Skip to main content

Use of Nanoparticles in Alleviating Salt Stress

  • Chapter
  • First Online:

Abstract

Soil salinity is one of the major causes of abiotic stress that limits crop productivity. It also affects nearly one-fifth of the worldwide cultivated lands. The negative effects of soil salinity in plants are related to the specific toxicity of ions, such as Na and Cl, as well as to the low osmotic potential of soil solution, which results in water deficiency in plant cells. These conditions make it difficult for a plant to absorb water from saline soils and/or lead to ionic effect resulting from accumulation of toxic salt ions which leads to the reduced growth rates and productivity. Recently, nanotechnology has gained the attentions of scientists in various disciplines of science and plays a vital role in medicine, industries, agriculture, electronics, energy, and environment. In agriculture, using nanoparticles is expected to improve the crop productivity by enhancing plant nutrition, precision farming, water use efficiency, crop protection against pest and diseases by molecular tools and techniques, and environmental protection. Thus, the aim of the chapter is to provide an update on the use of various types of nanoparticles for alleviating the salt stress and also to understand the mechanism behind it.

Irfan Ahmad and Mohd Sayeed Akhtar have equally contributed for this chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289

    Article  Google Scholar 

  • Ahmad P, Latef AAA, Hashem A, Allah-Abd EF, Gucel S, Tran LS (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:1–11

    Google Scholar 

  • Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602

    Article  CAS  Google Scholar 

  • Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016) The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi J Biol Sci 23:773–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsaeedi AH, El-Ramady H, Alshaal T, El-Garawani M, Elhawat N, Almohsen M (2017) Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environ Sci Pollut Res 24:21917–21928

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–6

    Article  CAS  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Nelson D (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ 17:659–667

    Article  CAS  Google Scholar 

  • Baudoiun E, Hancock JT (2013) Nitric oxide signaling in plants. Front Plant Sci 4:533. https://doi.org/10.3389/fpls.2013.00553

    Article  Google Scholar 

  • Bhardwaj AK, Mandal UK, Bar-Tal A, Gilboa A, Levy GJ (2008) Replacing saline-sodic irrigation water with treated wastewater: effects on saturated hydraulic conductivity, slaking, and swelling. Irrig Sci 26:139–146

    Article  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  PubMed  Google Scholar 

  • Camejo D, Romero-Puertas MC, Rodriguez-Serrano M, Sandalio LM, Lazaro JJ, Jimenez A, Sevilla F (2013) Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteome 79:87–99

    Article  CAS  Google Scholar 

  • Cardozo VF, Lancheros CAC, Narciso AM, Valereto ECS, Kobayashi RKT, Seabra AB, Nakazato G (2014) Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis. Int J Pharm 473:20–29

    Article  CAS  PubMed  Google Scholar 

  • Cassee FR, van Balen EC, Singh C, Green D, Muijser H, Weinstein J, Dreher K (2011) Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol 41:213–229

    Article  PubMed  CAS  Google Scholar 

  • Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic 86:247–260

    Article  CAS  Google Scholar 

  • Chen J, Xiao Q, Wang C, Wang WH, Wu FH, He BY, Zhu Z, Ru QM, Zhang LL, Zheng HL (2014) Nitric oxide alleviates oxidative stress caused by salt in leaves of a mangrove species Aegiceras corniculatum. Aquat Bot 117:41–47

    Article  CAS  Google Scholar 

  • Cossins D (2014) Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors. The scientist, news and opinion. http://www.thescientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-AugmentPlant-Functions. Accessed on 16 Jan 2019

  • de la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174

    Article  Google Scholar 

  • Du ST, Liu Y, Zhang P, Liu HJ, Zhang XQ, Zhang RR (2015) Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.). Food Chem 173:905–911

    Article  CAS  PubMed  Google Scholar 

  • EPA US (2009) Toxicological review of Cerium oxide and Cerium compounds. United States Environmental Protection Agency, National Service Center for Environmental Publications.. Accessed on 16 Jan 2019

    Google Scholar 

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    Article  CAS  Google Scholar 

  • Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573

    Article  CAS  PubMed  Google Scholar 

  • Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471. https://doi.org/10.3389/fpls.2016.00471

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq MA, Dietz KJ (2015) Silicon as versatile player in plant and human biology: overlooked and poorly understood. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbraith DW (2007) Nanobiotechnology: silica breaks through in plants. Nat Nanotechnol 2:272–273

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Zou CH, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gu MF, Li N, Long XH, Brestic M, Shao HB, Li J, Mbarki S (2016) Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant Soil Environ 62:314–320

    Article  CAS  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624

    CAS  Google Scholar 

  • Hernández JA, Olmos E, Corpas FJ, Sevilla F, del Río LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  Google Scholar 

  • Jamali B, Eshghi S, Tafazoli E (2015) Mineral composition of “Selva” strawberry as affected by time of application of nitric oxide under saline conditions. Hortic Environ Biotechnol 56:273–279

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica Nanoparticles on Basil (Ocimum basilicum) Under Salinity Stress. J Chem Health Risks 4:49–55

    CAS  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Wang T, Li W, Tang W, Zhang D, Dong H (2016) Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Acta Physiol Plant 38:61. https://doi.org/10.1007/s11738-016-2079-9

    Article  CAS  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973

    Article  CAS  PubMed  Google Scholar 

  • Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis). Plants J Plant Growth Regul 36:60–70

    Article  CAS  Google Scholar 

  • Li X, Pan Y, Chang B, Wang Y, Tang Z (2016) NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis. Front Plant Sci 6:1–10

    Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Ondracka A, Cross FR (2011) Multiple sequence-specific factors generate the nucleosome depleted region on CLN2 promoter. Mol Cell 4:465–476

    Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani-Ueno N (2011) Transport of silicon from roots to panicles in plants. Proc Jpn Acad Ser B 87:377–385

    Article  CAS  Google Scholar 

  • Ma X, Wang Q, Rossi L, Ebbs SD, White JC (2016a) Multigenerational exposure to cerium oxide nanoparticles: physiological and biochemical analysis reveals transmissible changes in rapid cycling Brassica rapa. NanoImpact 1:46–54

    Article  Google Scholar 

  • Ma X, Wang Q, Rossi L, Zhang W (2016b) Cerium oxide nanoparticles and bulk cerium oxide leading to different physiological and biochemical responses in Brassica rapa. Environ Sci Technol 50:6793–6802

    Article  CAS  PubMed  Google Scholar 

  • Maciel R, Sant’Anna G, Dezotti M (2004) Phenol removal from high salinity effluents using Fenton’s reagent and photo-Fenton reactions. Chemosphere 57:711–719

    Article  CAS  PubMed  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol 2011:696535. https://doi.org/10.1155/2011/696535

    Article  CAS  Google Scholar 

  • Maji AK, Obi Reddy GP, Sarkar D (2010) Degraded and wastelands of India status and spatial distribution. Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research, Krishi Anusandhan Bhavan I, Pusa, New Delhi, India, p 158

    Google Scholar 

  • Manai J, Gouia H, Corpas FJ (2014) Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J Plant Physiol 171:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Mohammad M, Shibli R, Ajlouni M, Nimri L (1998) Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. J Plant Nutr 21:1667–1680

    Article  CAS  Google Scholar 

  • Mozafari A, Ghadakchiasl A, Ghaderi N (2018) Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiol Mol Biol Plants 24:25–35

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • NRSA (2005) Wasteland atlas of India. Ministry of Rural Development and National Remote Sensing Agency, India (NRSA) Publication, NRSA, Hyderabad, India

    Google Scholar 

  • Oliveira HC, Gomes BCR, Pelegrino MT, Seabra AB (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–19

    Article  CAS  PubMed  Google Scholar 

  • Panwar J, Jain N, Bhargaya A, Akhtar MS, Yun YS (2012) Positive effect of Zinc Oxide nanoparticles on tomato plants: a step Towards developing “Nano-fertilizers”. In: Proceeding of 3rd international conference on environmental research and technology. University of Sains, Penang, Malaysia, pp 248–352

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Pereira AES, Narciso AM, Seabra AB, Fraceto LF (2015) Evaluation of the effects of nitric oxide-releasing nanoparticles on plants. J Phys Conf Ser 617:012025

    Article  CAS  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Qados AMSA (2015) Mechanism of Nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Am J Exp Agric 7:78–95

    Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk and nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422

    Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473

    CAS  Google Scholar 

  • Rodrigues F, Duarte H, Domiciano G, Souza C, Korndorfer G, Zambolim L (2009) Foliar application of potassium silicate reduces the intensity of soybean rust. Aust Plant Pathol 38:366–372

    Article  CAS  Google Scholar 

  • Roohizadeh G, Majd A, Arbabian S (2015) The effect of sodium silicate and silica nanoparticles on seed germination and some of growth indices in the Vicia faba L. Trop Plant Res 2:85–89

    Google Scholar 

  • Rossi L, Zhang W, Lombardini L, Ma X (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36

    Article  CAS  PubMed  Google Scholar 

  • Rossi L, Zhang W, Ma X (2017) Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environ Pollut 229:132–138

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, Duran N (2010) Nitric oxide-releasing vehicles for biomedical applications. J Mater Chem 20:1624–1637

    Article  CAS  Google Scholar 

  • Seabra AB, Rai M, Duran N (2014a) Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: a mini review. J Plant Biochem Biotechnol 23:1–10

    Article  CAS  Google Scholar 

  • Seabra AB, Pasquoto T, Ferrarini ACF, Santos MDC, Haddad PS, de Lima R (2014b) Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated- and S-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment. Chem Res Toxicol 27:1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, Justo GZ, Haddad HS (2015a) State of the art, challenges and perspectives in the design of nitric oxide-releasing polymeric nanomaterials for biomedical applications. Biotechnol Adv 33:1370–1379

    Article  CAS  PubMed  Google Scholar 

  • Seabra AB, Kitice NA, Pelegrino MT, Lancheros CAC, Yamauchi LM, Pinge-Filho P, Yamada-Ogatta SF (2015b) Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi. J Phys Conf Ser 617:012020

    Article  CAS  Google Scholar 

  • Seabra AB, de Lima R, Calderon M (2015c) Nitric oxide releasing nanomaterials for cancer treatment: current status and perspectives. Curr Top Med Chem 15:298–308

    Article  CAS  PubMed  Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Univ Timişoara Ser Biol XVI(2):73–78

    Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:237–249

    Article  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Biol Sci 21:13–17

    Article  CAS  Google Scholar 

  • Silveira NM, Frungillo L, Marcos FCC, Pelegrino MT, Miranda MT, Seabra AB, Salgado I, Machado EC, Ribeiro RV (2016) Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit. Planta 244:181–190

    Article  CAS  PubMed  Google Scholar 

  • Simontacchi M, Galatro A, Ramos-Artuso F, Santa-Maria GE (2015) Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Front Plant Sci 6:977. https://doi.org/10.3389/fpls.2015.00977

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh N, Bhatla SC (2016) Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons. Nitric Oxide 53:54–64

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Nanda A (2014) Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: an in vitro comparative study. Int J Cosmet Sci 36:273–283

    Article  CAS  PubMed  Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7:36–47

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development. Sinauer Associates, Incorporated, Sunderland

    Google Scholar 

  • Tanou G, Filippou P, Belghaz M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated posttranslational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599

    Article  CAS  PubMed  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicente O, Boscaiu M, Naranjo MÁ, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58:463–481

    Article  Google Scholar 

  • Vitor SC, Duarte GT, Saviani EE, Vincentz MG, Oliveira HC, Salgado I (2013) Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae. Planta 238:475–486

    Article  CAS  PubMed  Google Scholar 

  • Walker L (2005) Nanotechnology for agriculture, food and the environment presentation at nanotechnology biology interface: exploring models for oversight. University of Minnesota, Minneapolis

    Google Scholar 

  • Wang Y, Nil N (2000) Changes in chlorophyll, ribulose biphosphate carboxylase oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus Tricolor leaves during salt stress. J Hortic Sci Biotechnol 75:623–627

    Article  CAS  Google Scholar 

  • Wang Q, Ma X, Zhang W, Pei H, Chen Y (2012) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Yan P, Shao HB, Shao C, Chen P, Zhao S, Brestic M, Chen X (2013) Physiological adaptive mechanisms of plant grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant 35:2867–2878

    Article  CAS  Google Scholar 

  • Yan K, Wu C, Zhang L, Chen X (2015) Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front Plant Sci 6:227. https://doi.org/10.3389/fpls.2015.00227

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Gao B, Chen J, Li Y (2015) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17:73–80

    Article  CAS  Google Scholar 

  • Zhao S, Jiang H, Wang W, Mao B (2007) Cloning and developmental expression of the Xenopus Nkx6 genes. Dev Genes Evol 217:477–483

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, I., Akhtar, M.S. (2019). Use of Nanoparticles in Alleviating Salt Stress. In: Akhtar, M. (eds) Salt Stress, Microbes, and Plant Interactions: Causes and Solution. Springer, Singapore. https://doi.org/10.1007/978-981-13-8801-9_9

Download citation

Publish with us

Policies and ethics