Skip to main content

Molecular Approaches and Salt Tolerance Mechanisms in Leguminous Plants

  • Chapter
  • First Online:
Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches

Abstract

Legumes are one of the most important food crops not only serving an excellent source for human nutrition around the world but also improving soil quality through biological nitrogen fixation. Its production and yield is mainly hampered by abiotic stresses. Among them salt stress is threatening legume production worldwide. Hence, considering the importance of legumes, it is essential to understand and develop the strategies to improve their performance under salt stress. To develop the salt stress-tolerant legume varieties requires knowledge of morphological, physiological as well as key biochemical processes along with molecular controls of salt traits at different plant development stages. Molecular approaches such as transgenics, molecular marker-assisted selection, gene expression microarray, genomics, transgenomics, transcriptomics, and proteomics have identified several key factors, proteins, and genes in different cellular pathways underlying salt stress tolerance in leguminous crops. Both genetic engineering and molecular marker-assisted selection are efficient approaches to the development of salt-tolerant legumes. Omics approaches led to the identification of various metabolites as well as functional and regulatory genes in response to salt stress which not only provide new avenues to understand key molecular mechanisms underlying salt stress tolerance but also eventually beneficial to produce stress-tolerant legumes with improved characteristics. The aim of this chapter is to provide an overview on salt tolerance mechanism and also briefly discuss about molecular approaches in improvement of leguminous crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

Ascorbate peroxidase

ISSR:

Inter simple sequence repeat

NGS:

Next-generation sequencing

POX:

Peroxidase

QTL:

Quantitative trait loci

RAPD:

Rapid amplified polymorphic DNA

RILs:

Recombinant inbred lines

SNPs:

Single nucleotide polymorphisms

SOD:

superoxide dismutase

ST:

salt stress

References

  • Abdelrahman M, Jogaiah S, Burritt DJ, Tran LSP (2017) Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ 2018:1–12

    Google Scholar 

  • Ahmad P, Arafat AH, Latef A, Rasool S, Akram NA, Ashraf M, Gucel S (2016) Role of proteomics in crop stress tolerance. Front Plant Sci 7:1336. https://doi.org/10.3389/fpls.2016.01336

    Article  PubMed  PubMed Central  Google Scholar 

  • Alejandra AC, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33:481–489

    Article  Google Scholar 

  • Anjum NA (2016) Book review: legumes under environmental stress: yield, improvement and adaptations. Front Plant Sci 7:798. https://doi.org/10.3389/fpls.2016.00798

    Article  PubMed Central  Google Scholar 

  • Arraouadi S, Chardon F, Huguet T, Aouani ME, Badri M (2011) QTL mapping of morphological traits related to salt tolerance in Medicago truncatula. Acta Physiol Plant 33:917–929

    Google Scholar 

  • Aydi S, Sassi S, Debouba M, Hessini K, Larrainzar E, Gouia H, Abdelly C (2010) Resistance of Medicago truncatula to salt stress is related to glutamine synthetase activity and sodium sequestration. J Plant Nutr Soil Sci 173:892–899

    Article  CAS  Google Scholar 

  • Baloda A, Madanpotra S, Jaiwal PK (2017) Transformation of mung bean plants for abiotic stress tolerance by introducing codA gene, for an osmoprotectant glycine betaine. J Plant Stress Physiol. https://doi.org/10.19071/jpsp.2017.v3.3148

  • Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, Akila CS, Podha S, Puli COR (2018) Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Front Chem 6:34. https://doi.org/10.3389/fchem.2018.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banjara M, Zhu L, Shen G, Payton P, Zhang H (2012) Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6:59–67. https://doi.org/10.1007/s11816-011-0200-5

    Article  Google Scholar 

  • Bargaz A, Zaman-Allah M, Farissi M, Lazali M, Drevon JJ, Maougal RT, Carlsson G (2015) Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes. Int J Mol Sci 16:18976–19008

    Article  Google Scholar 

  • Barkla BJ (2016) Identification of abiotic stress protein biomarkers by proteomic screening of crop cultivar diversity. Proteomes 4:26. https://doi.org/10.3390/proteomes4030026

    Article  CAS  PubMed Central  Google Scholar 

  • Bruning B, Logtestijn RV, Broekman R, de Vos A, González AP, Rozema J (2015) Growth and nitrogen fixation of legumes at increased salinity under field conditions: implications for the use of green manures in saline environments. AoB Plants 7:plv010. https://doi.org/10.1093/aobpla/plv010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary AK, Sultanab R, Valesc MI, Saxena KB, Kumar RR, Ratnakumare K (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6:99–114

    Article  Google Scholar 

  • Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 2014:244. https://doi.org/10.3389/fpls.2014.00244

    Article  Google Scholar 

  • Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KHM (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217

    Article  CAS  Google Scholar 

  • Faghire M, Farissi M, Bargaz A, Mandri B, Oufdou K, Amenc L, Cherki G, Drevon JJ (2013) Genotypic variation of nodules enzymatic activities in symbiotic nitrogen fixation among common bean (Phaseolus vulgaris L.) genotypes grown under salinity constraint. Symbiosis 60:115–122

    Article  CAS  Google Scholar 

  • Farissi M, Faghire M, Bouizgaren A, Bargaz A, Makoudi B, Ghoulam C (2014) Growth, nutrients concentrations and enzymes involved in plants nutrition of alfalfa populations under saline conditions. J Agric Sci Technol 16:301–314

    Google Scholar 

  • Farissi M, Ghoulam C, Bouizgaren A (2013) Changes in water deficit saturation and photosynthetic pigments of Alfalfa populations under salinity and assessment of proline role in salt tolerance. Agric Sci Res J 3:29–35

    Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228. https://doi.org/10.1038/srep19228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Li Y, Zhu YM, Bai X, Lv DK, Guo D, Ji W, Cai H (2010) Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol 10:153. https://doi.org/10.1186/1471-2229-10-153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Hernández-Lucero E, Rodríguez-Hernández AA, Ortega-Amaro MA, Jiménez-Bremont JF (2014) Differential expression of genes for tolerance to salt stress in common bean (Phaseolus vulgaris L.). Plant Mol Biol Report 32:318–327

    Article  Google Scholar 

  • Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One 9:e92598. https://doi.org/10.1371/journal.pone.0092598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Khatoon A, Komatsu S (2013) Soybean proteomics for unraveling abiotic stress response mechanism. J Proteome Res 12:4670–4684

    Article  CAS  Google Scholar 

  • Hu J, Rampitsch C, Bykova NV (2015) Advances in plant proteomics toward improvement of crop productivity and stress resistance. Front Plant Sci 6:209. https://doi.org/10.3389/fpls.2015.00209

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Zhou X, Chen S, Li J (2016) Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci 7:573. https://doi.org/10.3389/fpls.2016.00573

    Article  PubMed  PubMed Central  Google Scholar 

  • Joseph B, Jini D (2010) Proteomic analysis of salinity stress-responsive proteins in plants. Asian J Plant Sci 9:307–313

    Article  CAS  Google Scholar 

  • Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney RK, Mantri N (2018) Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Sci Rep 8:4855

    Article  Google Scholar 

  • Kant C, Pandey V, Verma S, Tiwari M, Kumar S, Bhatia S (2017) Transcriptome analysis in chickpea (Cicer arietinum L.): applications in study of gene expression, non-coding RNA prediction, and molecular marker development. Intech 2017, pp 245–263

    Google Scholar 

  • Kesari V, Rangan L (2010) Development of Pongamia pinnata as an alternative biofuel crop – current status and scope of plantations in India. J Crop Sci Biotechnol 13:127–137

    Article  Google Scholar 

  • Khandal H, Parween S, Roy R, Meena MK, Chattopadhyay D (2017) MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Sci Rep 7:4632

    Article  Google Scholar 

  • Khan HA, Siddique KH, Munir R, Colmer TD (2015) Salt sensitivity in chickpea: growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. J Plant Physiol 182:1–12

    Article  CAS  Google Scholar 

  • Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S, Srinivasan R, Jain PK (2014) Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through highthroughput sequencing. PLoS One 9:e108851. https://doi.org/10.1371/journal.pone.0108851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kalita A, Srivastava R, Sahoo L (2017) Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic Mungbean. Front Plant Sci 2017:1896. https://doi.org/10.3389/fpls.2017.01896

    Article  Google Scholar 

  • Latrach L, Farissi M, Mouradi M, Makoudi B, Bouizgaren A, Ghoulam C (2014) Growth and nodulation in alfalfa-rhizobia symbiosis under salinity: effect on electrolyte leakage, stomatal conductance and chlorophyll fluorescence. Turk J Agric For 38:320–326

    Article  Google Scholar 

  • Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109. https://doi.org/10.1186/1471-2229-11-109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q (2016) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front Plant Sci 7:424

    PubMed  PubMed Central  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NOI, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161. https://doi.org/10.1186/1471-2229-13-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Hao H, Lu X, Zhao X, Wang Y, Zhang Y, Xie Z, Wang R (2017) Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana. Sci Rep 7:10795. https://doi.org/10.1038/s41598-017-11308-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lüscher A, Mueller-Harvey I, Soussana JF, Rees RM, Peyraud JL (2014) Potential of legume-based grassland–livestock systems in Europe: a review. Grass Forage Sci 69:206–228

    Article  Google Scholar 

  • Lv Y, Liang Z, Ge M, Qi W, Zhang T, Lin F et al (2016) Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics 17:350. https://doi.org/10.1186/s12864-016-2650-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Song L, Huang Z, Yang Y, Wang S, Wang W, Tong J, Gu W, Ma H, Xiao L (2014) Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress. EuPA Open Proteom 4:40–57

    Google Scholar 

  • Mahgoub HAM, Sofy AR, Abdel-Azeem EA, Abo-Zahra MS (2016) Molecular markers associated with salt-tolerance of different soybean (Glycine max L.) cultivars under salt stress. Int J Adv Res Biol Sci 3:241–267

    Article  CAS  Google Scholar 

  • Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi Aouani M, Polidoros AN (2011) Antioxidant gene–enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol Plant 141:201–214

    Article  CAS  Google Scholar 

  • Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon JJ, Winter P, Kahl G (2011) The salt-responsive transcriptome of chickpea roots and nodules via deep super SAGE. BMC Plant Biol 11:31. https://doi.org/10.1186/1471-2229-11-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  CAS  Google Scholar 

  • Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455. https://doi.org/10.3389/fpls.2016.00455

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen T (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 6:19199. https://doi.org/10.1038/srep19199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Gu Q, Kuppu S, Sun L, Zhu X, Mishra N, Hu R, Shen G, Zhang J, Zhang Y, Zhu L, Zhang X, Burow M, Payton P, Zhang H (2013) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnol Rep 7:345–355

    Article  Google Scholar 

  • Salwa AO, Mekki BB, Faida AS (2013) Alleviation of adverse effects of salt stress on faba bean (Vicia faba L.) plants by exogenous application of salicylic acid. World Appl Sci J 27:418–427

    Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183. https://doi.org/10.1038/nature08670

    Article  CAS  PubMed  Google Scholar 

  • Sha PS, Khan V, Basha PO (2015) Salt stress and leguminous crops: present status and prospects. In: Azooz MM, Ahmad P (eds) Legumes under environmental stress: yield, improvement and adaptations, 1st edn. Wiley, Chichester

    Google Scholar 

  • Shi XL, Yan L, Yang CY, Yan W, Moseley DO, Wang T, Liu BQ, Di R, Chen PY, Zhang MC (2018) Identification of a major quantitative trait locus underlying salt tolerance in ‘Jidou 12’ soybean cultivar. BMC Res Notes 11:95

    Article  Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komastu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19

    Article  Google Scholar 

  • Song Q, Jia G, Zhu Y, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2010) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1. 0) in soybean. Crop Sci 50:1950–1960. https://doi.org/10.2135/cropsci2009.10.0607

    Article  CAS  Google Scholar 

  • Tang L, Cai H, Ji W, Luo X, Wang Z, Wu J, Wang X, Cui L, Wang Y, Zhu Y, Bai X (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem 71:22–30

    Article  CAS  Google Scholar 

  • Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KFX, Schwartz DC, Town CD (2014) An improved genome release (version Mt4.0) for the model legume Medicago truncatula. Genome 15:312

    Google Scholar 

  • Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121:229–236

    Article  CAS  Google Scholar 

  • Varshney RK, Roorkiwal M, Nguyen HT (2013) Legume genomics: from genomic resources to molecular breeding. Plant Genome 6:1–7

    Google Scholar 

  • Wang T-Z, Liu M, Zhao M-G, Chen R, Zhang W-H (2015) Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing. BMC Plant Biol 15:131

    Article  Google Scholar 

  • Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M (2017) Non-coding RNAs and their roles in stress response in plants. Genom Proteom Bioinform 15:301–312

    Article  Google Scholar 

  • Xiong J, Sun Y, Yang Q, Tian H, Zhang H, Liu Y, Chen M (2017) Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots. Proteome Sci 15:19

    Article  Google Scholar 

  • Xu XW, Zhou XH, Wang RR, Peng WL, An Y, Chen LL (2016) Functional analysis of long intergenic non-coding RNAs in phosphate-starved rice using competing endogenous RNA network. Sci Rep 6:20715. https://doi.org/10.1038/srep20715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaish MW, Colasanti J, Rothstein SJ (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. J Exp Bot 62:3727–3735

    Article  CAS  Google Scholar 

  • Zahaf O, Blanchet S, de Źelicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichanté JL, Diet A, Badri M, Zabalza A, González EM, Delacroix H, Gruber V, Frugier F, Crespi M (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5:1068–1081

    Article  CAS  Google Scholar 

  • Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22

    Article  CAS  Google Scholar 

  • Zhang WJ, Wang T (2015) Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation. Plant Sci 234:110–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are extremely grateful to Prof. R. N. Gacche, Head, Department of Biotechnology, for his valuable insights. We also thank Mr. Keshav Jindal for helping us in artwork.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Datir, S.S., Kochle, M., Jindal, S. (2019). Molecular Approaches and Salt Tolerance Mechanisms in Leguminous Plants. In: Akhtar, M. (eds) Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches. Springer, Singapore. https://doi.org/10.1007/978-981-13-8805-7_3

Download citation

Publish with us

Policies and ethics