Skip to main content

Integration of Multiple Signaling Cues

  • Chapter
  • First Online:
  • 1172 Accesses

Abstract

Plants and other eukaryotes are quite complex organisms. They have highly specialized tissues carrying out various tasks. The activities of all these tissues is to be coordinated for normal function of plants. For example, when there are enough resources that are available for uptake by roots, aerial parts should be geared up for increased biosynthetic activity. They would need some communication to be ready for this enhanced biosynthetic activity. When conditions are not favorable, then plants would like to shut off or slow down biosynthetic activity to be in survival mode and wait for unfavorable conditions to go away. These unfavorable conditions are mostly sensed at the membrane level, and the biosynthetic activities are controlled at the nuclear level by genes and transcription factors regulating genes. The environmental conditions affecting plants can be varied like heat stress, cold stress, drought stress, or infection by some pathogen. These may be sensed in different ways but the effect may be a common effect, like decreasing or increasing the growth. This suggests that different signals might converge and crosstalk to achieve the desirable responses of plants in response to various developmental or environmental cues. We have identified some of the candidates which are involved in signal integration. Role of these integrators like Della proteins, calcium, phytochrome-interacting factors (PIFs), constitutive photomorphogenic 1 (COP1), ubiquitin ligases, mitogen-activated kinases, WRKY proteins, and mediator complex has been discussed. All these integrators mediate responses of plants to more than one environmental factor. These signal integrators have been found to also interact with each other. The complexity of the signal integration can be highlighted by one fascinating example of signal integration involving Della proteins, which were initially identified as repressor of gibberellin responses. C-repeat binding factor (CBF1), which mediates responses to cold/desiccation stresses and PIFs, which were initially found to mediate light responses, stimulate expression of genes encoding Della proteins. Della proteins on the other hand are involved in mediating responses of several other hormones, including auxin, abscisic acid, and brassinosteroid at various levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achard P, Cheng H, Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 331:91–94

    Article  CAS  Google Scholar 

  • Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660

    Article  CAS  PubMed  Google Scholar 

  • Adachi H, Nakano T, Miyagawa N, Ishihama N, Yoshioka M, Katou Y, Yaeno T, Shirasu K, Yoshioka H (2015) WRKY transcription factors phosphorylated by MAPK regulate a plant immune NADPH oxidase in Nicotiana benthamiana. Plant Cell 27:2645–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An C, Mou Z (2013) The function of the Mediator complex in plant immunity. Plant Signal Behav 8:e23182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ariizumi T, Steber CM (2007) Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis. Plant Cell 19:791–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Backstrom S, Elfving N, Nilsson R, Wingsle G, Bjorklund S (2007) Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol Cell 26:717–729

    Article  PubMed  CAS  Google Scholar 

  • Bernardo-Garcia S, de Lucas M, Martınez C, Espinosa-Ruiz A, Daviere JM, Prat S (2014) BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev 28:1681–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi E et al (2003) Characterization of human constitutivephotomorphogenesis protein 1, a RING finger ubiquitin ligase thatinteracts with Jun transcription factors and modulates theirtranscriptional activity. J Biol Chem 278:19682–19690

    Article  CAS  PubMed  Google Scholar 

  • Boube M, Joulia L, Cribbs DL, Bourbon H-M (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110:143–151

    Article  CAS  PubMed  Google Scholar 

  • Bourbon HM (2008) Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res 36:3993–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourbon H-M, Aguilera A, Ansari AZ, Asturias FJ, Berk AJ, Bjorklund S, Blackwell TK, Borggrefe T, Carey M, Carlson M, Conaway JW, Conaway RC, Emmons SW, Fondell JD, Freedman LP, Fukasawa T, Gustafsson CM, Han M, He X, Herman PK, Hinnebusch AG, Holmberg S, Holstege FCP, Jaehning JA, Kim YJ, Kuras L, Leutz A, Lis JT, Meisterernest M, Naar AM, Nasmyth K, Parvin JD, Ptashne M, Reinberg D, Ronne H, Sadowski I, Sakurai H, Sipiczki M, Sternberg PW, Stillman DJ, Strich R, Struhl K, Svejstrup JQ, Tuck S, Winston F, Roeder RG, Kornberg RD (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol Cell 14:553–557

    Article  CAS  PubMed  Google Scholar 

  • Cai M et al (2008) Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ 31:86–96

    Article  CAS  PubMed  Google Scholar 

  • Calderini O, Bögre L, Vicente O, Binarova P, Heberle-Bors E, Wilson C (1998) A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci 111:3091–3100

    CAS  PubMed  Google Scholar 

  • Campos ML, Yoshida Y, Major IT, de Oliveira FD, Weraduwage SM, Froehlich JE, Johnson BF, Kramer DM, Jander G, Sharkey TD (2016) Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nat Commun 7:12570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canet JV, Dobón A, Pablo Tornero P (2012) Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid. Plant Cell 24:4220–4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao D, Hussain A, Cheng H, Peng J (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223:105–113

    Article  CAS  PubMed  Google Scholar 

  • Cardinale F, Jonak C, Ligterink W, Niehaus K, Boller T, Hirt H (2000) Differential activation of four specific MAPK pathways by distinct elicitors. J Biol Chem 275:36734–36740

    Article  CAS  PubMed  Google Scholar 

  • Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ (2012) MEDIATOR 25 acts as an integrative hub for the regulation of jasmonate- responsive gene expression in Arabidopsis. Plant Physiol 160:541–555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanism of auxin - regulated gene expression in plants. Annu Rev Genetics 43:265–285

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N (1998) Arabidopsis thaliana bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W et al (2012) The Arabidopsis Mediator subunit MED 25 differentially regulates jasmonate and abscisic acid Signalling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhanga L, Li D, Wanga F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci E1963–E1971

    Google Scholar 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu JQ, Chen Z (2013) Protein-protein interactions in the regulation of WRKY transcription factors. Mol Plant 6:287–300

    Article  CAS  PubMed  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–673

    Article  CAS  PubMed  Google Scholar 

  • Claudia J, László Ö, László B, Heribert H (2002) Complexity, cross talk and integration of plant MAP kinase Signalling. Curr Opin Plant Biol 5:415–424

    Article  Google Scholar 

  • Dang F, Wanga Y, Shea J, Leia Y, Liua Z, Eulgemd T, Laia Y, Lina J, Yua L, Leia D, Guanb D, Lia X, Yuana Q, He S (2014) Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Physiol Plant 150:39–411

    Article  CAS  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotech Adv 32:40–52

    Article  CAS  Google Scholar 

  • Deng X-W, Caspar T, Quail PH (1991) Copl: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5:1172–1182

    Article  CAS  PubMed  Google Scholar 

  • Deng X-W, Matsui M, Wei N, DorisWagner D, Chu AM, Feldmann KA, Quail PH (1992) COP1, an arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβhomologous domain. Cell 71:791–801

    Article  CAS  PubMed  Google Scholar 

  • Dhawan R, Luo H, Foerster AM, Abuqamar S, Du H-N, Briggs SD et al (2009) HISTONE MONOUBIQUITINATION1 Interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21:1000–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieterle M, Buche C, Schafer E, Kretsch T (2003) Characterization of a novel non-constitutive photomorphogenic cop1 allele. Plant Physiol 133:1557–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dill A, Sun T-p (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777–785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profilesof the Arabidopsis WRKY gene superfamily during plant defence response, Plant Mol. Biol 51:21–37

    CAS  Google Scholar 

  • Elfving N, Davoine C, Benlloch R, Blomberg J, Brännström K, Muller D et al (2011) The Arabidopsis thaliana Med25 Mediator subunit integrates environmental cues to control plant development. Proc Natl Acad Sci U S A 108:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcriptionfactors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fan Q, Song A, Jiang J, Zhang T, Sun H, Wang Y, Chen S, Chen F (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. PLoS ONE 11:e0150572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiil BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12:615–621

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108:20231–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NRP3 and NRP4 are receptors for the immune signal salicylic acis in plants. Nature 486:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan Y, Yu H, Peng J, Pierre Broun P (2007) Genetic and molecular regulation by DELLA proteins of Trichome development in Arabidopsis. Plant Physiol 145:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego-Bartolome J, Alabadi D, Blázquez M (2011) DELLA-induced early transcriptional changes during etiolated development in Arabidopsis thaliana. PLoS One 6:e23918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillmor CS, Park MY, Smith MR, Pepitone R, Kerstetter RA, Poethig RS (2010) The MED12-MED13 module of Mediator regulates the timing of embryo patterning in Arabidopsis thaliana. Development 137:113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez D, Bowen AJ, Carroll TS, Conlan RS (2007) The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription. Mol Cell Biol 27:5306–5315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    Article  CAS  PubMed  Google Scholar 

  • Hersch M, Lorrain S, de Wit M, Trevisan M, Ljung K, Bergmann S, Fankhauser C (2014) Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. Proc Natl Acad Sci U S A 111:6515–6520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Lihua Ding L, Yu H (2013) Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Rep 32:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Zou C, Shiu SH, Vierstra RD (2011) Phylogenetic comparison of F-Box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS ONE 6:e16219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida S, Fukazawa J, Yuasa T, Takahashi Y (2004) Involvement of 14-3-3 signalling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell 16:2641–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihama, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15:431–437

    Article  CAS  PubMed  Google Scholar 

  • Jiang YQ, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis thaliana roots reveals novel classes of responsive genes. BMC Plant Biol 6:article25

    Article  CAS  Google Scholar 

  • Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  • Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH (2004) A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 16:3033–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna R, Shen Y, Marion CM, Tsuchisaka A, Theologis A, Schafer E, Quail PH (2007) The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell 19:3915–3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM et al (2009) The Mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defence in Arabidopsis. Plant Cell 21:2237–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Yamaguch S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008a) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KC, Lai Z, Fan B, Chen Z (2008b) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defence. Plant Cell 20:2357–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King K, Moritz T, Harberd NP (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H (2002) Calcium signalling during abiotic stress in plants. Int Rev Cytol 195:269–324

    Article  Google Scholar 

  • Knight H, Veale EL, Warren GJ, Knight MR (1999) The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell 11:875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight H, Thomson AJW, McWatters HG (2008) Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock. Plant Physiol 148:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Schluttenhofer CM, Bhide K, Shreve J, Thimmapuram J, Lee SY et al (2014) MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 5:3064

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Cheng H, King KE, Wang W, Husssain A, Lo J, Harberd NP, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is upregulated following imbibition. Genes Dev 16:646–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng X-W (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Jung JH, Llorca LC, Kim SG, Lee S, Baldwin IT, Park CM (2014) FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun 5:5473

    Article  PubMed  Google Scholar 

  • Legris M, Nieto C, Sellaro R, Prat S, Casal JJ (2017) Perception and signalling of light and temperature cues in plants. Plant J 90:683–697

    Article  CAS  PubMed  Google Scholar 

  • Li J (2014) Role of WRKY transcription factors in Arabidopsis development and stress responses. Helsinki University Printing House, Helsinki

    Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhou X, Chen L, Huang W, Yu D (2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 29:475–483

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Fu QT, Chen LG, Huang WD, Yu DQ (2011) Arabidopsis thalianathaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J, Cowing-Zitron C, Cole BJ, Ivans LJ, Pedmale UV, Jung HS, Ecker JR, Kay SA, Chory J (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim S, Park J, Lee N, Jeong J, Toh S, Watanabe A, Kim J, Kang H, Kim DH, Kawakami N (2013) ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25:4863–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Duran R, Zipfel C (2015) Trade-off between growth and immunity: role of brassinosteroids. Trends Plant Sci 20:12–19

    Article  CAS  PubMed  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Wilhelm Gruissem (2002) Calmodulins and Calcineurin B–like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell S389–S400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan S, Lan W, Lee SC (2009) Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL–CIPK network. Curr Opin Plant Biol 12:339–346

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Gao Y, Qu L, Chen Z, Li J, Zhao H et al (2002) Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell 14:2383–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maa D, Li X, Guob Y, Chuc J, Fangc S, Yanc C, Noel JP, Liu H (2016) Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci 113:224–229

    Article  CAS  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23:1639–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín G, Soy J, Monte E (2016) Genomic analysis reveals contrasting PIFq contribution to diurnal rhythmic gene expression in PIF-induced and –repressed genes. Front Plant Sci 7:962

    Article  PubMed  PubMed Central  Google Scholar 

  • Mockaitis K, Howell SH (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24:785–796

    Article  CAS  PubMed  Google Scholar 

  • Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J (1999) Musgrave A and Hirt H (1999) Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J 20:381–388

    Article  CAS  PubMed  Google Scholar 

  • Nozue K, Covington MF, Duek PD, Lorrain AA, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Yamaguchi S, Huc J, Yusukeb J, Jung B, Paik I, Leed HS, Sun TP, Kamiya Y, Choi G (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by directly binding to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G (2009) Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21:403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Zhu JY, Wang ZY (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14:802–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. elife 3:e03031

    Article  PubMed Central  CAS  Google Scholar 

  • Park J, Lee N, Kim W, Lim S, Choi G (2011) ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23:1404–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J et al (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy VS, Ali GS, Reddy ASN (2002) Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem 277:9840–9852

    Article  CAS  PubMed  Google Scholar 

  • Samanta S, Thakur JK (2015) Importance of Mediator complex in the regulation and integration of diversesignaling pathways in plants. Front Plant Sci 6(6):757

    PubMed  PubMed Central  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Serino G, Deng XW (2003) The COP9 signalosome: regulating plant development through the control of proteolysis. Annu Rev Plant Biol 54:165–182

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Yan L, Liu ZQ, Cao Z, Mei C, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22:1909–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Zhu L, Bu Y and Huq E (2012) MAX2 Affects Multiple Hormones to Promote Photo morphogenesis Mol Plant 5: 750–762

    Google Scholar 

  • Shi H, Wang X, Cheng F (2014) The Cys2/His2-type zinc finger transcription factor ZAT6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and CBFs in Arabidopsis. Plant Physiol 165:1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimono M, Sugano S, Nakayama A, Jiang CJ, Ono K, Toki S, Takatsuji H (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstone AL, Ciampaglio CN, T-p S (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, T-p S (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey MG et al (2000) Modular domain structure of Arabidopsis COP1. Reconstitution of activity by fragment complementation andmutational analysis of a nuclear localization signal in planta. Plant Physiol 124:979–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signalling in barley by binding to the sugar responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turck F, Zhou A, Somssich IE (2004) Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in Parsley. Plant Cell 16:2573–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vert G, Nemhauser JL, Geldner N, Hong F, Chory J (2005) Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol 21:177–201

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Bai M-Y, Wang Z-Y (2014) The brassinosteroid signaling network — a paradigm of signal integration. Curr Opin Plant Biol 21:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wathugala DL, Richards SA, Knight H, Knight MR (2011) OsSFR6 is a functional rice orthologue of SENSITIVE TO FREEZING-6 and can act as a regulator of COR gene expression, osmotic stress and freezing tolerance in Arabidopsis. New Phytol 191:984–995

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Yuan T, Tarkowska D, Kim J, Nam HG, Nova O, He K, Gou X, Li J (2017) Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4, and PIF5. Plant Physiol 174:1260–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weingartner M, Binarova P, Drykova D, Schweighofer A, David JP, Heberle-Bors E, Doonan J, Bogre L (2001) Dynamic recruitment of Cdc2 to specific microtubule structures during mitosis. Plant Cell 13:1929–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild M, Davière JM, Cheminant S, Regnault T, Baumberger N, Heintz D, Baltz R, Genschik P, Achard P (2012) The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E (2012) Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24:3530–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M and Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility Science 280, 1091–1094

    Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signalling in aleurone cells. Plant Physiol 137:176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis thaliana WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y et al (2005) Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17:944–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  CAS  PubMed  Google Scholar 

  • Yi C et al (2002) An initial biochemical and cell biological characterization of the mammalian homologue of a central plant developmental switch, COP1. BMC Cell Biol 3:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu H, Ito T, Zhao Y, Peng J, Kumar P, Elliot M, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci U S A 101:7827–7832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li D, Wang M, Liu J, Teng W, Cheng B, Huang Q, Wang M, Song W, Dong S, Zheng X, Zhang Z (2012a) The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses. Mol Plant Microbe Interact 25:1639–1653

    Article  PubMed  Google Scholar 

  • Zhang X, Wang C, Zhang Y, Sun Y, Mou Z (2012b) The Arabidopsis Mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways. Plant Cell 24:4294–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yao J, Zhang Y, Sun Y, Mou Z (2013) The Arabidopsis mediator complex subunits MED14/SWP and MED16/SFR6/IEN1 differentially regulate defence gene expression in plant immune responses. Plant J 75:484–497

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Gu X, Huang S, Jiang W (2016) CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem 108:478–487

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Guan H, Leal F, Grey PH, Oppenheimer DG (2013) Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis. PLoS ONE 8:e53924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong S, Shi H, Xue C, Wei N, Guo H, Deng XW (2014) Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proc Natl Acad Sci U S A 111:3913–3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AKS acknowledges the continuous financial support of DBT as project grants numbered BT/PR6983/PBD/16/1007/2012 and BT/COE/34/SP15209/2015, infrastructure support of UGC in the form of SAP to the department, financial support of DST in the form of Purse grant, and in the form of infrastructure support in FIST programme to the department. The work in the laboratory of YM is funded by grant from DBT (project No. BT/BPA/118/206/2016), DST (EMR/2016/002780), and DU-DST Purse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gambhir, P., Bhola, D., Sharma, S., Mudgil, Y., Sharma, A.K. (2019). Integration of Multiple Signaling Cues. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_21

Download citation

Publish with us

Policies and ethics