Skip to main content

Diversification in Developing Lunar Dust Simulant

  • Conference paper
  • First Online:
Man–Machine–Environment System Engineering (MMESE 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 576))

Included in the following conference series:

  • 1145 Accesses

Abstract

Lunar dust simulant diversification is in correspondence with the upsurge of future lunar exploration missions. It is a fast and low-cost solution to meet raw material requirements for various ground-based applications. The diversification of lunar dust simulant proposed in this paper is realized in the following five aspects: (1) basaltic pyroclast and plagioclase are confected together as feedstock; (2) partial melting technique is applied to enhance the amorphous glass in the feedstock; (3) multilevel comminution process is employed for pulverization; (4) particle dispersing technique is used to reduce the agglomeration; (5) dielectric barrier method is engaged to charge lunar dust as required. Through these procedures, prototype lunar dust simulant BHLD20 is developed; moreover, its chemistry, particle size distribution (PSD), and charging properties can be diversified and customized further. Lunar dust simulant of specified characteristics can improve the quality and reliability for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horanyi M, Szalay JR, Kempf S et al (2015) A permanent, asymmetric dust cloud around the Moon. Nature 522(7556):324–326

    Article  Google Scholar 

  2. Taylor LA, Schmitt HH, David W, Carrier I et al (2005) The lunar dust problem: From liability to asset. Orlando

    Google Scholar 

  3. Cain JR (2010) Lunar dust: the hazard and astronaut exposure risks. Earth Moon Planet 107(1):107–125

    Article  Google Scholar 

  4. Grün E, Horanyi M, Sternovsky Z (2011) The lunar dust environment. Planet Space Sci 59(14):1672–1680

    Article  Google Scholar 

  5. Park J, Liu Y, Kihm KD et al (2008) Characterization of lunar dust for toxicological studies. I: Particle size distribution. J Aerosp Eng 21(4):266–271

    Article  Google Scholar 

  6. Liu Y, Park J, Schnare D et al (2008) Characterization of lunar dust for toxicological studies. II: texture and shape characteristics. J Aerosp Eng 21(4):272–279

    Article  Google Scholar 

  7. Liu Y, Taylor LA (2011) Characterization of lunar dust and a synopsis of available lunar simulants. Planet Space Sci 59(14):1769–1783

    Article  Google Scholar 

  8. Abbas MM, Tankosic D, Craven PD et al (2007) Lunar dust charging by photoelectric emissions. Planet Space Sci 55(7–8):953–965

    Article  Google Scholar 

  9. Freeman JW, Ibrahim M (1975) Lunar electric fields, surface potential and associated plasma sheaths. The moon 14(1):103–114

    Article  Google Scholar 

  10. Linnarsson D, Carpenter J, Fubini B et al (2012) Toxicity of lunar dust. Planet Space Sci 74(1):57–71

    Article  Google Scholar 

  11. Wallace WT, Taylor LA, Liu Y et al (2009) Lunar dust and lunar simulant activation and monitoring. Meteorit Planet Sci 44(7):961–970

    Article  Google Scholar 

  12. Taylor LA, Pieters CM, Britt D (2016) Evaluations of lunar regolith simulants. Planet Space Sci 126:1–7

    Article  Google Scholar 

  13. Gaier JR, Sechkar EA (2007) Lunar simulation in the lunar dust adhesion bell jar. NASA Glenn Research Center. NASA/TM-2007-214704

    Google Scholar 

  14. Tang H, Li X, Zhang S et al (2017) A lunar dust simulant: CLDS-i. Adv Space Res 59(4):1156–1160

    Article  Google Scholar 

  15. Sun H, Yi M, Shen Z et al (2017) Developing a new controllable lunar dust simulant: BHLD20. Planet Space Sci 141:17–24

    Article  Google Scholar 

  16. Papike JJ, Simon SB, Laul JC (1982) The lunar regolith: chemistry, mineralogy, and petrology. Rev Geophys 20(4):761–826

    Article  Google Scholar 

  17. Gustafson R, White B, Gustafson M et al (2007) Development of a lunar agglutinate simulant. Golden, 1332

    Google Scholar 

  18. Mckay DS, Carter JL, Boles WW et al (1993) JSC-1: a new lunar regolith simulant. Houston: 24:963–964

    Google Scholar 

  19. Ray CS, Reis ST, Sen S et al (2010) JSC-1A lunar soil simulant: characterization, glass formation, and selected glass properties. J Non-Cryst Solids 356(44–49SI):2369–2374

    Article  Google Scholar 

  20. Wilson DSAS, Rickman D (2010) Design and specifications for the highland regolith prototype simulants NU-LHT-1 M and −2 M[R]. NASA Marshall Space Flight Center. NASA/TM-2010-216438

    Google Scholar 

  21. Schrader CM, Rickman DL, Mclemore CA et al (2009) Lunar regolith characterization for simulant design and evaluation using figure of merit algorrithms. Orlando, Florida

    Google Scholar 

  22. Berg CA (1964) Lunar erosion and brownian motion. Nature 204:461

    Article  Google Scholar 

  23. O’Brien BJ (2011) Review of measurements of dust movements on the moon during Apollo. Planet Space Sci 59(14):1708–1726

    Article  Google Scholar 

  24. Papike JJ, Simon SB, White C et al (1982) The relationship of the lunar regolith less than 10 micrometer fraction and agglutinates. I: a model for agglutinate formation and some indirect supportive evidence. Houston, pp 409–420

    Google Scholar 

  25. Laul JC, Papike JJ (1980) The lunar regolith: comparative chemistry of the Apollo sites. In: The 11th lunar and planetary science conference. Houston, pp 1307–1340

    Google Scholar 

  26. Taylor LA, Pieters CM, Keller LP et al (2001) Lunar mare soils: space weathering and the major effects of surface-correlated nanophase Fe. J Geophys Res: Planets 106(E11):27985–27999

    Article  Google Scholar 

  27. Taylor LA, Pieters C, Keller LP et al (2001) The effects of space weathering on Apollo 17 mare soils: Petrographic and chemical characterization. Meteorit Planet Sci 36(2):285–299

    Article  Google Scholar 

  28. Taylor LA, Pieters C, Patchen A et al (2003) Mineralogical characterization of lunar highland soils. League City

    Google Scholar 

  29. Taylor LA, Pieters CE, Patchen A et al (2010) Mineralogical and chemical characterization of lunar highland soils: Insights into the space weathering of soils on airless bodies. J Geophys Res: Planets 115(E2):481–492

    Article  Google Scholar 

  30. Zheng Y, Wang S, Ouyang Z et al (2009) CAS-1 lunar soil simulant. Adv Space Res 43(3):448–454

    Article  Google Scholar 

  31. Sen S, Butts D, Ray CS et al (2011) Production of high fidelity lunar agglutinate simulant. Adv Space Res 47(11):1912–1921

    Article  Google Scholar 

  32. Poupeau G, Mandeville JC, Michel-Lévy MC (1977) Impact features in Luna 16, 20 and 24 soils and the maturation of the lunar regolith. Lunar Science Institute, Houston

    Google Scholar 

  33. Bowen NL (1922) The reaction principle in petrogenesis. J Geol 30(3):177–198

    Article  Google Scholar 

  34. Stubbs TJ, Vondrak RR, Farrell WM (2006) A dynamic fountain model for lunar dust. Adv Space Res 37(1):59–66

    Article  Google Scholar 

  35. Rennilson JJ, Criswell DR (1974) Surveyor observations of lunar horizon-glow. Earth Moon Planet 10(2):121–142

    Google Scholar 

  36. Pieters CM, Fischer EM, Rode O et al (1993) Optical effects of space weathering: the role of the finest fraction. J Geophys Res: Planets 98(E11):20817–20824

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, H., Wu, Y., Yang, J., Wang, R., Gao, H., Yang, Y. (2020). Diversification in Developing Lunar Dust Simulant. In: Long, S., Dhillon, B. (eds) Man–Machine–Environment System Engineering . MMESE 2019. Lecture Notes in Electrical Engineering, vol 576. Springer, Singapore. https://doi.org/10.1007/978-981-13-8779-1_64

Download citation

Publish with us

Policies and ethics