Skip to main content

Nucleic Acid Guided Molecular Tool for In-Vivo Theranostic Applications

  • Chapter
  • First Online:
Aptamers

Abstract

Aptamers generated de novo by iterative process of in-vitro selection called Systemic Evolution of Ligand by EXponential enrichment (SELEX) which mimics Darwinian evolution process. SELEX is a powerful and yet simple technique that has been used to isolate DNA or RNA sequences with a function of interest (e.g. ligand-binding or catalysis) from a pool of random-sequence oligonucleotides based on their ability to bind to various types of different targets. Aptamers also known as chemicalbodies because of nature of selection and similarity in their action to antibodies. Aptamers have become attractive molecules in diagnostics and therapeutics rivaling and, in some cases, and extends many features of other molecular probes such as antibodies because of their nanomolar affinities and high specificities toward target molecule, amenable to various modifications, non-immunogenic nature and flexible structure properties. Recently, an increasing number of aptamers have been developed against various biomarkers expressed at the surface of mammalian cells or pathogenic microrganisms. This class of targets (mostly proteins) is associated with several pathologies including cancer, inflammation and infection diseases. Several of these aptamers were tested in-vivo as drugs or as targeting agents for site specific drug delivery, siRNA, microRNA or molecular imaging and may prove useful in the treatment of a wide variety of human maladies, including infectious diseases, cancer, and cardiovascular diseases. In this book chapter, we review the observations that expedited the development of this emerging class of therapeutics and speculate on the efficacy in the clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar S, Benter IF (2007) Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 117:3623–3632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem 118:8329–8332

    Article  Google Scholar 

  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot− aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    Article  CAS  PubMed  Google Scholar 

  • Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berezhnoy A, Stewart CA, Mcnamara JO II, Thiel W, Giangrande P, Trinchieri G, Gilboa E (2012) Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther 20:1242–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boltz A, Piater B, Toleikis L, Guenther R, Kolmar H, Hock B (2011) Bi-specific aptamers mediating tumour cell lysis. J Biol Chem. M111. 238261

    Google Scholar 

  • Borbas KE, Ferreira CS, Perkins A, Bruce JI, Missailidis S (2007) Design and synthesis of mono-and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug Chem 18:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Burmeister PE et al (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12:25–33

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Tong R, Mishra A, Xu W, Wong GC, Cheng J, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498

    Article  CAS  Google Scholar 

  • Cerchia L, De Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525

    Article  CAS  PubMed  Google Scholar 

  • Charlton J, Sennello J, Smith D (1997) In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 4:809–816

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Lafrance ND, Allo MD, Cooper DS, Ladenson PW (1988) Single photon emission computed tomography of the thyroid. J Clin Endocrinol Metab 66:1240–1246

    Article  CAS  PubMed  Google Scholar 

  • Chen HW et al (2008) Molecular recognition of small-cell lung cancer cells using aptamers. ChemMedChem 3:991–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Li D, Zhong J, Wu X, Chen Q, Peng H, Liu S (2011) IL-17RA aptamer-mediated repression of IL-6 inhibits synovium inflammation in a murine model of osteoarthritis. Osteoarthr Cartil 19:711–718

    Article  CAS  Google Scholar 

  • Cibiel A, Pestourie C, Ducongé F (2012) In vivo uses of aptamers selected against cell surface biomarkers for therapy and molecular imaging. Biochimie 94:1595–1606

    Article  CAS  PubMed  Google Scholar 

  • Da Pieve C, Perkins AC, Missailidis S (2009) Anti-MUC1 aptamers: radiolabelling with 99mTc and biodistribution in MCF-7 tumour-bearing mice. Nucl Med Biol 36:703–710

    Article  PubMed  CAS  Google Scholar 

  • Da Rocha Gomes S et al (2012) 99mTc-MAG3-Aptamer for imaging human tumors associated with high level of matrix Metalloprotease-9. Bioconjug Chem 23:2192–2200

    Article  PubMed  CAS  Google Scholar 

  • Dou X-Q et al (2018) Aptamer–drug conjugate: targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity. Int J Nanomedicine 13:763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougherty CA, Cai W, Hong H (2015) Applications of aptamers in targeted imaging: state of the art. Curr Top Med Chem 15:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua P, Kim S, Lee D-k (2011) Nucleic acid aptamers targeting cell-surface proteins. Methods 54:215–225

    Article  CAS  PubMed  Google Scholar 

  • Dua P, Kang HS, Hong S-M, Tsao M-S, Kim S, Lee D-K (2013) Alkaline phosphatase ALPPL-2 is a novel pancreatic carcinoma-associated protein. Cancer Res 73(6):1934–1945

    Article  CAS  PubMed  Google Scholar 

  • Erba PA, Israel O (2014) SPECT/CT in infection and inflammation. Clin Transl Imaging 2:519–535

    Article  Google Scholar 

  • Esposito CL et al (2011) A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS One 6:e24071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Sun L, Wu Y, Zhang L, Yang Z (2016) Bioactivity of 2′-deoxyinosine-incorporated aptamer AS1411. Sci Rep 6:25799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X et al (2017) The bioactivity of d−/l-isonucleoside-and 2′-deoxyinosine-incorporated aptamer AS1411s including DNA replication/microrna expression. Mol Ther Nucleic Acids 9:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Damico L, Shams N, Lowman H, Kim R (2006) Development of ranibizumab, an anti–vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26:859–870

    Article  PubMed  Google Scholar 

  • Ferreira CS, Cheung MC, Missailidis S, Bisland S, Gariepy J (2008) Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res 37:866–876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green LS et al (1995) Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 2:683–695

    Article  CAS  PubMed  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Griffin LC, Tidmarsh GF, Bock LC, Toole JJ, Leung L (1993) In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 81:3271–3276

    Article  CAS  PubMed  Google Scholar 

  • Gutsaeva DR, Parkerson JB, Yerigenahally SD, Kurz JC, Schaub RG, Ikuta T, Head CA (2011) Inhibition of cell adhesion by anti–P-selectin aptamer: a new potential therapeutic agent for sickle cell disease. Blood 117:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding FA, Stickler MM, Razo J, DuBridge R (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 3:256–265. Taylor & Francis

    Article  Google Scholar 

  • Hicke BJ, Stephens AW (2000) Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest 106:923–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicke BJ et al (2006) Tumor targeting by an aptamer. J Nucl Med 47:668

    CAS  PubMed  Google Scholar 

  • Hong H, Goel S, Zhang Y, Cai W (2011) Molecular imaging with nucleic acid aptamers. Curr Med Chem 18:4195–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P-P (2017) Recent advances in aptamers targeting immune system. Inflammation 40:295–302

    Article  CAS  PubMed  Google Scholar 

  • Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, Tan W (2009) Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. Chembiochem 10:862–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ireson CR, Kelland LR (2006) Discovery and development of anticancer aptamers. Mol Cancer Ther 5:2957–2962

    Article  CAS  PubMed  Google Scholar 

  • Jacobson O et al (2015) PET imaging of tenascin-C with a radiolabeled single-stranded DNA aptamer. J Nucl Med 56:616

    Article  CAS  PubMed  Google Scholar 

  • Jalalian SH, Ramezani M, Abnous K, Taghdisi SM (2018) Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett 416:87–93

    Article  CAS  PubMed  Google Scholar 

  • Javier DJ, Nitin N, Levy M, Ellington A, Richards-Kortum R (2008) Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 19:1309–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi R, Janagama H, Dwivedi HP, Kumar TS, Jaykus L-A, Schefers J, Sreevatsan S (2009) Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23:20–28

    Article  CAS  PubMed  Google Scholar 

  • Kang D et al (2012) Selection of DNA aptamers against glioblastoma cells with high affinity and specificity. PLoS One 7:e42731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 3:205–218. Elsevier

    Article  Google Scholar 

  • Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer− gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4:3689–3696

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Choi K-J, Lee M, Jo M-h, Kim S (2012) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–217

    Article  CAS  PubMed  Google Scholar 

  • Ko HY, Lee JH, Kang H, Ryu SH, Song IC, Lee DS, Kim S (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51:98–105

    Article  PubMed  CAS  Google Scholar 

  • Koo V, Hamilton P, Williamson K (2006) Non-invasive in vivo imaging in small animal research. Anal Cell Pathol 28:127–139

    CAS  Google Scholar 

  • Koutsioumpa M, Papadimitriou E (2014) Cell surface nucleolin as a target for anti-cancer therapies. Recent Pat Anticancer Drug Discov 9:137–152

    Article  CAS  PubMed  Google Scholar 

  • Kryza D et al (2016) Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One 11:e0149387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar P, Lambadi PR, Navani NK (2015) Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor. Biosens Bioelectron 72:340–347

    Article  CAS  PubMed  Google Scholar 

  • Lange CW, VanBrocklin HF, Taylor SE (2002) Photoconjugation of 3-azido-5-nitrobenzyl-[18F] fluoride to an oligonucleotide aptamer. J Label Compd Radiopharm 45:257–268

    Article  CAS  Google Scholar 

  • Lao Y-H, Phua KK, Leong KW (2015) Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano 9:2235–2254

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Kim HJ, Heo K (2015) Therapeutic aptamers: developmental potential as anticancer drugs. BMB Rep 48:234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L et al (2010) Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J Control Release 143:274–279

    Article  CAS  PubMed  Google Scholar 

  • Li N, Nguyen HH, Byrom M, Ellington AD (2011) Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One 6:e20299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang X-N, Li X-D, Chang J (2016) Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biol Med 13:339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Duan J-H, Song Y-M, Ma J, Wang F-D, Lu X, Yang X-D (2012) Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med 10:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonpierre PC et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  PubMed  Google Scholar 

  • Mann AP et al (2010) Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting. PLoS One 5:e13050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McNamara JO et al (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and inhibit tumor growth in mice. J Clin Invest 118:376–386

    Article  CAS  PubMed  Google Scholar 

  • Mongelard F, Bouvet P (2010) AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther 12:107–114

    CAS  PubMed  Google Scholar 

  • Morita Y, Leslie M, Kameyama H, Volk DE, Tanaka T (2018) Aptamer therapeutics in Cancer: current and future. Cancers 10:80

    Article  PubMed Central  CAS  Google Scholar 

  • Mor-Vaknin N et al (2017) DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. Nat Commun 8:14252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281

    Article  CAS  PubMed  Google Scholar 

  • Nimjee SM, White RR, Becker RC, Sullenger BA (2017) Aptamers as therapeutics. Annu Rev Pharmacol Toxicol 57:61–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orava EW, Cicmil N, Gariépy J (2010) Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochim Biophys Acta Biomembr 1798:2190–2200

    Article  CAS  Google Scholar 

  • Osborne SE, Matsumura I, Ellington AD (1997) Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol 1:5–9

    Article  CAS  PubMed  Google Scholar 

  • Parekh P, Kamble S, Zhao N, Zeng Z, Portier BP, Zu Y (2013) Immunotherapy of CD30-expressing lymphoma using a highly stable ssDNA aptamer. Biomaterials 34:8909–8917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor F et al. (2013) CD28 aptamers as powerful immune response modulators. Mol Ther Nucleic Acids 2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751

    Article  CAS  PubMed  Google Scholar 

  • Poolsup S, Kim C-Y (2017) Therapeutic applications of synthetic nucleic acid aptamers. Curr Opin Biotechnol 48:180–186

    Article  CAS  PubMed  Google Scholar 

  • Porciani D, Tedeschi L, Marchetti L, Citti L, Piazza V, Beltram F, Signore G (2015) Aptamer-mediated codelivery of doxorubicin and NF-κB decoy enhances chemosensitivity of pancreatic tumor cells. Mol Ther Nucleic Acids:4

    Google Scholar 

  • Prusty DK, Adam V, Zadegan RM, Irsen S, Famulok M (2018) Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells. Nat Commun 9:535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Queirós RB, de-Los-Santos-Álvarez N, Noronha J, MGF S (2013) A label-free DNA aptamer-based impedance biosensor for the detection of E coli outer membrane proteins. Sensors Actuators B Chem 181:766–772

    Article  CAS  Google Scholar 

  • Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207

    Article  PubMed  Google Scholar 

  • Reyes-Reyes E, Šalipur FR, Shams M, Forsthoefel MK, Bates PJ (2015) Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol Oncol 9:1392–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollo F (2003) Molecular imaging: an overview and clinical applications. Radiol Manage 25:28–32. quiz 33-25

    PubMed  Google Scholar 

  • Röthlisberger P, Gasse C, Hollenstein M (2017) Nucleic acid aptamers: emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery. Int J Mol Sci 18:2430

    Article  PubMed Central  CAS  Google Scholar 

  • Ruckman J et al (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165) inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    Article  CAS  PubMed  Google Scholar 

  • Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153:16–22. https://doi.org/10.1016/j.jconrel.2011.02.015

    Article  CAS  PubMed  Google Scholar 

  • Sayyed S et al (2009) Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52:2445–2454

    Article  CAS  PubMed  Google Scholar 

  • Sefah K, Shangguan D, Xiong X, O’donoghue MB, Tan W (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5:1169

    Article  CAS  PubMed  Google Scholar 

  • Shangguan D et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci 103:11838–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H et al (2010) In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chem Asian J 5:2209–2213

    Article  CAS  PubMed  Google Scholar 

  • Shi H et al (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci 108:3900–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigdar S et al (2013) RNA aptamers targeting cancer stem cell marker CD133. Cancer Lett 330:84–95

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Singh S, Lillard JW Jr, Singh R (2017) Drug delivery approaches for breast cancer. Int J Nanomedicine 12:6205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y et al (2013) Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal Chem 85:4141–4149

    Article  CAS  PubMed  Google Scholar 

  • Swierczewska M, Lee S, Chen X (2011) Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 10:7290.2011. 00001

    Article  CAS  Google Scholar 

  • Thiel KW et al (2012) Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Res 40:6319–6337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AZ, Farokhzad OC (2014) Current progress of aptamer-based molecular imaging. J Nucl Med 55:353

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li Z, Hu D, Lin C-T, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276

    Article  CAS  PubMed  Google Scholar 

  • Wang B et al (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens Bioelectron 78:23–30

    Article  CAS  PubMed  Google Scholar 

  • Watson SR, Chang Y-F, O’connell D, Weigand L, Ringquist S, Parma D (2000) Anti-L-selectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo. Antisense Nucleic Acid Drug Dev 10:63–75

    Article  CAS  PubMed  Google Scholar 

  • Willis MC et al (1998) Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug Chem 9:573–582

    Article  CAS  PubMed  Google Scholar 

  • Wilner SE et al (2012) An RNA alternative to human transferrin: a new tool for targeting human cells. Mol Ther Nucleic Acids:1

    Google Scholar 

  • Wu Y, Sefah K, Liu H, Wang R, Tan W (2010) DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci 107:5–10

    Article  CAS  PubMed  Google Scholar 

  • Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249

    Article  CAS  PubMed  Google Scholar 

  • Zamay TN et al (2014) DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Ther 24:160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16:181

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Bobbin M, Burnett JC, Rossi JJ (2012) Current progress of RNA aptamer-based therapeutics. Front Genet 3:234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J et al (2013) Dual functional BAFF receptor aptamers inhibit ligand-induced proliferation and deliver siRNAs to NHL cells. Nucleic Acids Res 41:4266–4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baba, S.A. et al. (2019). Nucleic Acid Guided Molecular Tool for In-Vivo Theranostic Applications. In: Yadav, G., Kumar, V., Aggarwal, N. (eds) Aptamers. Springer, Singapore. https://doi.org/10.1007/978-981-13-8836-1_7

Download citation

Publish with us

Policies and ethics