Skip to main content

Plant Hormones: Some Glimpses on Biosynthesis, Signaling Networks, and Crosstalk

  • Chapter
  • First Online:
Sensory Biology of Plants

Abstract

Plant hormones are major cellular signaling molecules that modulate growth and development and respond to internal and external cues in plants although differently than is understood about hormones specific to animals. The fortuitous discovery of hormones in animal/human systems and plants occurred around the similar time span. Hormones are also functional in the same cells where they are synthesized as well as in the neighboring or distant cell. Although at least nine plant hormones are now recognized, many more could be discovered and characterized in the future. Their perception, intra- and intercellular movement/communication, and interaction with receptors and gene regulators are better understood now; however, the intimate details are yet to be discovered. Each plant hormone has a unique/specific function and also regulates networks of other hormones via crosstalks involving specific transcription factors and small RNAs. This new knowledge has brought to light the fact that the regulation of plant physiological processes involves a complex crosstalk among different hormones. The new developments in various technologies, including forward genetics, ease of plant transformation systems, and the gain-of-function and loss-of-function model systems, have contributed to the progress made thus far. This chapter provides salient features on hormone biology and selected crosstalks between hormones impacting various plant processes and the responses to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Abeles F, Morgan P, Saltviet N Jr (1992) Ethylene in plant biology. Elsevier, San Diego

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (eds) (2015) Biochemistry & molecular biology of plants, 2nd edn. Wiley Blackwell, New York

    Google Scholar 

  • Dharmasiri NDharmasiri S, Estelle M (2005) Nature 435:441–445

    Article  CAS  Google Scholar 

  • Lifschitz E, Ayre BG, Eshed Y (2014) Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci 5:465

    Google Scholar 

  • Mattoo AK, Suttle J (eds) (1991) The plant hormone ethylene. CRC Press, Boca Raton

    Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol.

    Google Scholar 

References

  • Abts W, Vandenbussche B, De Proft MP, Van de Poel B (2017) The role of auxin-ethylene crosstalk in orchestrating primary root elongation in sugar beet. Front Plant Sci 8:444

    Article  PubMed  PubMed Central  Google Scholar 

  • Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19:1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Addicott FT, Lyon JL (1969) Physiology of abscisic acid and related substances. Annu Rev Plant Physiol 20:139–164

    Article  CAS  Google Scholar 

  • Addicott FT, Lyon JL, Ohkuma K, Thiessen WE, Carns HR, Smith OE, Cornforth JW, Milborrow BV, Ryback G, Wareing PF (1968) Abscisic acid: a new name for Abscisin II (Dormin). Science 159:1493

    Article  CAS  PubMed  Google Scholar 

  • Alba R, Cordonnier-Pratt MM, Pratt LH (2000) Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. Plant Physiol 123:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar R, Mattoo AK, Handa AK (2015) Polyamine interactions with plant hormones: crosstalk at several levels. In: Kusano T, Suzuki H (eds) Polyamines, vol 22. Springer, Tokyo, pp 267–302

    Google Scholar 

  • Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63

    PubMed  PubMed Central  Google Scholar 

  • Azari R, Reuveni M, Evenor D, Nahon S, Shlomo H, Chen L (2010) Overexpression of UV-damaged DNA binding protein 1 links plant development and phytonutrient accumulation in high pigment-1 tomato. J Exp Bot 61:3627–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar M, Ori N (2014) Leaf development and morphogenesis. Development 141:4219–4230

    Article  CAS  PubMed  Google Scholar 

  • Bargmann BOR, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann DC, Estelle M, Birnbaum KD (2013) A map of cell type-specific auxin responses. Mol Syst Biol 9:688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159

    Article  CAS  Google Scholar 

  • Bassel GW, Mullen RT, Bewley JD (2008) Procera is a putative DELLA mutant in tomato (Solanumlycopersicum): effects on the seed and vegetative plant. J Exp Bot 59:585–593

    Article  CAS  PubMed  Google Scholar 

  • Bayliss WM, Starling EH (1902) Mechanism of pancreatic secretion. J Physiol 28:325–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benková E, Hejátko J (2009) Hormone interactions at the root apical meristem. Plant Mol Biol 69:383–396

    Article  PubMed  CAS  Google Scholar 

  • Bianchetti RE, Lira BS, Moneiro SS, DeMarco D, Purgatto E, Rossi M (2018) Fruit-localized phytochromes regulate plastid biogenesis, starch synthesis and carotenoid metabolism in tomato. J Exp Bot 69:3573–3586

    Article  CAS  Google Scholar 

  • Biondi S, Scaramagli S, Capitani F, Altamura MM, Torrigiani P (2001) Methyl jasmonate upregulates biosynthetic gene expression, oxidation and conjugation of polyamines, and inhibits shoot formation in tobacco thin layers. J Exp Bot 52:231–242

    Article  CAS  PubMed  Google Scholar 

  • Bishopp A, Lehesranta S, Vaten V, Help H, El-Showk E, Scheres B, Helariutta K, Mahonen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21:927–932

    Article  CAS  PubMed  Google Scholar 

  • Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21:1647–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braybrook SA, Kuhlemeier C (2010) How a plant builds leaves. Plant Cell 22:1006–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitel DA, Chappell-Maor L, Meir S, Panizel I, Puig CP, Hao Y, Yifhar T, Yasuor H, Zouine M, Bouzayen M, Granell Richart A, Rogachev I, Aharoni A (2016) AUXIN RESPONSE FACTOR 2 intersects hormonal signals in the regulation of tomato fruit ripening. PLoS Genet 12:e1005903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Chandra-Shekhar KN, Sawhney VK (1991) Regulation of leaf shape in the solanifolia mutant of tomato (Lycopersiconesculentum) by plant growth substances. Ann Bot 67:3–6

    Article  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY (2005) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139:1750–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chotikacharoensuk T, Arteca RN, Arteca JM (2006) Use of differential display for the identification of touch-induced genes from an ethylene-insensitive Arabidopsis mutant and partial characterization of these genes. J Plant Physiol 163:130–1320

    Article  CAS  Google Scholar 

  • Clouse SD (2011) Brassinosteroids. Arabidopsis Book 9:e0151

    Article  PubMed  PubMed Central  Google Scholar 

  • Collett CE, Harberd NP, Leyser O (2000) Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol 124:553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H (2014) Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz AB, Bianchetti RE, Alves FRR, Purgatto E, Peres LEP, Rossi M, Freschi L (2018) Light, ethylene and auxin signaling interaction regulates carotenoid biosynthesis during tomato fruit ripening. Front Plant Sci 9:1370

    Article  PubMed  PubMed Central  Google Scholar 

  • DeMason DA, Chetty VJ (2011) Interactions between GA, auxin, and UNI expression controlling shoot ontogeny, leaf morphogenesis, and auxin response in Pisum sativum (Fabaceae): or how the uni-tac mutant is rescued. Am J Bot 98:775–791

    Article  CAS  PubMed  Google Scholar 

  • Fabregas N, Lozano-Elena F, Blasco-Escamez D, Tohge T, Martinez-Andujar C, Albacete A, Osorio S, Bustamante M, Riechmann JL, Nomura T, Yokota T, Conesa A, Alfocea FP, Fernie AR, Cano-Delgado AI (2018) Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat Commun 9:4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farquharson KL (2014) A rice KNOX transcription factor represses brassinosteroid production in the shoot apical meristem. Plant Cell 26:3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatima T, Sobolev A, Teasdale J, Kramer M, Bunce J, Handa A, Mattoo AK (2016) Fruit metabolite networks in engineered and non-engineered tomato genotypes reveal fluidity in a hormone and agroecosystem specific manner. Metabolomics 12:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finch CE, Rose MR (1995) Hormones and the physiological architecture of life history evolution. Q Rev Biol 70:1–52

    Article  CAS  PubMed  Google Scholar 

  • Fleishon S, Shani E, Ori N, Weiss D (2011) Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytol 190:609–617

    Article  CAS  PubMed  Google Scholar 

  • Frugis G, Giannino D, Mele G, Nicolodi C, Chiappetta A, Bitonti MB, Innocenti AM, Dewitte W, Van Onckelen H, Mariotti D (2001) Overexpression of KNAT1 in lettuce shifts leaf determinate growth to a shoot-like indeterminate growth associated with an accumulation of isopentenyl-type cytokinins. Plant Physiol 126:1370–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gane R (1934) Production of ethylene by some ripening fruits. Nature (London) 134:1008

    Article  CAS  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–181

    Article  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283–289

    Article  CAS  PubMed  Google Scholar 

  • Girardin JPL (1864) Jahresber. Agrikult Chem Versuchssta Berlin 7:199

    Google Scholar 

  • Gonzalez ME, Marco F, Minguet EG, Carrasco-Sorli P, Blázquez MA, Carbonell J, Ruiz OA, Pieckenstain FL (2011) Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetra-amine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiol 156:2266–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray RA (1957) Alteration of leaf size and shape and other changes caused by gibberellins in plants. Am J Bot 44:674–682

    Article  CAS  Google Scholar 

  • Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olszewski N, Ori N, Eshed Y, Weiss D (2005) Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17:92–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava NB, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Guo J, Wang S, Yu X, Dong R, Li Y, Mei X, Shen Y (2018) Polyamines regulate strawberry fruit ripening by abscisic acid, auxin, and ethylene. Plant Physiol 177:339–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48:540–546

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Hu G, Breitel D, Liu M, Mila I, Frasse P, Fu Y, Bouzayen M, Zouine M (2015) Auxin Response Factor SlARF2 is an essential component of the regulatory mechanism controlling fruit ripening in tomato. PLoS Genet 11:e1005649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hauck C, Muller S, Schildknecht H (1992) A germination stimulant for parasitic flowering plants from Sorghum bicolor, a genuine host plant. J Plant Physiol 139:474–478

    Article  CAS  Google Scholar 

  • Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:155–1565

    Article  Google Scholar 

  • Hori S (1898) Some observations on ‘Bakanae’ disease of the rice plant. Mem Agric Res Sta (Tokyo) 12:110–119

    Google Scholar 

  • Hu Y, Vandenbussche F, Van Der Straeten D (2017) Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. Planta 245:467–489

    Article  CAS  PubMed  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  CAS  PubMed  Google Scholar 

  • Jasinski S, Tattersall A, Piazza P, Hay A, Martinez-Garcia JF, Schmitz G, Theres K, McCormick S, Tsiantis M (2008) PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato. Plant J 56:603–612

    Article  CAS  PubMed  Google Scholar 

  • Jones GM (1987) Gibberellins and the procera mutant of tomato. Planta 172:280–284

    Article  CAS  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR et al (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I (2010) R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152:1731–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A et al (2007) Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol 145:389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolotilin I, Koltai H, Bar-Or C, Chen L, Nahon S, Shlomo H, Levin I, Reuveni M (2011) Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit. Physiol Plant 142:211–223

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Mills DJ, Anderson JD, Mattoo AK (2004) An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc Natl Acad Sci USA 101:10535–10540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Chang WK, Evans ML (1990) Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. Plant Physiol 94:1770–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehman A, Black R, Ecker JR (1996) HOOKLESS1, an ethylene response gene, is required for differential cell elongation in Arabidopsis hypocotyls. Cell 85:183–194

    Article  CAS  PubMed  Google Scholar 

  • León J, Rojo E, Sa’nchez-Serrano JJ (2001) Woundsignalling in plants. J Exp Bot 52:1–9

    Article  PubMed  Google Scholar 

  • Letham DS (1967) Regulators of cell division in plant tissue: a comparison of the activities of zeatin and other cytokinins in five bioassays. Planta 74:228–242

    Article  CAS  PubMed  Google Scholar 

  • Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A (2003) The tomato dark green mutation is a novel allele of the tomato homolog of the deetiolated1 gene. Theor Appl Genet 106:454–460

    Article  CAS  PubMed  Google Scholar 

  • Levin I, de Vos C, Tadmor Y, Bovy A, Lieberman M, Oren-Shamir M et al (2006) High pigment tomato mutants—more than just lycopene (a review). Isr J Plant Sci 54:179–190

    Article  CAS  Google Scholar 

  • Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1mutant phenotype. Theor Appl Genet 108:1574–1581

    Article  CAS  PubMed  Google Scholar 

  • Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253–270

    Article  CAS  PubMed  Google Scholar 

  • Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE et al (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidiumsativum and Arabidopsis thaliana. Plant Cell 21:3803–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Roof S, Ye Z, Barry C, Van Tuinent A, Vrebalov J et al (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 101:9897–9902

    Article  CAS  Google Scholar 

  • Liu M, Pirrello J, Chervin C, Roustan J-P, Bouzayen M (2015) Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol 169:2380–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CC, Ahammed GJ, Wang GT, Xu CJ, Chen KS, Zhou YH et al (2018) Tomato CRY1a plays a critical role in the regulation of phytohormone homeostasis, plant development, and carotenoid metabolism in fruits. Plant Cell Environ 41:354–366

    Article  CAS  PubMed  Google Scholar 

  • Llorente B, D’Andrea L, Ruiz-Sola MA, Botterweg E, Pulido P, Andilla J et al (2016) Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J 85:107–119

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorrai R, Gandolfi F, Boccaccini A, Ruta V, Possenti M, Tramontano A, Costantino P, Lepore R, Vittorioso P (2018) Genome-wide RNA-seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling. Sci Rep 8:15895

    Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, Xiang CB (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12:e1006076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ (2011) The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a colorless non-ripening dependent manner. Plant Physiol 157:1568–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattoo AK, Sobieszczuk-Nowicka E (2019) Polyamine as signaling molecules and leaf senescence. In: Sarwat M, Tuteja N (eds) Senescence signalling and control in plants. Elsevier, Academic, pp 125–138

    Chapter  Google Scholar 

  • Mattoo AK, Minocha SC, Minocha R, Handa AK (2010) Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids 38:405–413

    Article  CAS  PubMed  Google Scholar 

  • Mayzlish-Gati E, Laufer D, Grivas CF et al (2015) Strigolactone analogs act as new anti-cancer agents in inhibition of breast cancer in xenograft model. Cancer Biol Ther 16:1682–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  CAS  PubMed  Google Scholar 

  • Miller CO (1961) A kinetin-like compound in maize. Proc Natl Acad Sci USA 47:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121

    Article  CAS  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    Article  CAS  PubMed  Google Scholar 

  • Murphy A (2015) Hormone crosstalk in plants. J Exp Bot 66:4853–4854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambeesan S, AbuQamar S, Laluk K, Mattoo AK, Mickelbart MV, Ferrnuzzi MG, Mengiste T, Handa AK (2012) Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:1034–1045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neljubov D (1901) Uber die horizontale nutation der stengel von Pisum sativum und einigerandererpflanzen. Pflanzen Beih Bot Zentralbl 10:128–138

    Google Scholar 

  • Nooden LD, Kahanak GM, Okatan Y (1979) Science 206:841–843

    Article  CAS  PubMed  Google Scholar 

  • O’Malley BW (1989) Editorial: did eukaryotic steroid receptors evolve from intracrine gene regulators? Endocrinology 125:1119–1120

    Article  PubMed  Google Scholar 

  • Parra-Lobeto MC, Gomez-Jimenez MC (2011) Polyamine-induced modulation of genes involved in ethylene biosynthesis and signaling pathways and nitric oxide production during olive mature fruit abscission. J Exp Bot 62:4447–4465

    Article  CAS  Google Scholar 

  • Pech JC, Purgatto E, Bouzayen M, Latché A (2012) Ethylene and fruit ripening. Annu Plant Rev 44:275–304

    Article  CAS  Google Scholar 

  • Peck SC, Kende H (1995) Sequential induction of the ethylene biosynthesis enzymes by indole-3-acetic acid in etiolated peas. Plant Mol Biol 28:293–301

    Article  CAS  PubMed  Google Scholar 

  • Peck SC, Kende H (1998) Differential regulation of genes encoding 1-aminocyclopropane-carboxylate (ACC) synthase in etiolated pea seedlings: effects of indole-3-acetic acid, wounding, and ethylene. Plant Mol Biol 38:977–982

    Google Scholar 

  • Phinney BO (1983) The history of gibberellins. In: Crozier A (ed) The biochemistry and physiology of gibberellins. Praeger, New York, pp 19–52

    Google Scholar 

  • Pieck M, Yuan Y, Godfrey J, Fisher C, Zolj S, Vaughan D et al (2015) Auxin and tryptophan homeostasis are facilitated by the ISS1/VAS1 aromatic aminotransferase in Arabidopsis. Genetics 201:185–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piringer AA, Heinze PH (1954) Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol 29:467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitts RJ, Cernac A, Estelle M (1998) Auxin and ethylene promote root hair elongation in Arabidopsis. Plant J 16:553–560

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Hosokawa S, Oono Y, Amakawa T, Goto N, Tsurumi S (2002) Auxin and ethylene response interactions during Arabidopsis root hair development dissected by auxin influx modulators. Plant Physiol 130:1908–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J et al (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakakibara H, Suzuki M, Takei K, Deji A, Taniguchi M, Sugiyama T (1998) A response-regulator homolog possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J 14:337–344

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF et al (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Schofield A, Paliyath G (2005) Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity. Plant Physiol Biochem 43:1052–1060

    Article  CAS  PubMed  Google Scholar 

  • Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM et al (2002) De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr Biol 12:1462–1472

    Article  CAS  PubMed  Google Scholar 

  • Sequera-Mutiozabal MI, Erban A, Kopka J, Atanasov KE, Bastida J, Fotopoulos V, Alcázar R, Tiburcio AF (2016) Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front Plant Sci 7:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N (2010) Cytokinin regulates compound leaf development in tomato. Plant Cell 22:3206–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222

    Article  CAS  PubMed  Google Scholar 

  • Shwartz I, Levy M, Ori N, Bar M (2016) Hormones in tomato leaf development. Dev Biol 419:132–142

    Article  CAS  PubMed  Google Scholar 

  • Sobieszczuk-Nowicka E, Paluch-Lubawa E, Mattoo AK, Arasimowicz-Jelonek M, Gregersen PL, Pacak A (2019) Polyamines – a new metabolic switch: crosstalk with networks involving senescence, crop improvement, and mammalian cancer therapy. Front Plant Sci 10:859

    Google Scholar 

  • Sobieszczuk-Nowicka E, WrzesiÅ„ski T, Bagniewska-Zadworna A, Sz K, RuciÅ„ska-Sobkowiak R, Polcyn W, Misztal L, Mattoo AK (2018) Physio-genetic signatures of dark-induced leaf senescence and its reversal in the monocot barley. Plant Physiol 178:654–671

    Google Scholar 

  • Sobolev A, Neelam A, Fatima T, Shukla V, Handa AK, Mattoo AK (2014) Genetic introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on the primary metabolome. Front Plant Sci 5:632

    Google Scholar 

  • Solano R, Stepanova A, Chao QM, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner E, Efroni I, Gopalraj M, Saathoff K, Tseng TS, Kieffer M, Eshed Y, Olszewski N, Weiss D (2012) The Arabidopsis O-linked N-acetylglucosaminetransferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24:96–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner E, Livne S, Kobinson-Katz T, Tal L, Pri-Tal O, Mosquna A, Tarkowská D, Muller B, Tarkowski P, Weiss D (2016) SPINDLY inhibits class I TCP proteolysis to promote sensitivity to cytokinin. Plant Physiol 171:1485–1494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Diretto G, Purgatto E, Danoun S, Zouine M, Li Z et al (2015) Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol 15:114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subbiah V, Reddy KJ (2010) Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J Biosci 35:451–458

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama T, Sakakibara H (2002) Regulation of carbon and nitrogen assimilation through gene expression. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer, Dordrecht, pp 227–238

    Chapter  Google Scholar 

  • Swarup R, Perry P, Hangenbeek D, Van Der Straeten D, Beemster GT, Sandberg G et al (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19:2186–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8:e24260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138:2337–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8:943–948

    Article  CAS  PubMed  Google Scholar 

  • Thimann KV, Koepfli JB (1935) Identity of the growth-promoting and root-forming substances of plants. Nature 135:101

    Article  CAS  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda K, Kurata N, Ohyanagi H, Hake S (2014) Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice. Plant Cell 26:3488–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27:2261–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Poel B, Smet D, Van Der Straeten D (2015) Ethylene and hormonal crosstalk in vegetative growth and development. Plant Physiol 169:61–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Tuinen A, Peters AHLJ, Kendrick RE, Zeevart JAD, Koornneef M (1999) Characterization of the procera mutant of tomato and the interaction of gibberellins with end-of-day far-red light treatment. Physiol Plant 106:121–128

    Article  Google Scholar 

  • Veit B (2004) Determination of cell fate in apical meristems. Curr Opin Plant Biol 7:57–64

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S, Asami T, Chory J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505–513

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang Z, Chen Q et al (2004) Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol 55:183

    Article  CAS  PubMed  Google Scholar 

  • Weijers D, Nemhauser J, Yang Z (2018) Auxin: small molecule, big impact. J Exp Biol 69:133–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng L, Zhao F, Li R, Xiao H (2015) Cross-talk modulation between ABA and ethylene by transcription factor SlZFP2 during fruit development and ripening in tomato. Plant Signal Behav 10:e1107691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson RL, Bakshi A, Binder BM (2014) Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. Front Plant Sci 5:433

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K (2007) 2′-epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem 55:8067–8072

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K (2005) Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol 58:585–596

    Article  CAS  PubMed  Google Scholar 

  • Yen HC, Shelton BA, Howard LR, Lee S, Vrebalov J, Giovannoni JJ (1997) The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet 95:1069–1079

    Article  CAS  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Sakai H, Okuno K, Yoneyama K, Takeuchi Y (1998) Alectrol and orobanchol, germination stimulants for Orobanche minor, from its host red clover. Phytochemistry 49:1967–1973

    Article  CAS  Google Scholar 

  • Yoshida S, Mandel T, Kuhlemeier C (2011) Stem cell activation by light guides plant organogenesis. Genes Dev 25:1439–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Guo Y, Novak O, Dai Z, Zhao Y, Ljung K et al (2013) Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol 9:244–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwanenburg B, Blanco-Ania D (2018) Strigolactones: new plant hormones in the spotlight. J Exp Bot 69:2205–2218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Autar K. Mattoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mattoo, A.K., Upadhyay, R.K. (2019). Plant Hormones: Some Glimpses on Biosynthesis, Signaling Networks, and Crosstalk. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_9

Download citation

Publish with us

Policies and ethics