Skip to main content

Legume Root Rot Control Through Soil Management for Sustainable Agriculture

  • Chapter
  • First Online:
Sustainable Management of Soil and Environment

Abstract

One of the most desired goals in sustainable agriculture is to wisely organize crop management programs which not only improve productivity but also do not disturb agroecosystem. To achieve this outstanding aim, there is no doubt that soil management methods should be considered as a fundamental part of optimizing organic agronomy. Legumes, which are long known as the important source of plant protein, have been recognized to be potential contributors to the sustainability of worldwide agriculture. However, proper cultivation of these valuable food crops is profoundly dependent on plant protection and production strategies. This chapter reviews the literature to provide an improved insight into an array of influential soil attributes and those soil-associated agronomic practices on legume root rot pathosystems for environment-friendly production perspectives. Root rot pathogens can strictly limit benefits of legume cultivation for farming systems via rotted roots, reduced root system expansion, and lower rhizobial nodulation. Legume root rots also cause further losses to crop productivity that discourage farmers from including them in their rotation programs. Therefore, it is crucial to control legume root rots by developing efficient agronomic practices to improve soil suppressiveness against pathogens according to sustainable agriculture and organic farming principles. Such efforts could allow us to not only enhance productivity and sustainability in legume cultivation but also optimize soil health and fertility for non-legume cultivation. Moreover, this sustainable way of suppressing pathogens based on efficient soil management methods can minimize production expenses due to synthetic fertilizers, fungicides, or herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Carbon

CO2:

Carbon dioxide

Fe:

Iron

K:

Potassium

N:

Nitrogen

N2-fixing:

Nitrogen-fixing activity

N2O:

Nitrous oxide

NH3:

Ammonia

P:

Phosphorous

SOC:

Soil organic carbon

SOM:

Soil organic matter

Zn:

Zinc

References

  • Abawi GS (1989) Root rot. In: Schwartz HF, Pastor Corrales MA (eds) Bean production problems: disease, insect, soil and climatic constraints of Phaseolus vulgaris. Centro Internacional de Agricultura Tropical, Cali, pp 105–157

    Google Scholar 

  • Abawi GS, Pastor Corrales MA (1990) Root rots of beans in Latin America and Africa: diagnosis, research methodologies, and management strategies. Centro Internacional de Agricultura Tropical, Cali CO, 114 p

    Google Scholar 

  • Abawi GS, Widmer TL (2000) Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15:37–47

    Article  Google Scholar 

  • Abd-Alla MH, Omar SA, Karanxha S (2000) The impact of pesticides on arbuscular-mycorrhizal and nitrogen-fixing symbioses in legumes. Appl Soil Ecol 14:191–200

    Article  Google Scholar 

  • Abdel-Monaim MF, Abo-Elyousr KAM (2012) Effect of preceding and intercropping crops on suppression of lentil damping-off and root rot disease in New Valley, Egypt. Crop Prot 32:41–46

    Article  Google Scholar 

  • Akhtar MS, Azam T (2014) Effect of PGPR and antagonistic fungi on the growth, enzyme activity and fusarium root-rot of pea. Arch Phytopathol Plant Prot 47:138–148

    Article  CAS  Google Scholar 

  • Akhtar MS, Shakeel U, Siddiqui ZA (2010) Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes, and Rhizobium sp. on lentil. Turk J Biol 32:1–7

    Google Scholar 

  • Alabouvette C, Höper H, Lemanceau P, Steinberg C (1996) Soil suppressiveness to disease induced by soilborne plant pathogens. In: Bollag JM (ed) Soil biochemistry. Marcel Dekker, New York, pp 371–413

    Google Scholar 

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341

    Article  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosys Environ 74:19–31

    Article  Google Scholar 

  • Allen DJ, Lenn e JM (1997) The pathology of food and pasture legumes. CAB International, Cambridge

    Google Scholar 

  • Ansari MM (2010) Integrated management of charcoal rot of soybean caused by Macrophomina phaseolina (Tassi) goid. Soybean Res 8:39–47

    Google Scholar 

  • Arce GD, Pedersen P, Hartzler RG (2009) Soybean seeding rate effects on weed management. Weed Technol 23:17–22

    Article  CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Baehler E, De Werra P, Wick LY, Pechy-Tarr M, Mathys S, Maurhofer M, Keel C (2006) Two novel mvat-like global regulators control exoproduct formation and biocontrol activity in root-associated pseudomonas fluorescens cha. Mol Plant-Microbe Interact 19:313–329

    Article  CAS  PubMed  Google Scholar 

  • Bagayoko M, Buerkert A, Lung G, Bationo A, Römheld V (2000) Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa: soil mineral nitrogen, mycorrhizae and nematodes. Plant Soil 218:103–116

    Article  CAS  Google Scholar 

  • Bagwan NB (2010) Evaluation of Trichoderma compatibility with fungicides, pesticides, organic cakes and botanicals for integrated management of soil borne diseases of soybean (Glycine max L.) Merrill. Int J Plant Prot 3:206–209

    Google Scholar 

  • Bailey JE, Safir GR (1978) Effect of benlate on soybean endomycorrhizae. Phytopathology 68:1810–1812

    Article  CAS  Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Bainard LD, Koch AM, Gordon AM, Klironomos JN (2012) Temporal and compositional differences of arbuscular mycorrhizal fungal communities in conventional monocropping and tree-based intercropping systems. Soil Biol Biochem 45:172–180

    Article  CAS  Google Scholar 

  • Barzegar AR, Asoodar MA, Khadish A, Hashemi AM, Herbert SJ (2003) Soil physical characteristics and chickpea yield responses to tillage treatment. Soil Tillage Res 71:48–57

    Article  Google Scholar 

  • Batish DR, Tung P, Singh HP, Kohli RK (2002) Phytotoxicity of sunflower residues against some summer season crops. J Agron Crop Sci 188:19–24

    Article  CAS  Google Scholar 

  • Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L, Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. Rev Agron Sustain Dev 35:911–935

    Article  Google Scholar 

  • Belay A, Classens AS, Wehner FC, De Beer JM (2001) Influence of residual manure on selected nutrient elements and microbial composition of soil under long–term crop rotation. S Afr J Plant Soil 18:1–6

    Article  Google Scholar 

  • Bertholet J, Clark W (1985) Effect of trifluralin and metribuzin on faba bean growth, development and symbiotic nitrogen fixation. Can J Plant Sci 65:9–20

    Article  CAS  Google Scholar 

  • Black BD, Russin JS, Griffin JL, Snow JP (1996) Herbicide effects on Rhizoctonia solani in vitro and Rhizoctonia foliar blight of soybean (Glycine max). Weed Sci 44:711–716

    Article  CAS  Google Scholar 

  • Blair ID (1943) Behaviour of the fungus Rhizoctonia solani K€uhn in the soil. Ann Appl Biol 30:118–127

    Article  CAS  Google Scholar 

  • Bolkan HA, Wenhara HT, Milne KS (1974) Effect of soil temperature on severity of Rhizoctonia solani infection on potato shoots. Plant Dis Rep 58:646–649

    Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Brady NC, Weil RR (2000) The nature and properties of soils. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Brien RGO, Hare PJO, Glass RJ (1991) Cultural practices in the control of bean root rot. Aust J Exp Agric 31:551–555

    Article  Google Scholar 

  • Brockwell J, Pilka A, Holliday RA (1991) Soil pH is a major determinant of the numbers of naturally-occurring Rhizobium meliloti in non-cultivated soils of New South Wales. Aust J Exp Agric 31:211–219

    Article  Google Scholar 

  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PPM, Jones HG, Karley AJ, Li L, McKenzie BM, Pakeman RJ, Paterson E, Schöb C, Shen J, Squire G, Watson CA, Zhang C, Zhang F, Zhang J, White PJ (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117

    Article  PubMed  Google Scholar 

  • Brown JE, Gilliam CH, Shumack RL, Porch DW (1993) Commercial snap bean response to fertilization with broiler litter. HortScience 28:29–31

    Article  Google Scholar 

  • Bruton BD, Reuveni R (1985) Vertical distribution of microsclerotia of Macrophomina phaseolina under various soil types and host crops. Agric Ecosys Environ 12:165–169

    Article  Google Scholar 

  • Buerkert A, Cassman KG, Piedra R, Munns DN (1990) Soil acidity and liming effects on stand, nodulation and yield of common bean. Agron J 82:749–754

    Article  CAS  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

    Article  Google Scholar 

  • Burke DW, Miller DE (1983) Control of Fusarium root rot with resistant beans and cultural management. Plant Dis 67:1312–1317

    Article  Google Scholar 

  • Campo RJ, Araujo RS, Hungria M (2009) Nitrogen fixation with the soybean crop in Brazil: compatibility between seed treatment with fungicides and bradyrhizobial inoculants. Symbiosis 48:154–163

    Article  CAS  Google Scholar 

  • Canaday CH, Helsel DG, Wyllie TD (1986) Effects of herbicide-induced stress on root colonization of soybeans by Macrophomina phaseolina. Plant Dis 70:863–866

    Article  CAS  Google Scholar 

  • Carling DE, Helm DJ, Leiner RH (1990) In vitro sensitivity of Rhizoctonia solani and other multinucleate and binucleate Rhizoctonia to selected fungicides. Plant Dis 74:860–863

    Article  CAS  Google Scholar 

  • Carson ML, Arnold WE, Todt PE (1991) Predisposition of soybean seedlings to Fusarium root rot with trifluralin. Plant Dis 75:342–347

    Article  CAS  Google Scholar 

  • Chauhan RS, Maheshwari SK, Gandhi SK (2000) Effect of soil type and plant age on stem rot disease. Agric Sci Digest 20:58–59

    Google Scholar 

  • Chemining’wa GN, Vessey JK (2006) The abundance and efficacy of Rhizobium leguminosarum bv. Viciae in cultivated soils of the eastern Canadian prairie. Soil Biol Biochem 38:294–302

    Article  CAS  Google Scholar 

  • Chen J (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility 20. In: International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, vol. 16. Land Development Department, Bangkok

    Google Scholar 

  • Chet I, Baker R (1980) Induction of suppressiveness to Rhizoctonia solani in soil. Phytopathology 70:994–998

    Article  Google Scholar 

  • Collins DJ, Wyllie TD, Anderson SH (1991) Biological activity of M phaseolina in soil. Soil Biol Biochem 23:495–496

    Article  Google Scholar 

  • Conn KL, Lazarovits G (1999) Impact of animal manures on verticillium wilt, potato scab, and soil microbial populations. Can J Plant Pathol 21:81–92

    Article  Google Scholar 

  • Coutinho HL, DeOliveira VM, Moreira FMS (2000) Systematics of legume nodule nitrogen fixing bacteria. In: Goodfellow M (ed) Applied microbial systematics. Kluwer, Dordrecht

    Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J App Nat Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Danso SKA, Zapata F, Hardarson G (1987) Nitrogen fixation in fababeans as affected by plant population density in sole or intercropped systems with barley. Soil Biol Biochem 19:411–415

    Article  Google Scholar 

  • Dart PJ, Mercer FV (1965) The effect of growth temperature, level of ammonium nitrate, and light intensity on the growth and nodulation of cowpea (Vigna sinensis Endl. ex. Hassk.). Aust J Agric Res 16:321–345

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017a) Multi-function role as nutrient and scavenger of free radical in soil. Sustain MDPI (9):402. https://doi.org/10.3390/su9081402

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9:1163; https://doi.org/10.3390/su9071163. 1–18

    Article  CAS  Google Scholar 

  • Dave N, Prajapati K, Patel A, Nadini D, Bariya H (2013) Trichoderma harzianum elicits defense response in Brassica juncea plantlets. Int Res J Biol Sci 2:1–10

    Google Scholar 

  • Davies B, Eagle D, Finney B (1997) Soil management. Farming Press, Ipswich

    Google Scholar 

  • Deacon JW, Mitchell RT (1985) Toxicity of oat roots, oat root extracts, and saponins to zoospores of Pythium spp. and other fungi. Trans Br Mycol Soc 84:479–487

    Article  Google Scholar 

  • Denton MD, Coventry DR, Bellotti WD, Howieson JG (2000) Distribution, abundance and symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii from alkaline pasture soils in South Australia. Aust J Exp Agric 40:25–35

    Article  Google Scholar 

  • Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482

    Article  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Dhingra OD, Chagas D (1981) Effect of soil temperature, moisture, and nitrogen on competitive saprophytic ability of Macrophomina phaseolina. Trans Br Mycol Soc 77:15–20

    Article  CAS  Google Scholar 

  • Dhingra OD, Coelho Netto RA (2001) Reservoir and non-reservoir hosts of bean-wilt pathogen, Fusarium oxysporum f. sp. phaseoli. J Phytopathol 149:463–467

    Article  Google Scholar 

  • Dias T, Dukes A, Antunes PM (2014) Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J Sci Food Agric 95:447–454

    Article  CAS  PubMed  Google Scholar 

  • Dorrance AE, Kleinhenz MD, McClure SA, Tuttle NT (2003) Temperature, moisture, and seed treatment effects on Rhizoctonia solani root rot of soybean. Plant Dis 87:533–538

    Article  CAS  PubMed  Google Scholar 

  • Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376:1–29

    Article  CAS  Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163

    Article  Google Scholar 

  • El-Garhy AMM (2000) Pathological studies on fungal rot diseases on lentil. PhD thesis, Al-Azhar University

    Google Scholar 

  • El-Gizawy NKB, Mehasen SAS (2009) Response of faba bean to bio, mineral phosphorus fertilizers and foliar application with zinc. World Appl Sci J 6:1359–1365

    CAS  Google Scholar 

  • Elias NV, Herridge DF (2014) Crop-available water and agronomic management, rather than nitrogen supply, primarily determine grain yield of commercial chickpea in northern New South Wales. Crop Pasture Sci 65:442–452

    Article  CAS  Google Scholar 

  • Elias NV, Herridge DF (2015) Naturalised populations of mesorhizobia in chickpea (Cicer arietinum L.) cropping soils: effects on nodule occupancy and productivity of commercial chickpea. Plant Soil 387:233–249

    Article  CAS  Google Scholar 

  • El-Mougy NS, Abdel-Kader MM (2008) Long term activity of bio-priming seed treatment for biological control of faba bean root rot pathogens. Australas Plant Pathol 37:464–471

    Article  Google Scholar 

  • Estevez de Jensen C, Kurle JE, Percich JA (2004) Integrated management of edaphic and biotic factors limiting yield of irrigated soybean and dry bean in Minnesota. Field Crops Res 86:211–224

    Article  Google Scholar 

  • Etebu E, Osborn AM (2012) A review of indicators of healthy agricultural soils with pea footrot disease suppression potentials. Sustain Agric Res (2):235–250

    Article  Google Scholar 

  • Fernández-Aparicio M, Amri M, Kharrat M, Rubiales D (2010) Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant. Crop Prot 29:744–750

    Article  Google Scholar 

  • Ferreira MC, Andrade DS, Chueire LMO, Takemura SM, Hungria M (2000) Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol Biochem 32:627–637

    Article  CAS  Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235

    Article  CAS  PubMed  Google Scholar 

  • Fleck NG, Machado CMN, de Souza RS (1984) Eficiencia da consorciacao de culturas no controle de plantas daninhas. Pesq Agrop Brasileira 19:591–598

    Google Scholar 

  • Fritz VA, Allmaras RR, Pfleger FL, Davis DW (1995) Oat residue and soil compaction influences on common root rot (Aphanomyces euteiches) of peas in a fine-textured soil. Plant Soil 171:235–244

    Article  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani R, Wilcockson S, Koocheki A, Leifert C (2008) Soil management for sustainable crop disease control: a review. Environ Chem Lett 6:149–162

    Article  CAS  Google Scholar 

  • Gill JS, Sivasithamparam K, Smettem KRJ (2000) Soil types with different texture affect development of Rhizoctonia root rot of wheat seedlings. Plant Soil 221:113–120

    Article  CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Gleick PH (2003) Global freshwater resources: soft-path solutions for the 21st century. Science 302:1524–1528

    Article  CAS  PubMed  Google Scholar 

  • Gogoi N, Baruah KK, Meena RS (2018) Grain legumes: impact on soil health and Agroecosystem. In: Meena et al (eds) Legumes for soil health and sustainable management, Springer. https://doi.org/10.1007/978-981-13-0253-4_16

    Chapter  Google Scholar 

  • Gorodecki B, Hadar Y (1990) Suppression of Rhizoctonia solani and Sclerotium rolfsii diseases in container media containing composted separated cattle manure and composted grape marc. Crop Prot 9:271–274

    Article  Google Scholar 

  • Gupta O, Kotasthane SR, Khare MN (1987) Factors influencing epidemiology of vascular wilt of chickpea. Proc Natl Acad Sci India 57:86–91

    Google Scholar 

  • Habish HA, Mahdi AA (1976) Effect of soil moisture on nodulation of cowpea and hyacinth bean. J Agric Sci 86:553–560

    Article  Google Scholar 

  • Halvorson AD, Wienhold BJ, Black AL (2002) Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Sci Soc Am J 66:906–912

    Article  CAS  Google Scholar 

  • Hartwig NL, Ammon HU (2002) Cover crops and living mulches. Weed Sci 50:688–699

    Article  CAS  Google Scholar 

  • Harveson RM, Smith JA, Stroup WW (2005) Improving root health and yield of dry beans in the Nebraska panhandle with a new technique for reducing soil compaction. Plant Dis 89:279–284

    Article  CAS  PubMed  Google Scholar 

  • Hassan Dar G, Zargar MY, Beigh GM (1997) Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microbiol Ecol 34:74–80

    Article  CAS  Google Scholar 

  • Hoitink HAJ, Krause MS, Han DY (2001) Spectrum and mechanisms of plant disease control with composts. In: Stoffella PJ, Kahn BA (eds) Compost utilization in horticultural cropping systems. Lewis Publishers, Boca Raton

    Google Scholar 

  • Höper H, Steinberg C, Alabouvette C (1995) Involvement of clay type and pH in the mechanisms of soil suppressiveness to fusarium wilt of flax. Soil Biol Biochem 27:955–967

    Article  Google Scholar 

  • Hossain S, Bergkvis G, Berglund K, MÃ¥rtensson A, Persson P (2012) Aphanomyces pea root rot disease and control with special reference to impact of Brassicaceae cover crops. Acta Agric Scand B Soil Plant Sci 62:477–487

    CAS  Google Scholar 

  • Howieson J, Ballard R (2004) Optimising the legume symbiosis in stressful and competitive environments within southern Australia – some contemporary thoughts. Soil Biol Biochem 36:1261–1273

    Article  CAS  Google Scholar 

  • Huber DM (1963) Investigations on root rot of beans caused by Fusarium solani f. phaseoli. PhD thesis, Michigan State University, USA

    Google Scholar 

  • Hungria M, Chueire LM, Coca RG, Megias M (2001) Preliminary characterization of fast growing rhizobial strains isolated from soybean nodules in Brazil. Soil Biol Biochem 33:1349–1361

    Article  CAS  Google Scholar 

  • Hwang SF, Gossen BD, Turnbull GD, Chang KF, Howard RJ, Thomas AG (2000) Effect of temperature, seeding date, fungicide seed treatment and inoculation with Fusarium avenaceum on seedling survival, root rot severity and yield of lentil. Can J Plant Sci 80:899–907

    Article  Google Scholar 

  • Issa S, Wood M (1995) Multiplication and survival of chickpea and bean rhizobia in dry soils: the influence of strains, matric potential and soil texture. Soil Biol Biochem 27:785–792

    Article  CAS  Google Scholar 

  • Jettner RJ, Siddique KHM, Loss SP, French RJ (1999) Optimum plant density of desi chickpea (Cicer arietinum L.) increases with increasing yield potential in South-Western Australia. Aust J Agric Res 50:1017–1025

    Article  Google Scholar 

  • Jeyabal A, Kupuswamy G (2001) Recycling of organic wastes for the production of vermicom post and its response in rice legume cropping system and soil fertility. Eur J Agron 15:153–170

    Article  CAS  Google Scholar 

  • Jones JP, Woltz SS (1975) Effect of liming and nitrogen source on Fusarium wilt of cucumber and watermelon. Proc Florida State Hortic Soc 88:200–203

    Google Scholar 

  • Jones JP, Engelhard AW, Woltz SS (1989) Management of Fusarium wilt of vegetables and ornamentals by macro and microelement nutrition. In: Engelhard AW (ed) Soilborne plant pathogens: management of diseases with macro- and micro-elements. APS Press, St. Paul

    Google Scholar 

  • Joshi D, Hooda KS, Bhatt JC, Mina BL, Gupta HS (2009) Suppressive effects of composts on soil-borne and foliar diseases of French bean in the field in the western Indian Himalayas. Crop Prot 28:608–615

    Article  Google Scholar 

  • Kakraliya SK, Singh U, Bohra A, Choudhary KK, Kumar S, Meena RS, Jat ML (2018) Nitrogen and legumes: a meta-analysis. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_9

    Chapter  Google Scholar 

  • Kalantari S, Naseri B, Marefat AR, Hemmati R (2018) Improvement of bean yield and Fusarium root rot biocontrol using mixtures of Bacillus, Pseudomonas and Rhizobium. Trop Plant Pathol. In press

    Google Scholar 

  • Karlen DL, Varvel GE, Bullock DG, Cruse RM (1994) Crop rotations for the 21st century. In: Sparks DL (ed) Advances in agronomy, vol 53. Academic Press, London, pp 1–45

    Google Scholar 

  • Kataria HR, Grover RK (1976) Some factors affecting the control of Rhizoctonia solani by systemic and non-systemic fungicides. Ann Appl Biol 82:267–278

    Article  CAS  Google Scholar 

  • Kataria HR, Grover RK (1987) Influence of soil factors, fertilizers and manures on pathogenicity of Rhizoctonia solani on Vigna species. Plant Soil 103:57–66

    Article  Google Scholar 

  • Kausar P, Chohan S, Parveen R (2009) Physiological studies on Lasiodiplodia theobromae and Fusarium solani, the cause of Shesham decline. Mycopathology 7:35–38

    Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832

    Article  CAS  PubMed  Google Scholar 

  • Khodae M, Hemmati R (2016) Evaluation of Trichoderma isolates for biological control of Rhizoctonia root rot of bean in Zanjan. J Plant Prot 29:471–480

    Google Scholar 

  • Khodagholi M, Hemmati R, Naseri B, Marefat A (2013) Genotypic, phenotypic and pathogenicity variation of Fusarium solani isolates, the causal agent of bean root rots in Zanjan province. Iran J Pulses Res 4:111–125

    Google Scholar 

  • Kobriger KM, Hagedorn DJ (1983) Determination of bean root rot potential in vegetable production fields in Wisconsin’s central sands. Plant Dis 67:177–178

    Article  Google Scholar 

  • Krause MS, Madden LV, Hoitink HAJ (2001) Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping-off of radish and Rhizoctonia crown rot and root rot of poinsettia. Phytopathology 91:1116–1123

    Article  CAS  PubMed  Google Scholar 

  • Kucey RMN, Hynes MF (1989) Populations of Rhizobium leguminosarum biovars phaseoli and viciae in fields after bean or pea in rotation with no legumes. Can J Microbiol 35:661–667

    Article  Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017a) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microbiol App Sci 6(3):2566–2573

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Yadav GS, Pandey A (2017b) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9

    Article  Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018a) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Kumar S, Meena RS, Lal R, Yadav GS, Mitran T, Meena BL, Dotaniya ML, EL-Sabagh A (2018b) Role of legumes in soil carbon sequestration. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_4

    Chapter  Google Scholar 

  • Kuo S, Sainju UM, Jellum EJ (1997) Winter cover crops effects on soil organic carbon and carbohydrate in soil. Soil Sci Soc Am J 61:145–152

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration in India. Climate Change 65:277–296

    Article  CAS  Google Scholar 

  • Layek J, Das A, Mitran T, Nath C, Meena RS, Singh GS, Shivakumar BG, Kumar S, Lal R (2018) Cereal+legume intercropping: an option for improving productivity. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_11

    Chapter  Google Scholar 

  • Leach LD, Garber R (1970) Control of Rhizoctonia. biology and pathology of Rhizoctonia solani. University of California Press, Berkeley

    Google Scholar 

  • Liebman M, Ohno T (1998) Crop rotation and legume residue effects on weed emergence and growth: implications for weed management. In: Hatfield JL, Buhler DD, Stewart BA (eds) Integrated weed and soil management. Ann Arbor Press, Chelsea

    Google Scholar 

  • Lodha S, Mathur BK, Solanki KR (1990) Factors influencing population dynamics of Macrophomina phaseolina in arid soils. Plant Soil 125:75–80

    Article  Google Scholar 

  • Lodha S, Sharma SK, Aggarwal RK (2002) Inactivation of Macrophomina phaseolina propagules during composting and effect of composts on dry root rot severity and on seed yield of clusterbean. Eur J Plant Pathol 108:253–261

    Article  Google Scholar 

  • Long PG, Cooke RC (1969) Fungal factors and density-induced mortality in plant species. Trans Br Mycol Soc 52:49–55

    Article  Google Scholar 

  • Loss SP, Siddique KHM, Jettner R, Martin LD (1998) Responses of faba bean (Vicia faba L.) to sowing rate in South-Western Australia I. seed yield, yield components and economic optimum plant density. Aust J Agric Res 49:989–997

    Article  Google Scholar 

  • Majumder B, Mandal B, Bandyopadhyay PK (2008) Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice-berseem agro-ecosystem. Biol Fertil Soils 44:451–461

    Article  Google Scholar 

  • Maloy OC, Burkholder WH (1959) Some effects of crop rotation on Fusarium root rot of bean. Phytopathology 49:583–587

    Google Scholar 

  • Mandal A, Patra AK, Singh D, Swarup A, Masto RE (2007) Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour Technol 98:3585–3592

    Article  CAS  PubMed  Google Scholar 

  • Manning WJ, Crossan DF (1969) Field and greenhouse studies on the effects of plant amendments on Rhizoctonia hypocotyl rot of snapbean. Plant Dis Rep 53:227–231

    Google Scholar 

  • MÃ¥rtensson AM (1992) Effects of agrochemicals and heavy metals on fast-growing rhizobia and their symbiosis with small seeded legumes. Soil Biol Biochem 24:435–445

    Article  Google Scholar 

  • McAllister CB, Garcia-Romera I, Godeas A, Ocampo JA (1994) In vitro interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae. Soil Biol Biochem 26:1369–1374

    Article  Google Scholar 

  • McLaren TI, McLaughlin MJ, McBeath TM, Simpson RJ, Smernik RJ, Guppy CN, Richardson AE (2015) The fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphate. Plant Soil 401:23–38

    Article  CAS  Google Scholar 

  • McLean KL, Hunt J, Stewart A (2001) Compatibility of the biocontrol agent Trichoderma harzianum C52 with selected fungicides. N Z Plant Prot 54:84–88

    Google Scholar 

  • Meena RS, Lal R (2018) Legumes and sustainable use of soils. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_1

    Chapter  Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J App Nat Sci 6(2):344–348

    Article  CAS  Google Scholar 

  • Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797

    Google Scholar 

  • Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western dry zone of India. Bangladesh J Bot 43(2):169–173

    Article  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015a) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. Am J Exp Agric 8(3):159–166

    CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015d) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    Article  Google Scholar 

  • Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015e) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western dry zone of India. Am J Exp Agric 7(3):170–177

    CAS  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J App Nat Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    Article  Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017b) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based Agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227

    Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017c) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018a) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Legum Res 41(4):563–571

    Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018b) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: A review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena BL, Fagodiya RK, Prajapat K, Dotaniya ML, Kaledhonkar MJ, Sharma PC, Meena RS, Mitran T, Kumar S (2018c) Legume green Manuring: an option for soil sustainability. In: Meena et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_12

    Chapter  Google Scholar 

  • Mia MA, Shamsuddin ZH (2010) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9:6001–6009

    Google Scholar 

  • Miller DE, Burke DW (1986) Reduction of Fusarium root rot and Sclerotinia wilt of beans with irrigation, tillage and bean genotypes. Plant Dis 70:163–166

    Article  Google Scholar 

  • Miller DE, Burker DW, Kraft JM (1980) Predisposition of bean roots to attack by the pea pathogen, Fusarium solani f. sp. pisi, due to temporary oxygen stress. Phytopathology 70:1221–1224

    Article  Google Scholar 

  • Mitran T, Meena RS, Lal R, Layek J, Kumar S, Datta R (2018) Role of soil phosphorus on legume production. In: Meena et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_15

    Chapter  Google Scholar 

  • Muehlchen AM, Rand RE, Parke JL (1990) Evaluation of crucifer green manures for controlling Aphanomyces root rot of peas. Plant Dis 74:651–654

    Article  Google Scholar 

  • Mussa AEA, Russell PE (1977) The influence of pesticides and herbicides on the growth and virulence of Fusarium solani f. sp. phaseoli. J Agric Sci 88:705–709

    Article  Google Scholar 

  • Naidu PH (2000) Response of bunch varieties of groundnut to rhizobium inoculation. Legum Res 23:130–132

    Google Scholar 

  • Naseri B (2010) Effects of weed density and soil moisture on the development of bean Fusarium root rot. In: Proceedings of the third Iranian pulse crops symposium, May 19–20 Kermanshah, Iran

    Google Scholar 

  • Naseri B (2013a) Epidemics of Rhizoctonia root rot in association with biological and physicochemical properties of field soil in bean crops. J Phytopathol 161:397–404

    Article  CAS  Google Scholar 

  • Naseri B (2013b) Interpretation of variety × sowing date × sowing depth interaction for bean–Fusarium–Rhizoctonia pathosystem. Arch Phytopathol Plant Protect 46:2244–2252

    Article  Google Scholar 

  • Naseri B (2013c) Linkages of farmers’ operations with Rhizoctonia root rot spread in bean crops on a regional basis. J Phytopathol 161:814–822

    Article  Google Scholar 

  • Naseri B (2014a) Bean production and Fusarium root rot in diverse soil environments in Iran. J Soil Sci Plant Nutr 14(1):177–188

    Google Scholar 

  • Naseri B (2014b) Charcoal rot of bean in diverse cropping systems and soil environments. J Plant Dis Prot 121:20–25

    Article  Google Scholar 

  • Naseri B (2014c) Sowing, field size, and soil characteristics affect bean-Fusarium-wilt pathosystems. J Plant Dis Prot 121:171–176

    Article  Google Scholar 

  • Naseri B (2016) Epidemiology and integrated management of bean Rhizoctonia root rot. Sci Plant Pathol 5:42–52

    Google Scholar 

  • Naseri B, Ansari Hamadani S (2014) How the period of rotation with other crops effects on bean root rots and bean yield? In: Proceedings of the third National Congress on organic conventional agriculture, August 20–21, Ardebil, Iran

    Google Scholar 

  • Naseri B, Hamadani S (2017) Characteristic agro-ecological features of soil populations of bean root rot pathogens. Rhizosphere 3:203–208

    Article  Google Scholar 

  • Naseri B, Hemmati R (2017) Bean root rot management: recommendations based on an integrated approach for plant disease control. Rhizosphere 4:48–53

    Article  Google Scholar 

  • Naseri B, Marefat A (2011) Large-scale assessment of agricultural practices affecting Fusarium root rot and common bean yield. Eur J Plant Pathol 131:179–195

    Article  Google Scholar 

  • Naseri B, Moradi P (2014) Epidemiology of charcoal root rot in bean growers' fields. In: Proceedings of the 3rd National Congress Organic conventional agriculture, Ardebil, Iran, 20–21 August

    Google Scholar 

  • Naseri B, Moradi P (2015) Farm management strategies and the prevalence of Rhizoctonia root rot in bean. J Plant Dis Prot 5:238–243

    Article  Google Scholar 

  • Naseri B, Mousavi SS (2013) The development of Fusarium root rot and productivity according to planting date and depth, and bean variety. Australas Plant Pathol 42:133–139

    Article  Google Scholar 

  • Naseri B, Mousavi SS (2014) Epidemiological factors of bean Fusarium wilt under producers' field conditions. In: Proceedings of the third National Congress on organic conventional agriculture, August 20–21, Ardebil, Iran

    Google Scholar 

  • Naseri B, Mousavi SS (2015) Root rot pathogens in field soil, root and seed in relation to common bean (Phaseolus vulgaris) disease and seed production. Int J Pest Manag 61:60–67

    Article  CAS  Google Scholar 

  • Naseri B, Tabande L (2017) Patterns of Fusarium wilt epidemics and bean production determined according to a large-scale dataset from agro-ecosystems. Rhizosphere 3:100–104

    Article  Google Scholar 

  • Naseri B, Taghadossi MV (2014) Variations in bean charcoal root rot in response to planting density, irrigation frequency and urea application. In: Proceedings of the third National Congress on biological diversity impacts on agriculture and environment, August 7, Oroumieh, Iran

    Google Scholar 

  • Naseri B, Shobeiri SS, Tabande L (2016) The intensity of a bean Fusarium root rot epidemic is dependent on planting strategies. J Phytopathol 164:147–154

    Article  CAS  Google Scholar 

  • Naseri B, Veisi M, Khaledi N (2018) Towards a better understanding of agronomic and soil basis for possible charcoal root rot control and production improvement in bean. Arch Phytopathol Plant Prot. In press

    Google Scholar 

  • Natti JJ (1965) Effect of crop sequences on root rots and yield of red kidney beans. Farm Res 31:14

    Google Scholar 

  • Navas-Cortés JA, Hau B, Jiménez-Díaz RM (1998) Effect of sowing date, host cultivar, and race of Fusarium oxysporum f. sp. ciceris on development of Fusarium wilt of chickpea. Phytopathology 88:1338–1346

    Article  PubMed  Google Scholar 

  • Neeraj, Singh K (2011) Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. Eur J Soil Biol 47:288–295

    Article  Google Scholar 

  • Negi YK, Garg SK, Kumar J (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89(Suppl 12):25

    Google Scholar 

  • Nerey Y, Van Beneden S, Franc_a SC, Jimenez A, Cupull R, Herrera L, Höfte M (2010) Influence of soil type and indigenous pathogenic fungi on bean hypocotyl rot caused by Rhizoctonia solani AG4 HGI in Cuba. Soil Biol Biochem 42:797–803

    Article  CAS  Google Scholar 

  • Nieder R, Benbi DK, Scherer HW (2011) Fixation and defixation of ammonium in soils: a review. Biol Fertil Soils 47:1–14

    Article  CAS  Google Scholar 

  • Niewiadomska A, Klama J (2005) Pesticide side effect on the symbiotic efficiency and nitrogenase activity of Rhizobiaceae bacteria family. Pol J Microbiol 54:43–48

    CAS  PubMed  Google Scholar 

  • O’Connor GE, Evans J, Fettell NA, Bamforth I, Stuchberry J, Heenan DP, Chalk PM (1993) Sowing date and varietal effects on the N2 fixation of field pea and implications for improvement of soil nitrogen. Aust J Agric Res 44:151–163

    Article  Google Scholar 

  • Olaya G, Abawi GS, Barnard J (1996) Influence of water potential on survival of sclertia in soil and on colonization of bean stem segments by Macrophomina phaseolina. Plant Dis 80:1351–1354

    Article  Google Scholar 

  • Osunlaja SO (1990) Effect of organic soil amendments on the incidence of stalk rot of maize. Plant Soil 127:237–241

    Article  Google Scholar 

  • ÖzkoC I, Delıvelı MH (2001) In vitro inhibition of the mycelia growth of some root rot fungi by rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol 25:435–445

    Google Scholar 

  • Papavizas GC (1977) Some factors affecting survival of sclerotia of Macrophomina phaseolina in soil. Soil Biol Biochem 9:337–341

    Article  CAS  Google Scholar 

  • Papavizas GC, Davey CB (1960) Rhizoctonia disease of bean as affected by decomposing green plant materials and associated microfloras. Phytopathology 50:516–522

    Google Scholar 

  • Papavizas GC, Adams PB, Lumsden RD, Lewis JA, Dow RL, Ayers WA, Kantzes JG (1975) Ecology and epidemiology of Rhizoctonia solani in field soil. Phytopathology 65:871–877

    Article  Google Scholar 

  • Paula Júnior TJ, Rotter C, Hau B (2007) Effects of soil moisture and sowing depth on the development of bean plants grown in sterile soil infested by Rhizoctonia solani and Trichoderma harzianum. Eur J Plant Pathol 119:193–202

    Article  Google Scholar 

  • Phillips AJL (1989) Relationship of Rhizoctonia solani inoculum density to incidence of hypocotyl rot and damping-off in dry beans. Can J Microbiol 35:1132–1140

    Article  Google Scholar 

  • Place GT, Reberg-Horton SC, Dunphy JE, Smith AN (2009) Seeding rate effects on weed control and yield for organic soybean production. Weed Technol 23:497–502

    Article  Google Scholar 

  • Ploper LD, Gonzalez V, de-Ramallo NV, Galvez R, Devani M, de-Ramallo NV (2001) Presence of black stem rot on soybeans in central and Northeast Argentina. Adv Agroindustrial 22:30–34

    Google Scholar 

  • Porter DM, Wright FS, Powell NL (1987) Effects of sprinkler irrigation on peanut diseases in Virginia. Plant Dis 71:512–515

    Article  Google Scholar 

  • Postma J, Schilder MT, Bloem J, van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2406

    Article  CAS  Google Scholar 

  • Radha K, Menon KPV (1957) The genus Rhizoctonia in relation to soil moisture: studies on Rhizoctonia solani and Rhizoctonia bataticola. Indian Coconut J 10:29–36

    Google Scholar 

  • Rahman KM, Molla AH, Rahman MA (2006) Feasibility of sustainable recycling of municipal solid waste as organic fertilizer for plant growth and development. Agriculturists 4:7–14

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Ramos MLG, Ribeiro WOJ (1993) Effect of fungicides on survival on Rhizobium on seeds and the nodulation of bean (Phaseolus vulgaris L.). Plant Soil 152:145–150

    Article  CAS  Google Scholar 

  • Rathore BS (2000) Effect of organic amendments of incidence of seed rot and seedling blight of mothbean. Plant Dis Res 15:217–219

    Google Scholar 

  • Remans R, Ramaekers L, Schelkens S, Hernandez G, Garcia A, Reyes JL, Mendez N, Toscano V, Mulling M, Galvez L, Vanderleyden J (2008) Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    Article  CAS  Google Scholar 

  • Rennie RI, Kemp GA (1983) Nz-fixation in field bean quantified by ISN isotope dilution: effect of strains of Rhizobium phaseoli. Agron J 75:640–644

    Article  CAS  Google Scholar 

  • Revellin C, Pinochet X, Beauclair P, Catroux G (1996) Influence of soil properties and soya bean cropping history on the Bradyrhizobium japonicum population in some French soils. Eur J Soil Sci 47:505–510

    Article  Google Scholar 

  • Richardson LT (1973) Adaptive tolerance of Fusarium solani to benzimidazole derivatives in vitro. Can J Bot 51:1725–1732

    Article  CAS  Google Scholar 

  • Riegel C, Noe JP (2000) Chicken litter soil amendment effects on soil microbes and Meloidogyne incognita on cotton. Plant Dis 84:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Rodd V, Warman PR, Hickelton P, Webb K (2002) Comparison of N fertilizer, source-separated municipal solid waste compost and semi-solid beef manure on the nutrient concentration in boot-stage barley and wheat tissue. Can J Soil Sci 82:33

    Article  Google Scholar 

  • Rodrigues FA, Carvalho EM, Vale FXR (2002) Severidade da podridão-radicular de Rhizoctonia do feijoeiro influenciada pela calagem, e pelas fontes de nitrogênio. Pesqui Agropecu Bras 37:1247–1252

    Article  Google Scholar 

  • Román-Avilés B, Snapp SS, Kelly JD, Kirk WW (2003) Fusarium root rot of common beans. Extension bulletin E2876. Michigan State University, USA

    Google Scholar 

  • Rupela OP, Toomsan B, Mittal S, Dart PJ, Thompson JA (1987) Chickpea rhizobium populations: survey of influence of season, soil depth and cropping pattern. Soil Biol Biochem 19:247–252

    Article  Google Scholar 

  • Sanogo S, Yang XB (2001) Relation of sand content, pH, and potassium and phosphorus nutrition to the development of sudden death syndrome in soybean. Can J Plant Pathol 23:174–180

    Article  CAS  Google Scholar 

  • Saravanakumar D, Harish S, Loganathan M, Vivekananthan R, Rajendran L, Raguchander T, Samiyappan R (2007) Rhizobacterial bioformulation for the effective management of Macrophomina root rot in mungbean. Arch Phytopathol Plant Protect 40:323–337

    Article  Google Scholar 

  • Sayed MA, Salem MF, Farfour SA, Rizk NM (2015) The potential of microbial enrichment compost to enhance the growth of green bean (Phaseolus vulgaris L.) under organic and global GAP systems. Glob Adv Res J Agric Sci 4:333–341

    Google Scholar 

  • Scherm H, Yang XB, Lundeen P (1998) Soil variables associated with sudden death syndrome in soybean fields in Iowa. Plant Dis 82:1152–1157

    Article  CAS  PubMed  Google Scholar 

  • Scheublin TR, Ridgway KP, Young JPW, Van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2004) Compost tea as a container medium drench for suppressing seedling damping-off caused by pythium ultimum. Phytopathology 94:1156–1163

    Article  PubMed  Google Scholar 

  • Schreiner RP, Bethlenfalvay GJ (1997) Mycorrhizae, biocides, and biocontrol: effects of three different fungicides on developmental stages of three AM fungi. Biol Fertil Soil 24:18–26

    Article  CAS  Google Scholar 

  • Schuerger AC, Mitchell DJ (1992) Effects of temperature, hydrogen ion concentration, humidity, and light quality on disease caused by Fusarium solani f.sp. phaseoli in mung bean. Can J Bot 70:1798–1808

    Article  CAS  Google Scholar 

  • Shaban WI, El-Bramawy MA (2011) Impact of dual inoculation with Rhizobium and Trichoderma on damping off, root rot diseases and plant growth parameters of some legumes field crop under greenhouse conditions. Int Res J Agric Sci Soil Sci 1:98–108

    Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  PubMed  Google Scholar 

  • Shaheen AM, Fatema AR, Singer SM (2007) Growing onion without chemical fertilization. Res J Agric Biol Sci 3:95–104

    CAS  Google Scholar 

  • Sharma S, Aneja MK, Mayer J, Munch JC, Schloter M (2005) Characterization of bacterial community structure in rhizosphere soil of grain legumes. Microb Ecol 49:407–415

    Article  CAS  PubMed  Google Scholar 

  • Shokes FM, McCarter SM (1979) Occurrence, dissemination, and survival of plant pathogens in surface irrigation ponds in southern Georgia. Phytopathology 69:510–516

    Article  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Siddique KHM, Loss SP (1999) Studies on sowing depth for chickpea (Cicer arietinum L.), faba bean (Vicia faba L.) and lentil (Lens culinaris Medik), in a Mediterranean-type environment of South-Western Australia. J Agron Crop Sci 182:105–112

    Article  Google Scholar 

  • Siddique KHM, Loss SP, Regan KR, Pritchard DL (1998) Adaptation of lentil (Lens culinaris Medik) to short season Mediterranean-type environments: response to sowing rates. Aust J Exp Agric 49:613–626

    Article  Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L) cultivars. Ecoscan 9(1–2):517–519

    Google Scholar 

  • Silbernagel MJ, Mills LJ (1990) Genetic and cultural control of Fusarium root rot in bush snap beans. Plant Dis 74:61–66

    Article  Google Scholar 

  • Simek M, Jisova L, Hopkins DW (2002) What is the so-called optimum pH for denitrification in soil? Soil Biol Biochem 34:1227–1234

    Article  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156:353–358

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Bhatt BP (2012) Faba bean (Vicia faba L.): a potential leguminous crop of India. RC for ER, Patna, pp. 518. isbn: 978-93-5067-773-5ICAR

    Google Scholar 

  • Singh AK, Bhat BP, Sundaram PK, Gupta AK, Singh D (2013) Planting geometry to optimize growth and productivity faba bean (Vicia faba L.) and soil fertility. J Environ Biol 34:117–122

    CAS  PubMed  Google Scholar 

  • Sippell DW, Hall R (1982) Effects of pathogen species, inoculum concentration, temperature, and soil moisture on bean root rot and plant growth. Can J Plant Pathol 4:1–7

    Article  Google Scholar 

  • Slatni T, Krouma A, Aydi S, Chaiffi C, Gouia H, Abdelly C (2008) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris L) subjected to iron deficiency. Plant Soil 312:49–57

    Article  CAS  Google Scholar 

  • Slattery JF, Coventry DR, Slattery WJ (2001) Rhizobial ecology as affected by the soil environment. Aust J Exp Agric 41:289–298

    Article  CAS  Google Scholar 

  • Slattery JF, Pearce DJ, Slattery WJ (2004) Effects of resident rhizobial communities and soil type on the effective nodulation of pulse legumes. Soil Biol Biochem 36:1339–1346

    Article  CAS  Google Scholar 

  • Smith GS, Wyllie TD (1999) Charcoal rot. In: Hartman GL, Sinclair JB, Rupe JC (eds) Compendium of soybean disease, 4th edn. APS, St. Paul

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schbeider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc 363:789–813

    Article  CAS  Google Scholar 

  • Sneh B, Jabaji-Hare S, Neate S, Dijst G (1996) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sofi PA, Baba ZA, Hamid B, Meena RS (2018) Harnessing soil Rhizobacteria for improving drought resilience in legumes. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_8

    Google Scholar 

  • Stevens RJ, Laughlin RJ, Malone JP (1998) Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol Biochem 30:1119–1126

    Article  CAS  Google Scholar 

  • Stone AG, Scheuerell SJ, Darby HM (2004) Suppression of soil-borne diseases in field agricultural systems: organic matter management, cover cropping and other cultural practices. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton

    Google Scholar 

  • Subhani MN, Talib S, Sahi AL, Hussain S, Iqbal J, Hussain N (2013) Management of chickpea wilt caused by Fusarium oxysporum f. sp. ciceris through antagonistic microorganisms. Can J Plant Prot 1:1–6

    Google Scholar 

  • Sullivan P (2001) Sustainable management of soilborne plant diseases. USDA’s Rural Business Cooperative Service, USA

    Google Scholar 

  • Sumner DR, Hall MR, Danny GJ, MacDonald G, Savage SI, Bramwell RK (2002) Root diseases, weeds, and nematodes with poultry litter and conservation tillage in a sweet corn-snap bean double crop. Crop Prot 21:963–972

    Article  Google Scholar 

  • Sweetingham M (1990) Coping with brown spot and root rots of lupins. J Dep Agric West Aust 31:5–13

    Google Scholar 

  • Tang A, Curl EA, Rodriguez-Kabana R (1970) Effect of trifluraline on inoculum density and spore germination of Fusarium oxysporum f. sp. vasinfectum in soil. Phytopathology 60:1082–1086

    Article  CAS  Google Scholar 

  • Tilston EL, Pitt D, Groenhof AC (2002) Composted recycled organic matter suppresses soil-borne diseases of field crops. New Phytol 154:731–740

    Article  CAS  PubMed  Google Scholar 

  • Tu JC (1992) Management of root rot diseases of peas, beans and tomatoes. Can J Plant Pathol 14:92–99

    Article  Google Scholar 

  • Tuitert G, Szcech M, Bollen GJ (1998) Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste. Phytopathology 88:764–773

    Article  CAS  PubMed  Google Scholar 

  • Valdenegro M, Barea JM, Azcón R (2001) Influence of arbuscular-mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid Mediterranean area. Plant Growth Regul 34:233–240

    Article  CAS  Google Scholar 

  • Valenciano JB, Casquero PA, Boto JA, Marcelo V (2006) Evaluation of the occurrence of root rots on bean plants (Phaseolus vulgaris) using different sowing methods and with different techniques of pesticide application. N Z J Crop Hortic Sci 34:291–298

    Article  Google Scholar 

  • van Bruggen AHC, Whalen CH, Arneson PA (1986) Emergence, growth, and development of dry bean seedlings in response to temperature, soil moisture, and Rhizoctonia solani. Phytopathology 76:568–572

    Article  Google Scholar 

  • Varma D, Meena RS, Kumar S (2017a) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan region, India. Int J Chem Stu 5(2):384–389

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017b) Response of mungbean to NPK and lime under the conditions of Vindhyan region of Uttar Pradesh. Legum Res 40(3):542–545

    Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015c) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Wale SJ (2004) Integrating knowledge of soilborne pathogens to minimize disease risk in potato production. Australas Plant Pathol 33:167–172

    Article  Google Scholar 

  • Weil RR, Magdoff F (2004) Significance of soil organic matter to soil quality and health. In: Magdoff F, Weil R (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp 1–44

    Google Scholar 

  • Weiland JJ, Halloin JM (2001) Benzimidazole resistance in Cercospora beticola sampled from sugarbeet fields in Michigan, U.S.A. Can J Plant Pathol 23:78–82

    Article  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Werner D (1999) Körnerleguminosen: Biologische Stickstoff-Fixierung. In: Keller ER, Hanus H, Heyland K-U (Hrgs) Handbuch des Pflanzenbaues, Band 3 Knollen- und Wurzelfrüchte, Körner- und Futterleguminosen. Verlag Eugen Ulmer, Stuttgart, S. 554–562

    Google Scholar 

  • Westerlund FV Jr, Campbell RN, Kimble KA (1974) Fungal root rots and wilt of chickpea in California. Phytopathology 64:432–436

    Google Scholar 

  • Williams-Woodward JL, Pfleger FL, Fritz-Vincent A, Allmaras RR (1997) Green manures of oat, rape, and sweet corn for reducing common root rot in pea (Pisum sativum) caused by Aphanomyces euteiches. Plant Soil 188:43–48

    Article  CAS  Google Scholar 

  • Wolfe MS (2000) Agriculture: crop strength through diversity. Nature 406:681–682

    Article  CAS  PubMed  Google Scholar 

  • Wrona AF, Vandermolen GE, Devay E (1981) Trifluralininduced changes in hypocotyls of Phaseolus vulgaris in relation to lesion development caused by Rhizoctonia solani Kuhn. Physiol Plant Pathol 18:99–106

    Article  CAS  Google Scholar 

  • Xue Y, Xia H, Christie P, Zhang Z, Li L, Tang C (2016) Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review. Ann Bot 117:363–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017a) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017b) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol Indic. http://www.sciencedirect.com/science/article/pii/S1470160X17305617

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das LJ, Saha P (2017c) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018a) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018b) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the north eastern Himalayan region of India. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1423555

    Article  Google Scholar 

  • Yehia AH, El-Hassan SA, Bahadi AH (1988) Biological seed treatment to control Fusarium root rot of broad bean. Egypt J Phytopathol 14:59–66

    Google Scholar 

  • Younesi H (2014) Study of the effects of date and depth of sowing on development of Fusarium wilt in chickpea cultivars. Technical report no. 45614. Iranian Research Institute of Plant Protection, Tehran

    Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zappia RE, Hüberli D, Hardy GESJ, Bayliss KL (2014) Fungi and oomycetes in open irrigation systems: knowledge gaps and biosecurity implications. Plant Pathol 63:961–972

    Article  Google Scholar 

  • Zarea MJ, Ghalavand A, Goltapeh EM, Rejali F, Zamaniyan M (2009) Effects of mixed cropping, earthworms (Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria. Pedobiologia 52:223–235

    Article  CAS  Google Scholar 

  • Zilli JE, Ribeiro KG, Campo RJ, Hungria M (2009) Influence of fungicide seed treatment on soybean nodulation and grain yield. Rev Bras Ciênc Solo 33:917–923

    Article  CAS  Google Scholar 

  • Zmora-Nahum S, Danon M, Hadar Y, Chen Y (2008) Chemical properties of compost extracts inhibitory to germination of Sclerotium rolfsii. Soil Biol Biochem 40:2523–2529

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naseri, B. (2019). Legume Root Rot Control Through Soil Management for Sustainable Agriculture. In: Meena, R., Kumar, S., Bohra, J., Jat, M. (eds) Sustainable Management of Soil and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8832-3_7

Download citation

Publish with us

Policies and ethics