tillage, residue management, and crop rotation on maize/wheat root rot and nematode populations in subtropical highlands. Appl Soil Ecol 32:305–315

    Article  Google Scholar 

  • Govaerts B, Fuentes M, Mezzalama M, Nicol JM, Deckers J, Etchevers JD, Figueroa Sandoval B, Sayre KD (2007) Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Till Res 94:209–219

    Article  Google Scholar 

  • Govaerts B, Verhulst N, Castellanos-Navarrete A, Sayre K, Dixon J, Dendooven L (2009) Conservation agriculture and soil carbon sequestration: between myth and farmer reality. Crit Rev Plant Sci 28:97–122

    Article  CAS  Google Scholar 

  • Grace PR, Antle J, Ogle S, Paustian K, Basso B (2012) Soil carbon sequestration rates and associated economic costs for farming systems of the Indo-Gangetic Plain. Agric Ecosyst Environ 146:137–146

    Article  Google Scholar 

  • Guto S, Pypers P, Vanlauwe B, de Ridder N (2011) Tillage and vegetative barrier effects on soil conservation and short-term economic benefits in the Central Kenya highlands. Field Crop Res 122:85–94

    Article  Google Scholar 

  • Hansen NC, Tubbs S, Fernandez F, Green S, Hansen NE, Stevens WB (2015) Conservation agriculture in North America. In: Farooq M, Siddique KHM (eds) Conservation agriculture. Springer International Publishing, Dordrecht, pp 417–441

    Google Scholar 

  • Hobbs P, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Phil Trans R Soc B 363:543–555

    Article  PubMed  Google Scholar 

  • Horne DJ, Ross CW, Hughes KA (1992) 10 years of maize oats rotation under 3 tillage systems on a silt loam in New-Zealand. 1. A comparison of some soil properties. Soil Till Res 22:131–143. https://doi.org/10.1007/s13593-012-0106-9

    Article  Google Scholar 

  • Indoria AK, Srinivasa Rao C, Sharma KL, Sammi Reddy K (2017) Conservation agriculture – a panacea to improve soil physical health. Curr Sci 112(1):52–61

    Article  Google Scholar 

  • Jat RA, Wani SP, Sahrawat KL (2012) Conservation agriculture in the semi-arid tropics: prospects and problems. Adv Agron 117:191–273

    Article  CAS  Google Scholar 

  • Kassam A, Friedrich T, Derpsch R, Lahmar R, Mrabet R, Serraj R, Basch G, Gonzalez-Sanchez EJ (2012) Conservation agriculture in the dry Mediterranean climate. Field Crops Res 132:7–17

    Article  Google Scholar 

  • Kimmell RJ, Pierzynski GM, Janssen KA, Barnes PL (2001) Effects of tillage and phosphorus placement on phosphorus losses in a grain sorghum-soybean rotation. J Environ Qual 30:1324–1330. https://doi.org/10.2134/jeq2001.3041324x

    Article  CAS  PubMed  Google Scholar 

  • Knowler D, Bradshaw B (2007) Farmers’ adoption of conservation agriculture: a review and synthesis of recent research. Food Policy 32(1):25–48

    Article  Google Scholar 

  • Lal R (2001) Managing world soils for food security and environmental quality. Adv Agron 74:155–192

    Article  CAS  Google Scholar 

  • Lal R (2005) Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad Dev 17:197–209. https://doi.org/10.1002/ldr.696

    Article  Google Scholar 

  • Lal R (2014) Societal value of soil carbon. J Soil Water Conserv 69(6):168A–192A

    Article  Google Scholar 

  • Lal R (2015) Sequestering carbon and increasing productivity by conservation agriculture. J Soil Water Conserv 70(3):55A–62A

    Article  Google Scholar 

  • Landers JN (2007) Tropical crop–livestock systems in conservation agriculture. The Brazilian experience, Integrated crop management, vol. 5. Food and Agriculture Organization of the United Nations, Rome. pp 106

    Google Scholar 

  • Li HW, Gao HW, Wu HD, Li WY, Wang XY, He J (2007) Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Aust J Soil Res 45:344–350

    Article  Google Scholar 

  • Lichter K, Govaerts B, Six J, Sayre KD, Deckers J, Dendooven L (2008) Aggregation and C and N contents of soil organic matter fractions in a permanent raised-bed planting system in the highlands of Central Mexico. Plant Soil 305:237–252

    Article  CAS  Google Scholar 

  • Lobb D, Kachanoski RG, Miller MH (1995) Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Can J Soil Sci 75:211–218

    Article  Google Scholar 

  • Luo Z, Wang E, Sun OJ (2010) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ 139:224–231

    Article  CAS  Google Scholar 

  • Mannetje L (2007) Climate change and grasslands through the ages: an overview. Grass Forage Sci 62:113–117. https://doi.org/10.1111/j.1365-2494.2007.00574.x

    Article  Google Scholar 

  • Mazvimavi K, Twomlow S (2009) Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe. Agric Syst 101:20–29. https://doi.org/10.1016/j.agsy.2009.02.002

    Article  Google Scholar 

  • McGarry D, Bridge BJ, Radford BJ (2000) Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil Till Res 53:105–115

    Article  Google Scholar 

  • McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55:201–212

    Article  Google Scholar 

  • Metay A, Oliver R, Douzet JM, Bernoux M, Feller C, Feigl B, Rodrigues A, Moreira JA, Scopel E (2003) Short-term evolution of C-CO emissions for a Brazilian Oxisol: effect of tillage and rainfall. In: Producing in harmony with nature. II World congress on Sustainable Agriculture proceedings, Iguaçu, Brazil, 10–15 of August

    Google Scholar 

  • Naab JB, Mahma YG, Yahaya I, Prasad PVV (2017) Conservation agriculture improves soil quality, crop yield, and incomes of smallholder farmers in North Western Ghana. Front Plant Sci 8:996

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyborg M, Solberg ED, Malhi SS, Izaurralde RC (1995) Fertilizer N, crop residue, and tillage alter soil C and N content in a decade. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soil management and greenhouse effect. Lewis Publishers/CRC Press, Boca Raton, pp 93–99

    Google Scholar 

  • Palm C, Blanco-Canqui H, DeClerck F, Gatere L, Grace P (2014) Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ 187:87–105. https://doi.org/10.1016/j.agee.2013.10.010

    Article  Google Scholar 

  • Pathak H (2009) Greenhouse gas mitigation in rice-wheat system with resource conserving technologies. In: Fourth world congress on conservation agriculture, February 4–7, New Delhi, India, pp 373–377

    Google Scholar 

  • Paul KI, Black AS, Conyers MK (2003) Development of acidic subsurface layers of soil under various management systems. Adv Agron 78:187–214

    Article  Google Scholar 

  • Pimental D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpretz L, Fitton L, Saffouri R, Blair R (1995) Environmental and economic costs of soil erosion and conservation benefits. Science 267:1117–1123

    Article  Google Scholar 

  • Pittelkow CM, Liang X, Linquist BA, van Groenigen KJ, Lee J, Lundy ME et al (2015) Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365–368

    Article  CAS  PubMed  Google Scholar 

  • Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA et al (2014) Limited potential of no-till agriculture for climate change mitigation. Nat Clim Chang 4:678–683

    Article  Google Scholar 

  • Rabary B, Sall S, Letourny P, Husson O, Ralambofetra E, Moussa N, Chotte JL (2008) Effects of living mulches or residue amendments on soil microbial properties in direct seeding cropping systems of Madagascar. Appl Soil Ecol 39:236–243

    Article  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341–356

    Article  CAS  Google Scholar 

  • Resck DVS, Vasconcellos CA, Vilela L, Macedo MCM (2000) Impact of conversion of Brazilian Cerrados to cropland and pastureland on soil carbon pool and dynamics. In: Lal R, Kimble JM, Stewart BA (eds) Global climate change and tropical ecosystems. Advances in soil science. CRC, Boca Raton, pp 169–196

    Google Scholar 

  • Richardson AE, Kirkby CA, Banerjee S, Kirkegaard JA (2014) The inorganic nutrient cost of building soil carbon. Carbon Manage 5:265–268. https://doi.org/10.1080/17583004.2014.923226

    Article  CAS  Google Scholar 

  • Rusinamhodzi L, Corbeels M, van Wijk M, Rufino MC, Nyamangara J, Giller KE (2011) A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron Sustain Dev 31:657–763

    Article  Google Scholar 

  • Saturnino HM, Landers JN (eds) (2002) The environment and zero tillage. Associação de Plantio Direto no Cerrado, Brasília, p 144

    Google Scholar 

  • Scopel E, Triomphe B, Ribeiro MF dos S, Séguy L, Denardin JE, Kochhann RA (2004) Direct seeding mulch-based cropping systems (DMC) in Latin America. In: New directions for a diverse planet. Proceedings of the 4th international crop science congress, 26 September–1 October, Brisbane, Australia

    Google Scholar 

  • Scopel E, Triomphe B, Affholder F et al (2013a) Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron Sustain Dev 33:113. https://doi.org/10.1007/s13593-012-0106-9

    Article  Google Scholar 

  • Scopel E, Triomphe B, Affholder F et al (2013b) Agron Sustain Dev 33:113

    Article  Google Scholar 

  • Singh P, Heikkinen J, Ketoja E, Nuutinen V, Palojärv IA, Sheehy J et al (2015) Tillage and crop residue management methods had minor effects on the stock and stabilization of topsoil carbon in a 30-year field experiment. Sci Total Environ 51:8–51., 9: 337–344. https://doi.org/10.1016/j.scitotenv.2015.03.027

    Article  CAS  Google Scholar 

  • Sisti CPJ, dos Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil Tillage Res 76:39–58

    Article  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota and soil organic matter dynamics. Soil Till Res 79:7–31

    Article  Google Scholar 

  • Scopel E, Findeling A, Guerra EC, Corbeels M (2005) Impact of direct sowing mulch-based cropping systems on soil carbon, soil erosion and maize yield. Agron Sustain Dev 25:425–432

    Article  CAS  Google Scholar 

  • Thierfelder C, Wall PC (2010) Investigating conservation agriculture (CA) systems in Zambia and Zimbabwe to mitigate future effects of climate change. J Crop Improv 24:113–121

    Article  Google Scholar 

  • Thierfelder C, Rusinamhodzi R, Ngwira AR, Mupangwa W, Nyagumbo I, Kassie GT, Cairns JE (2014) Conservation agriculture in Southern Africa: advances in knowledge. Renew Agric Food Syst 30:328

    Article  Google Scholar 

  • Twomlow SJ, Urolov JC, Jenrich M, Oldrieve B (2008) Lessons from the field—Zimbabwes conservation agriculture task force. J SAT Agric Res 6(2008):1–11

    Google Scholar 

  • Unger PW (1990) Conservation tillage systems. Adv Soil Sci 13:27–67. https://doi.org/10.1007/978-1-4613-8982-8_3

    Article  Google Scholar 

  • Verhulst N, Govaerts B, Verachtert E, Castellanos-Navarrete A, Mezzalama M, Wall P, Deckers J, Sayre KD (2010) Conservation agriculture, improving soil quality for sustainable production systems? In: Lal R, Stewart BA (eds) Advances in soil science: food security and soil quality. CRC Press, Boca Raton, pp 137–208

    Chapter  Google Scholar 

  • Vilela L, Martha JGB, Barcellos A, De O Barioni LG (2004) Integração lavoura/pecuària:a sustenibilidade do Cerrado. XXV Congresso de Milho e Sorgo, 29th August–9th September, Cuiabà-MT Brazil

    Google Scholar 

  • Wilhelm WW, Wortmann CS (2004) Tillage and rotation interactions for corn and soybean grain yield as affected by precipitation and air temperature. Agron J 96:425–432. https://doi.org/10.2134/agronj2004.0425

    Article  Google Scholar 

  • Wolfarth F, Schrader S, Oldenburg E, Weinert J, Brunotte J (2011) Earthworms promote the reduction of Fusarium biomass and deoxynivalenol content in wheat straw under field conditions. Soil Biol Biochem 43:1858–1865. https://doi.org/10.1016/j.soilbio.2011.05.002

    Article  CAS  Google Scholar 

  • Yang XM, Kay BD (2001) Impacts of tillage practices on total, loose- and occluded particulate, and humified organic carbon fractions in soils within a field in southern Ontario. Can J Soil Sci 81:149–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayyam, V., Palanivel, S., Chandrakasan, S. (2019). Conservation Agriculture for Rehabilitation of Agro-ecosystems. In: Coastal Ecosystems of the Tropics - Adaptive Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-8926-9_18

Download citation

Publish with us

Policies and ethics