Skip to main content

Soil Erosion and Management Strategies

  • Chapter
  • First Online:
Book cover Sustainable Management of Soil and Environment

Abstract

Rising population and decreasing cultivable land pose a great challenge to modern agriculture. The agricultural production has to be balanced with the ever-increasing population to meet the demands of food supply. These changes have led to intensification of agriculture resulting into conversion of natural vegetation areas to agricultural land. This continued overexploitation of land resources in combination with climatic factors results in removal of the top fertile layer of soil. On the global scale, the period of the earliest significant change in land use corresponds to a first wave of the soil erosion. The areas with human intervention have high rate of soil erosion of 2.92 tha−1 year−1. In order to strike a balance between agricultural output and conservation, soil erosion control becomes very essential component. The control and prevention of soil erosion necessitate the development of an integral soil erosion control system with the incorporating methods based on the engineering, agricultural cultivation technology, law enforcement, biological methods, land planning, and management. Soil conservation structures along with advanced soil loss models would be prerequisite toward land management. This chapter addresses the dynamics of erosion and agricultural sustainability through different soil management strategies, which poses challenges similar to those of quantification of future changes in climate or agricultural systems. The chapter is focused on the analyzing and quantifying the effects of changes in land use and management of the eroded soils in the agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Carbon

cc, cm3:

Cubic centimeter

EI:

Rainfall erosivity

FYP:

Five-year plan

lps:

Liter per second

MUSLE:

Modified Universal Soil Loss

RUSLE:

Revised Universal Soil Loss Equation

SOM:

Soil organic matter

T:

Ton

USLE:

Universal Soil Loss Equation

References

  • Abrahams PW (2012) Involuntary soil ingestion and geophagia: a source and sink of mineral nutrients and potentially harmful elements to consumers of earth materials. Appl Geochem 27:954–968

    Article  CAS  Google Scholar 

  • Ahlstrom A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, Wang YP, Wiltshire A, Zaehle S, Zeng N (2015) Carbon cycle. The dominant role of semi-arid ecosystems in the trend and variability of the land, CO2 sink. Science 348:895–899

    Article  CAS  PubMed  Google Scholar 

  • Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework. Soil Sci Soc Am 68:1945–1962

    Article  CAS  Google Scholar 

  • Andrianaki M, Bernasconi SM, Nikolaidis NP (2017) Quantifying the incipient development of soil structure and functions within a glacial fore fieldChrono sequence. Adv Agron 142:215–239

    Article  Google Scholar 

  • Anonymous (1979) River Valley project basin and flooded rivers project in the ninth five-year plan, Government of India

    Google Scholar 

  • Anonymous (2010) Desert view of an area prone to erosion. Data Source: https://www.youtube.com/watch?v=dcooN4KWirs

  • Asadi H, Ghadiri H, Rose CW, Rouhipour H (2007) Interrill soil erosion processes and their interaction on low slopes. Earth Surf Process Landf 32:711–724

    Article  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora-Morphol Distrib Funct Ecol Plants 199:361–376

    Article  Google Scholar 

  • Bali JS (1978) Design of bench terraces in the hills. Paper presented at the 16th Annual meeting of the Indian Society of Agril Engrs Khargpur

    Google Scholar 

  • Banwart S, Bernasconi SM, Bloem J, Blum W, Brandao M, Brantley S, Lundin L (2011) Soil processes and functions in critical zone observatories: hypotheses and experimental design. Vadose Zone J 10:974–987

    Article  CAS  Google Scholar 

  • Bedoussac L, Justes E (2010) Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat–winter pea intercrop. Plant Soil 330:37–54

    Article  CAS  Google Scholar 

  • Beven K, Wood EF (1983) Catchment geomorphology and the dynamics of runoff contributing areas. J Hydrol 65(1–3):139–158

    Article  Google Scholar 

  • Bezborodov GA, Shadmanov DK, Mirhashimov RT, Yuldashev T, Qureshi AS, Noble AD, Qadir M (2010) Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agric Ecosys Environ 138:95–102

    Article  Google Scholar 

  • Bhat SA, Hamid I, Dar MD, Rasool D, Pandit BA, Khan S (2017) Soil erosion modeling using RUSLE & GIS on micro watershed of J&K. J Pharm Phytochem 6:838–842

    Google Scholar 

  • Bizoza AR, De Graaff J (2012) Financial cost–benefit analysis of bench terraces in Rwanda. Land Degrad Dev 23:103–115

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Boix-Fayos C, Martínez-Mena M, Calvo-Cases A, Castillo V, Albaladejo J (2005) Concise review of interrill erosion studies in SE Spain (Alicante and Murcia): erosion rates and progress of knowledge from the 1980s. Land Degrad Dev 16:517–528

    Article  Google Scholar 

  • Borgatti L, Soldati M (2010) Landslides and climatic change. In: Geomorphological hazards and disaster prevention, pp 87–96

    Google Scholar 

  • Bork HR (1989) Soil erosion during the past millennium in Central Europe and its significance within the geometrodynamic of the Holocene. Catena Suppl 15:121–131

    Google Scholar 

  • Brunner AC, Park SJ, Ruecker GR, Dikau R, Vlek PC (2004) Catenary soil development influencing erosion susceptibility along hillslope in Uganda. Catena 58:115–118

    Article  Google Scholar 

  • Bukari FM (2013) Indigenous perceptions of soil erosion, adaptations and livelihood implications: the case of maize farmers in the Zampe Community of Bole, Ghana. J Nat Res Dev 3:114–120

    Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

    Article  Google Scholar 

  • Cai L, Xu Z, Bao P, He M, Dou L, Chen L, Zhu YG (2015) Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. J Geochem Explor 148:189–195

    Article  CAS  Google Scholar 

  • Chaplot V, Brozec EC, Silvera N, Valentin C (2005) Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos. Catena 63:167–184

    Article  Google Scholar 

  • Chappell A, Webb NP, Butler HJ, Strong CL, McTainsh GH, Leys JF, Viscarra RA (2013) Soil organic carbon dust emission: an omitted global source of atmospheric CO2. Glob Chang Biol 19:3238–3244

    Article  PubMed  Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460

    Article  CAS  PubMed  Google Scholar 

  • Coppus R, Imeson AC (2002) Extreme events controlling erosion and sediment transport in a semi-arid sub-Andean valley. Earth Surf Process Landf 27:1365–1375

    Article  Google Scholar 

  • Corre-Hellou G, Dibet A, Hauggaard-Nielsen H, Crozat Y, Gooding M, Ambus P, Dahlmann C, von Fragstein P, Pristeri A, Monti M, Jensen ES (2011) The competitive ability of pea–barley intercrops against weeds and the interactions with crop productivity and soil N availability. Field Crop Res 122:264–272

    Article  Google Scholar 

  • D’costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  PubMed  Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017a) Multi-function role as nutrient and scavenger off reeradical in soil. Sustain MDPI 9:402. https://doi.org/10.3390/su9081402

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9:1163. https://doi.org/10.3390/su9071163. 1–18

    Article  CAS  Google Scholar 

  • Decaëns T, Jiménez JJ, Gioia C, Measey GJ, Lavelle P (2006) The values of soil animals for conservation biology. Eur J Soil Biol 42:23–38

    Article  Google Scholar 

  • Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482

    Article  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Dokuchaev VV (1948) Russian Chernozem. In: Selected works of Dokuchaev VV, Moscow, vol. 1, pp 14–419. Israel Program for Scientific Translations Ltd., Jerusalem (for USDA-NSF), Publ. by S. Monson, 1967. (Transl. into English by N. Kaner). 1883/1948/1967

    Google Scholar 

  • Dokuchaiev VV (1900) Cited by Glink KD (1927) Dokuchaiev’s ideas in the development of Pedology and Cognate Sciences. Acad. Sci. USSR, Pedofil-1, Leningard

    Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868

    Article  Google Scholar 

  • Dong H, Li W, Tang W, Zhang D (2009) Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res 111:269–275

    Article  Google Scholar 

  • Dreibrodt S, Wiethold J (2015) Lake Belau and its catchment (northern Germany): a key archive of environmental history in northern Central Europe since the onset of agriculture. The Holocene 25:296–322

    Article  Google Scholar 

  • Dreibrodt S, Lubos C, Terhorst B, Damm B, Bork HR (2010) Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quat Int 222:80–95

    Article  Google Scholar 

  • Eichner MJ (1990) Nitrous oxide emissions from fertilized soils: summary of available data. J Environ Qual 19:272–280

    Article  Google Scholar 

  • Ekern PC (1951) Raindrop impact as the force initiating soil erosion. Soil Sci Soc Am J 15:7–10

    Article  Google Scholar 

  • Exner DN, Davidson DG, Ghaffarzadeh M, Cruse RM (1999) Yields and returns from strip intercropping on six Iowa farms. Am J Altern Agric 14:69–77

    Article  Google Scholar 

  • FAO (2016) The state of food and agriculture. Climate change, agriculture and food security. United Nations, Rome, Food and Agriculture Organization

    Google Scholar 

  • Farayi D (2011) Spatial soil erosion hazard assessment and modelling in Mbire District, Zimbabwe: Implications for catchment management. MSc thesis Submitted to the University of Zimbabwe

    Google Scholar 

  • Ferro V (2010) Deducing the USLE mathematical structure by dimensional analysis and self-similarity theory. Biosyst Eng 106:216–220

    Article  Google Scholar 

  • Gaynor JD, Findlay WI (1995) Soil and phosphorus loss from conservation and conventional tillage in corn production. J Environ Qual 24:734–741

    Article  CAS  Google Scholar 

  • Getahun H, Mulugeta L, Fisseha I, Feyera S (2014) Impacts of land uses changes on soil fertility, carbon and nitrogen stock under smallholder farmers in central highlands of Ethiopia: implication for sustainable agricultural landscape management around Butajira area. NY Sci J J7:700–723

    Google Scholar 

  • Ghahramani A, Ishikawa Y, Mudd SM (2012) Field experiments constraining the probability distribution of particle travel distances during natural rainstorms on different slope gradients. Earth Surf Process Landf 37:473–485

    Article  Google Scholar 

  • Gogoi N, Baruah KK, Meena RS (2018) Grain legumes: impact on soil health and agroecosystem. In: Meena et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_16

    Chapter  Google Scholar 

  • Gonzalez-Hidalgo JC, Batalla RJ, Cerdà A, De Luis M (2010) Contribution of the largest events to suspended sediment transport across the USA. Land Degrad Dev 21:83–91

    Article  Google Scholar 

  • Gonzalez-Hidalgo JC, Batalla RJ, Cerda A, de Luis M (2012) A regional analysis of the effects of largest events on soil erosion. Catena 95:85–90

    Article  Google Scholar 

  • Griffiths D (2008) Introduction to elementary particles. Wiley, Weinheim

    Google Scholar 

  • Guerra P, Kim M, Shah A, Alaee M, Smyth SA (2014) Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci Total Environ 473:235–243

    Article  CAS  PubMed  Google Scholar 

  • Gupta S (2018) Forests, state and people: a historical account of forest management and control in J&K. In: Contesting conservation. Springer, Cham, pp 121–141

    Chapter  Google Scholar 

  • Halecki W, Kruk E, Ryczek M (2018) Loss of topsoil and soil erosion by water in agricultural areas: a multi-criteria approach for various land use scenarios in the Western Carpathians using a SWAT model. Land Use Policy 73:363–372

    Article  Google Scholar 

  • Harris J (2009) Soil microbial communities and restoration ecology: facilitators or followers? Science 325(5940):573–574

    Article  CAS  PubMed  Google Scholar 

  • Harrold LL, Edwards WM (1974) No-tillage system reduces erosion from continuous corn watersheds. Trans ASAE 17:414–0416

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Ambus P, Jensen ES (2001) Temporal and spatial root distribution and competition for nitrogen in pea-barley intercropping – a field study employing 32P methodology. Plant Soil 236:63–74

    Article  CAS  Google Scholar 

  • Hauggaard-Nielsen H, Gooding M, Ambus P, Corre-Hellou G, Crozat Y, Dahlmann C, Dibet A, von Fragstein P, Pristeri A, Monti M, Jensen ES (2009) Pea-barley intercropping for efficient symbiotic N2-fixation soil N acquisition and use of other nutrients in European organic cropping systems. Field Crop Res 113:64–71

    Article  Google Scholar 

  • Haygarth PM, Ritz K (2009) The future of soils and land use in the UK: soil systems for the provision of land-based ecosystem services. Land Use Policy 26:187–197

    Article  Google Scholar 

  • Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (1997) The soil production function and landscape equilibrium. Nature 388:358–361

    Article  CAS  Google Scholar 

  • Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (1999) Cosmogenic nuclides, topography, and the spatial variation of soil depth. Geomorphology 27:151–172

    Article  Google Scholar 

  • Heimsath AM, Chappell J, Dietrich WE, Nishiizumi K, Finkel RC (2001a) Late quaternary erosion in southeastern Australia: a field example using cosmogenic nuclides. Quat Int 83:169–185

    Article  Google Scholar 

  • Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC (2001b) Stochastic processes of soil production and transport: erosion rates, topographic variation and cosmogenic nuclides in the Oregon coast range. Earth Surf Process Landf 26:531–552

    Article  CAS  Google Scholar 

  • Heimsath AM, Chappell J, Fifield K (2010) Eroding Australia: rates and processes from Bega Valley to Arnhem Land. In: Bishop P, Pillans B (eds) Australian landscapes. Geological Society, London, Special Publications, 346, pp 225–241. https://doi.org/10.1144/SP346.12

    Article  Google Scholar 

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosys Environ 103:1–25

    Article  Google Scholar 

  • Homma K, Horie T, Shiraiwa T, Supapoj N, Matsumoto N, Kabaki N (2003) Topo sequential variation in soil fertility and rice productivity of rainfed lowland paddy fields in mini-watershed (nong) in Northeast Thailand. Plant Prod Sci 6:147–153

    Article  Google Scholar 

  • Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158:2992–2998

    Article  CAS  PubMed  Google Scholar 

  • Huggett R (1998) Soil Chrono sequences, soil development, and soil evolution: a critical review. Catena 32:155–172

    Article  Google Scholar 

  • Jahansooz MR, Yunusa IAM, Coventry DR, Palmer AR, Eamus D (2007) Radiation- and water-use associated with growth and yields of wheat and chickpea in sole and mixed crops. Eur J Agron 26:275–282

    Article  Google Scholar 

  • Jayawardena AW, Rezaur RB (2000) Drop size distribution and kinetic energy load of rainstorms in Hong Kong. Hydrol Process 14:1069–1082

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. Dover, New York

    Book  Google Scholar 

  • Ji S, Unger PW (2001) Soil water accumulation under different precipitation, potential evaporation, and straw mulch conditions. Soil Sci Soc Am J 65:442–448

    Article  CAS  Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Kawahata H (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71

    Article  CAS  PubMed  Google Scholar 

  • Jing K, Wang WZ, Zheng FL (2005) Soil erosion and environment in China. Science Press, Beijing, p 359

    Google Scholar 

  • Joffe JS (1936) Pedology. Soil Sci 42:313

    Article  Google Scholar 

  • Jordán A, Zavala LM, Gil J (2010) Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena 81:77–85

    Article  Google Scholar 

  • Junge B, Abaidoo R, Chikoye D, Alabi T, Stahr K (2006) Monitoring of land use infiltration and linkage to soil erosion in Nigeria and Benin. In: Conference on International Agricultural Research for Development, p 41

    Google Scholar 

  • Kakraliya SK, Singh U, Bohra A, Choudhary KK, Kumar S, Meena RS, Jat ML (2018) Nitrogen and legumes: a meta-analysis. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_9

    Chapter  Google Scholar 

  • Kassam A, Friedrich T, Shaxson F, Pretty J (2009) The spread of conservation agriculture: justification, sustainability and uptake. Int J Agric Sustain 7:292–320

    Article  Google Scholar 

  • Kemper WD, Nicks AD, Corey AT (1994) Accumulation of water in soils under gravel and sand mulches. Soil Sci Soc Am J 58:56–63

    Article  Google Scholar 

  • Kinnell PIA (1990) The mechanics of raindrop induced flow transport. Aust J Soil Res 28:497–516

    Article  Google Scholar 

  • Kinnell PA (2000) The effect of slope length on sediment concentrations associated with side-slope erosion. Soil Sci Soc Am J 64:1004–1008

    Article  CAS  Google Scholar 

  • Kinnell PA (2005) Raindrop-impact-induced erosion processes and prediction: a review. Hydrol Process 19:2815–2844

    Article  Google Scholar 

  • Kinnell PA (2007) Runoff dependent erosivity and slope length factors suitable for modelling annual erosion using the universal soil loss equation. Hydrol Process 21:2681–2689

    Article  Google Scholar 

  • Kinnell PA (2010) Event soil loss, runoff and the universal soil loss equation family of models: a review. J Hydrol 385:384–397

    Article  Google Scholar 

  • Kinnell PA, Risse LM (1998) USLE-M: empirical modeling rainfall erosion through runoff and sediment concentration. Soil Sci Soc Am J 62:1667–1672

    Article  CAS  Google Scholar 

  • Kirchlof G, Salako FK (2008) Residual tillage and bush fallow effects on soil properties and maize intercropped with legumes on a tropical alfisol. J Soil Use Manag 16:183–188

    Article  Google Scholar 

  • Kirkby MJ, Morgan RC (1978) Soil Erosion. Wiley, Chichester/London

    Google Scholar 

  • Kornev K, Mukhamadullina G (1994) Mathematical theory of freezing for flow in porous media. Proc R Soc Lond A 447:281–297

    Article  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Kumar R, Kumar M, Shah AI, Bhat SA, Wani MA, Ram D (2016) Modelling of soil loss using USLE through remote sensing and geographical information system in micro-watershed of Kashmir valley, India. J Soil Water Conserv 15:40–45

    Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017a) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microbiol App Sci 6(3):2566–2573

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Yadav GS, Pandey A (2017b) Response of sesame (Sesamum indicum L.) to Sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9

    Article  Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018a) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Kumar S, Meena RS, Lal R, Yadav GS, Mitran T, Meena BL, Dotaniya ML, EL-Sabagh A (2018b) Role of legumes in soil carbon sequestration. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_4

    Chapter  Google Scholar 

  • Lal R (1976) Soil erosion on Alfisols in Western Nigeria. Geoderma 16(5):377–387

    Article  CAS  Google Scholar 

  • Lal R (1998) Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci 17:319–464

    Article  Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land degradation & development. Landscape in Missouri. Soil Sci Soc Am J 64:1443–1454

    Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004) Carbon sequestration in dryland ecosystems. Environ Manag 33:528–544

    Article  Google Scholar 

  • Lal R (2009) Sequestering carbon in soils of arid ecosystems. Land Degrad Dev 20:441–454

    Article  Google Scholar 

  • Larson WE, Lindstrom MJ, Schumacher TE (1997) The role of severe storms in soil erosion: a problem needing consideration. J Soil Water Conserv 52:90–95

    Google Scholar 

  • Layek J, Das A, Mitran T, Nath C, Meena RS, Singh GS, Shivakumar BG, Kumar S, Lal R (2018) Cereal+legume intercropping: an option for improving productivity. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_11

    Chapter  Google Scholar 

  • Le Bissonnais Y, Singer MJ (1992) Crusting, runoff, and erosion response to soil water content and successive rainfalls. Soil Sci Soc Am J 56:1898–1903

    Article  Google Scholar 

  • Le Bissonnais Y, Renaux B, Delouche H (1995) Interactions between soil properties and moisture content in crust formation, runoff and interrill erosion from tilled loess soils. Catena 25:33–46

    Article  Google Scholar 

  • Legout C, Leguedois S, Le Bissonnais Y (2005) Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements. Eur J Soil Sci 56:225–238

    Article  Google Scholar 

  • Lesoing GW, Francis CA (1999) Strip intercropping effects on yield and yield components of corn, grain sorghum, and soybean. Agron J 91:807–813

    Article  Google Scholar 

  • Li XY (2003) Gravel–sand mulch for soil and water conservation in the semiarid loess region of Northwest China. Catena 52:105–127

    Article  Google Scholar 

  • Li J, Okin GS, Alvarez L, Epstein H (2008) Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry 88:73–88

    Article  CAS  Google Scholar 

  • Liu C, Liu Y, Guo K, Fan D, Li G, Zheng Y, Yang R (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71:174–183

    Article  CAS  Google Scholar 

  • Luo XS, Xue Y, Wang YL, Cang L, Xu B, Ding J (2015) Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 127:152–157

    Article  CAS  PubMed  Google Scholar 

  • Lutz HJ, Chandler RF Jr (1946) For Soils 57:514–520

    Google Scholar 

  • Luxmoore RJ, Sharma ML (1980) Runoff responses to soil heterogeneity: experimental and simulation comparisons for two contrasting watersheds. Water Res 16:675–684

    Article  Google Scholar 

  • Maps of India (2018). https://www.mapsofindia.com

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res Atmos 100:16415–16430

    Article  Google Scholar 

  • Martinez-Mena M, Castillo V, Albaladejo J (2002) Relations between interrill erosion processes and sediment particle size distribution in a semiarid Mediterranean area of SE of Spain. Geomorphology 45:261–275

    Article  Google Scholar 

  • McQueeney C, Leininger S (2017) BMP: Himalayan Blackberry (Rubus armeniacus)

    Google Scholar 

  • McTainsh GH, Lynch AW, Burgess RC (1990) Wind erosion in eastern Australia. Soil Res 28:323–339

    Article  Google Scholar 

  • Meena RS, Lal R (2018) Legumes and sustainable use of soils. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_1

    Chapter  Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Nat Sci 6(2):344–348

    Article  CAS  Google Scholar 

  • Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797

    Google Scholar 

  • Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western dry zone of India. Bangladesh J Bot 43(2):169–173

    Article  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015a) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. Am J Exp Agric 8(3):159–166

    CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015d) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    Article  Google Scholar 

  • Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015e) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western dry zone of India. Am J Exp Agric 7(3):170–177

    CAS  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J Appl Nat Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    Article  Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017a) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based Agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227

    Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017b) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017c) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Article  Google Scholar 

  • Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018a) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Legum Res 41(4):563–571

    Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018b) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena BL, Fagodiya RK, Prajapat K, Dotaniya ML, Kaledhonkar MJ, Sharma PC, Meena RS, Mitran T, Kumar S (2018c) Legume green manuring: an option for soil sustainability. In: Meena et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_12

    Chapter  Google Scholar 

  • Michael AM (1993) Irrigation: theory and practice. Vikas Publishing House, New Delhi

    Google Scholar 

  • Mirus BB (2015) Evaluating the importance of characterizing soil structure and horizons in parameterizing a hydrologic process model. Hydrol Process 29:4611–4623

    Article  Google Scholar 

  • Mitran T, Meena RS, Lal R, Layek J, Kumar S, Datta R (2018) Role of soil phosphorus on legume production. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_15

    Chapter  Google Scholar 

  • Moeyersons J (2003) The topographic thresholds of hillslopes incisions in southwestern Rwanda. Catena 50:381–400

    Article  Google Scholar 

  • Mohamed HH (2015) Cause and effect of soil erosion in Boqol-Jire Hargeisa, Somaliland. PhD thesis, University of Hargeisa, Somalia

    Google Scholar 

  • Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically mountain ranges. Earth Plant Sci Lett 201:481–489

    Article  CAS  Google Scholar 

  • Morgan RPC (1980) Soil erosion and conservation in Britain. Prog Phys Geogr 4(1):24–47

    Article  Google Scholar 

  • Morgan RPC, Mugomezulu D (2003) Threshold conditions for initiation of valley side gullies in the middle veld of Swaziland. Catena 50(2–4):401–414

    Article  Google Scholar 

  • Mulaudzi D (2011) A vegetation survey of recently burned communities at the turf loop nature reserve. Doctoral dissertation, University of Limpopo

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murthy DNP, Nguyen DG (1985) Study of two-component systems with failure interactions. Naval Res Logist Quart 32:239–247

    Article  Google Scholar 

  • Musgrave GW (1947) The quantitative evaluation of factors in water erosion: a first approximation. J Soil Water Conserv 2:133–138

    Google Scholar 

  • Nadal-Romero E, Regüés D, Latron J (2008) Relationships among rainfall, runoff, and suspended sediment in a small catchment with badlands. Catena 74:127–136

    Article  Google Scholar 

  • Narro L, Pandey S, De León C, Salazar F, Arias MP (2001) Implications of soil-acidity tolerant maize cultivars to increase production in developing countries. In: Plant nutrient acquisition. Springer, Tokyo, pp 447–463

    Chapter  Google Scholar 

  • Naudin K, Gozé E, Balarabe O, Giller KE, Scopel E (2010) Impact of no tillage and mulching practices on cotton production in North Cameroon: a multi-locational on-farm assessment. Soil Tillage Res 108:68–76

    Article  Google Scholar 

  • Nearing MA, Bradford JM, Holtz RD (1987) Measurement of waterdrop impact pressures on soil surfaces. Soil Sci Soc Am J 51:1302–1306

    Article  Google Scholar 

  • NRCS U (1999) The PLANTS database. National Plant Data Center, Baton Rouge, LA

    Google Scholar 

  • Obert J, Paramu L, Mafongoya C, Chipo M, Owen M (2016) Seasonal climate prediction and adaptation using indigenous knowledge systems in agriculture systems in southern Africa: a review. J Agric Sci 2:23–27

    Google Scholar 

  • Pagani A, Mallarino AP (2012) Soil pH and crop grain yield as affected by the source and rate of lime. Soil Sci Soc Am J 76:1877–1886

    Article  CAS  Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532(7597):49

    Article  CAS  PubMed  Google Scholar 

  • Pidwirny M (2006) Introduction to soils. Fundamentals of physical geography, 2nd edn. Date Viewed. http://www.physicalgeography.net/fundamentals/10t.html

  • Pimentel D (2000) Soil erosion and the threat to food security and the environment. Ecosys Health 6:221–226

    Article  Google Scholar 

  • Pimentel D, Petrova T, Rley M, Jacquet J, Ng V, Honigman J, Valero E (2006) Conservation of biological diversity in agricultural, forestry, and marine systems. In: Burk AR (ed) Focus on ecology research. Nova Science, New York, pp 151–173

    Google Scholar 

  • Podwojewski P, Orange D, Jouquet P, Valentin C, Janeau JL, Tran DT (2008) Land-use impacts on surface runoff and soil detachment within agricultural sloping lands in Northern Vietnam. Catena 74:109–118

    Article  Google Scholar 

  • Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. Catena 50:91–133

    Article  Google Scholar 

  • Potter KN, Torbert HA, Morrison JE Jr (1995) Tillage and residue effects on infiltration and sediment losses on vertisols. Trans ASAE 3:1413–1419

    Article  Google Scholar 

  • Prasuhn V (2012) On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil Tillage Res 120:137–146

    Article  Google Scholar 

  • Puri V (1951) The role of floral anatomy in the solution of morphological problems. Bot Rev 17:471

    Article  Google Scholar 

  • Quandt A, Kimathi YA (2016) Adapting livelihoods to floods and droughts in arid Kenya: local perspectives and insights. Afr J Rural Dev 1:51–60

    Google Scholar 

  • Quinton JN, Catt JA (2004) The effects of minimal tillage and contour cultivation on surface runoff, soil loss and crop yield in the long-term Woburn Erosion reference experiment on sandy soil at Woburn, England. Sol Use Manag 20:343–349

    Article  Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geo Sci 3:311

    Article  CAS  Google Scholar 

  • Raes D, Kafiriti EM, Wellens J, Deckers J, Maertens A, Mugogo S, Descheemaeker K (2007) Can soil bunds increase the production of rain-fed lowland rice in south eastern Tanzania? Agric Water Manag 89:229–235

    Article  Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and Mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Rao BR (1962) A handbook of the geology of Mysore State, Southern India. Bangalore Printing and Publishing Company, Bangalore

    Google Scholar 

  • Ravi S, Breshears DD, Huxman TE, D'Odorico P (2010) Land degradation in drylands: interactions among hydrologic–Aeolian erosion and vegetation dynamics. Geomorphology 116:236–245

    Article  Google Scholar 

  • Ritz K, Young L (2011) The architecture and biology of soils: life in inner space. CABI, Wallingford

    Book  Google Scholar 

  • Robertson GP, Groffman PM (2007) Nitrogen transformations. In: Soil microbiology, Ecol Biochem, 3rd edn, pp 341–364

    Chapter  Google Scholar 

  • Rochette P, Worth DE, Lemke RL, McConkey BG, Pennock DJ, Wagner-Riddle C, Desjardins RJ (2008) Estimation of N2O emissions from agricultural soils in Canada. I. Development of a country-specific methodology. Can J Sol Sci 88:641–654

    Article  CAS  Google Scholar 

  • Roose E (1996) Land husbandry: components and strategy. FAO Soils Bull 70

    Google Scholar 

  • Roose E, De Noni G (1998) Apport de la recherche à la lutte antiérosive. Etude et Gestion des sols 5:181–194

    Google Scholar 

  • Safriel UAZ, Niemeijer D, Puigdefabregas J, White R, Lal R, Winsolow M, Ziedler J, Prince S, Archer E, King C, Shapiro B, Wessels K, Nielsen TT, Portnov B, Reshef I, Thornell J, Lachman E, McNab D (2006) Dryland systems. Ecosystems and human well-being: current state and trends. Island Press, Washington, DC, pp 625–656

    Google Scholar 

  • Schulz H, Dunst G, Glaser B (2013) Positive effects of composted biochar on plant growth and soil fertility. Agronsustain Dev 33:817–827

    CAS  Google Scholar 

  • Shainberg I, Levy GJ, Rengasamy P, Frenkel H (1992) Aggregate stability and seal formation as affected by drops’ impact energy and soil amendments. Soil Sci 154:113–119

    Article  CAS  Google Scholar 

  • Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000) Investigation of the permeation behavior and stability of a BaO. 5SrO. 5CoO.8FeO. 2O3− δ oxygen membrane. J Membrane Sci 172:177–188

    Article  CAS  Google Scholar 

  • Shougang Z, Ruishe Q (2014) The application and study of GIS in soil Erosion model. Adv Sci Eng 6:31–34

    Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1–2):517–519

    Google Scholar 

  • Silva SA, Cook HF (2003) Soil physical conditions and physiological performance of cowpea following organic matter amelioration of sandy substrates. Commun Soil Sci Plant Anal 34:1039–1058

    Article  CAS  Google Scholar 

  • Singh P, Kanwar RS (1991) Preferential solute transport through macropores in large undisturbed saturated soil columns. J Environ Qual 20:295–300

    Article  Google Scholar 

  • Snaydon RW, Harris PM (1981) Interactions belowground – the use of nutrients and water. In: Willey RW (ed) Proceeding of the International workshop on intercropping. Hyderabad, India. ICRISAT, Patancheru, India, pp 188–201

    Google Scholar 

  • Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosys Environ 133:247–266

    Article  CAS  Google Scholar 

  • Sofi PA, Baba ZA, Hamid B, Meena RS (2018) Harnessing soil Rhizobacteria for improving drought resilience in legumes. In: Meena RS et al (eds) Legumes for soil health and sustainable management. Springer. https://doi.org/10.1007/978-981-13-0253-4_8

    Chapter  Google Scholar 

  • Sommer R, Ryan J, Masri S, Singh M, Diekmann J (2011) Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in a dryland barley/wheat-vetch rotation. Soil Tillage Res 115:39–46

    Article  Google Scholar 

  • Stallings JH (1953) Mechanics of water erosion. U.S. Dept. of Agriculture, Soil Conservation Service, U.S. Department of Agriculture, National Agricultural Library, Washington, D.C., p 118

    Google Scholar 

  • State of the Environment 2011 Committee (2011) Australia state of the environment 2011.Biodiversity. Commonwealth of Australia, Canberra

    Google Scholar 

  • Sterk G, Herrmann L, Bationo A (1996) Wind-blown nutrient transport and soil productivity changes in Southwest Niger. Land Degrad Dev 7:325–335

    Article  Google Scholar 

  • Strahm BD, Harrison RB (2008) Controls on the sorption, desorption and mineralization of low-molecular-weight organic acids in variable-charge soils. Soil Sci Soc Am J 72:1653–1664

    Article  CAS  Google Scholar 

  • Strauss P, Klaghofer E (2001) Effects of soil erosion on soil characteristics and productivity. Bodenkultur-wien and munch EN 52:147–154

    CAS  Google Scholar 

  • Strunk H (2003) Soil degradation and overland flow as causes of gully erosion on mountain pastures and in forests. Catena 50:185–198

    Article  Google Scholar 

  • Suresh R (2012) Soil and water conservation engineering. Standard Publishers Distributors, Delhi

    Google Scholar 

  • Tejwani KG, Dhruva Narayana VV (1961) Soil conservation survey and land use capability planning in the ravine lands of Gujarat. J Indian Soc Soil Sci 9:233–244

    Google Scholar 

  • Tesfaye MA, Bravo F, Ruiz-Peinado R, Pando V, Bravo-Oviedo A (2016) Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian central highlands. Geoderma 261:70–79

    Article  CAS  Google Scholar 

  • Torbert HA, Potter KN, Morrison JE (2001) Tillage system, fertilizer nitrogen rate, and timing effect on corn yields in the Texas Blackland Prairie. Agron J 93:1119–1124

    Article  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Tsubo M, Walker S, Mukhala E (2001) Comparisons of radiation use efficiency of mono−/inter-cropping systems with different row orientations. Field Crop Res 71:17–29

    Article  Google Scholar 

  • Turbé A, de Toni A, Benito P, Lavelle P, Lavelle P, Ruiz N, van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment)

    Google Scholar 

  • USDA N (2017) The PLANTS database. National plant data team, Greensboro

    Google Scholar 

  • Valentin C, Poesen J, Li Y (2005) Gully erosion: impacts, factors and control. Catena 63:132–153

    Article  CAS  Google Scholar 

  • Van den Putte A, Govers G, Diels J, Gillijns K, Demuzere M (2010) Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. Eur Jagron 33:231–241

    Article  Google Scholar 

  • Van Dijk AIJM, Bruijnzeel LA, Rosewel CJ (2002) Rainfall intensity-kinetic energy relationships: a critical literature appraisal. J Hydrol 261:1–23

    Article  Google Scholar 

  • Vanacker V, Govers G, Barros S, Poesen J, Deckers J (2003) The effect of short-term socio-economic and demographic change on landuse dynamics and its corresponding geomorphic response with relation to water erosion in a tropical mountainous catchment, Ecuador. Landsc Ecol 18:1–15

    Article  Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017a) Response of mungbean to NPK and lime under the conditions of Vindhyan region of Uttar Pradesh. Legum Res 40(3):542–545

    Google Scholar 

  • Venterea RT, Burger M, Spokas KA (2005) Nitrogen oxide and methane emissions under varying tillage and fertilizer management. J Environ Qual 34:1467–1477

    Article  CAS  PubMed  Google Scholar 

  • Venterea RT, Maharjan B, Dolan MS (2011) Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system. J Environ Qual 40:1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Venterea RT, Halvorson AD, Kitchen N, Liebig MA, Cavigelli MA, Del Grosso SJ, Stewart CE (2012) Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front Ecol Environ 10:562–570

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015c) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Vladychenskiy AS (2009) Genesis of soils and factors of the soil formation. In: Glazovsky N, Zaltseva N (eds) Environment structure and function. Earth Sys EOLSS Publications

    Google Scholar 

  • Voetberg KS (1970) Erosion on agricultural lands. Agricultural University of Wagenirgen, Holanda

    Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Wang Y, Xie Z, Malhi SS, Vera CL, Zhang Y, Wang J (2009) Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid loess plateau, China. Agric Water Manag 96:374–382

    Article  Google Scholar 

  • Webb NP, Chappell A, Strong CL, Marx SK, McTainsh GH (2012) The significance of carbon-enriched dust for global carbon accounting. Glob Change Biol 18:3275–3278

    Article  Google Scholar 

  • Wilkinson MT, Humphreys GS (2005) Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates. Soil Res 43:767–779

    Article  CAS  Google Scholar 

  • Willey RW (1979) Intercropping – its importance and research needs. Part 1.Competition and yield advantages. Field Crop Abstr 32:1–10

    Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses. A guide to conservation agricultural handbook, 537. Planning, Science and Educational Administration. USDA, Washington DC, 58 pp

    Google Scholar 

  • Wolters V, Silver WL, Bignell DE, Coleman DC, Lavelle P, Van Der Putten WH, Brussard L (2000) Effects of global changes on above-and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning: we identify the basic types of interaction between vascular plants and soil biota; describe the sensitivity of each type to changes in species composition; and, within this framework, evaluate the potential consequences of global change drivers on ecosystem processes. AIBS Bull 50:1089–1098

    Google Scholar 

  • Wu Y, Cheng H (2005) Monitoring of gully erosion on the loess plateau of China using a global positioning system. Catena 63:154–166

    Article  Google Scholar 

  • Wuddivira MN, Stone RJ, Ekwue EI (2009) Clay, organic matter and wetting effects on splash detachment and aggregate breakdown under intense rainfall. Soil Sci Soc Am J 73(1):226–232

    Article  CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017a) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol Indic. http://www.sciencedirect.com/science/article/pii/S1470160X17305617

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das LJ, Saha P (2017b) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017c) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018a) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018b) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the north eastern Himalayan Region of India. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1423555

    Article  Google Scholar 

  • Yamanaka T, Inoue M, Kaihotsu I (2004) Effects of gravel mulch on water vapor transfer above and below the soil surface. Agric Water Manag 67:145–155

    Article  Google Scholar 

  • Young FJ, Hammer RD (2000) Soil-landform relationships on a loess-mantled upland landscape in Missouri. Soil Sci Soc Am J 64(4):1443

    Article  CAS  Google Scholar 

  • Zaitseva AA (1970) Control of wind erosion of soils in Russia, lzd. Kolos, Moscow

    Google Scholar 

  • Zhang Y, Kendy E, Qiang Y, Changming L, Anju S, Hongyong S (2004) Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China plain. Agric Water Manag 64:107–122

    Article  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosys Environ 139:469–475

    Article  CAS  Google Scholar 

  • Zhang S, Li P, Yang X, Wang Z, Chen X (2011) Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil Tillage Res 112:92–97

    Article  CAS  Google Scholar 

  • Zhao G, Mu X, Wen Z, Wang F, Gao P (2013) Soil erosion, conservation, and eco-environment changes in the loess plateau of China. Land Degrad Dev 24:499–510

    Google Scholar 

  • Zing RW (1940) Degree and length of land slope as its effects soil loss in runoff. Agric Eng 21:59–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, S.A., Dar, M.U.D., Meena, R.S. (2019). Soil Erosion and Management Strategies. In: Meena, R., Kumar, S., Bohra, J., Jat, M. (eds) Sustainable Management of Soil and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8832-3_3

Download citation

Publish with us

Policies and ethics