Skip to main content

Biosorption-Cum-Bioaccumulation of Heavy Metals from Industrial Effluent by Brown Algae: Deep Insight

  • Chapter
  • First Online:

Abstract

Biosorption by marine brown algae is considered to be very effective as the brown algae is found in diverse size and are having better efficiency in removing the heavy metals form wastewater which is one of the most critical problem now a days. Many micro and macroalgae are responsible for the recovery of different heavy metals. The brown seaweeds have the highest sorption capacity or higher rate of bioaccumulation for heavy metal ion than that of red and green seaweeds. Marine algae are fast growing algae and can perform relatively better as it requires a small amount of nutrients, CO2 and sunlight for its survival. The present literature covers the biosorption by marine algae mainly the brown algae which can be used all around the year. The carboxyl acid group present in these biomass is found to be the most dominant as well as most abundant functional group that are followed by fucoidan.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Ghani NT, El-Chaghaby GA, Helal FS (2015) Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J Adv Res 6(3):405–415

    Article  CAS  Google Scholar 

  • Abirhire O, Kadiri MO (2011) Bioaccumulation of heavy metals using microalgae. Asian J Micro Biotech Environ Sci 13:91–94

    Google Scholar 

  • Akbar NA, Kamil NAFM, Zin NSM, Adlan MN, Aziz HA (2018) Assessment of kinetic models on Fe adsorption in groundwater using high-quality limestone. IOP Conf Ser: Earth Environ Sci 140(1):12–30

    Google Scholar 

  • Alluri H, Ronda S, Settalluri V, Bondili J, Suryanarayana V, Venkateshwar P (2007) Biosorption: an eco-friendly alternative for heavy metal removal (Vol. 6)

    Google Scholar 

  • Arunakumara KKIU, Zhang X. (2008). Heavy metal bioaccumulation and toxicity with special reference to microalgae (Vol. 7)

    Google Scholar 

  • Aziz MA, Hashem MA, Ahmed KU, Haque MM (2004) Effect of salinity on growth and nitrogen fixation of cyanobacteria. Bangladesh J Prog Sci Tech 2(2):193–196

    Google Scholar 

  • Belghit I, Rasinger JD, Heesch S, Biancarosa I, Liland N, Torstensen B, Bruckner CG (2017) In-depth metabolic profiling of marine macroalgae confirms strong biochemical differences between brown, red and green algae. Algal Res 26:240–249

    Article  Google Scholar 

  • Benaisa S, Arhoun B, El Mail R, Rodriguez-Maroto JM (2018) Potential of brown algae biomass as new biosorbent of Iron: kinetic, equilibrium and thermodynamic study. J Mater Environ Sci 9(7):2131–2141

    CAS  Google Scholar 

  • Bilal M, Rasheed T, Sosa-Hernandez JE, Raza A, Nabeel F, Iqbal HMN (2018) Biosorption: an interplay between marine algae and potentially toxic elements-A review. Mar Drugs 16(2). https://doi.org/10.3390/md16020065

  • Cheng J, Qiu H, Chang Z, Jiang Z, Yin W (2016a) The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris (Vol. 5)

    Google Scholar 

  • Cheng J, Yin W, Chang Z, Lundholm N, Jiang Z (2016b) Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris (Vol. 29)

    Google Scholar 

  • Chu KH, Hashim MA (2007) Copper biosorption on immobilized seaweed biomass: column breakthrough characteristics. J Environ Sci (China) 19(8):928–932

    Article  CAS  Google Scholar 

  • Dadwal A, Mishra V (2016) Review on biosorption of arsenic from contaminated water (Vol. 45)

    Google Scholar 

  • Dang HV, Doan H, Dang Vu T, Lohi A (2008) Equilibrium and Kinetics of Biosorption of Cadmium(II) and Copper(II) Ions by Wheat Straw (Vol. 100)

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330

    Article  CAS  Google Scholar 

  • Diniz V, Volesky B (2005) Biosorption of La, Eu and Yb using Sargassum biomass. Water Res 39(1):239–247

    Article  CAS  Google Scholar 

  • El Gamal AA (2010) Biological importance of marine algae. Saudi Pharm J 18(1):1–25

    Article  Google Scholar 

  • Fisher NS, Bohé M, Teyssié JL (1984). Accumulation and toxicity of Cd, Zn, Ag, and Hg in 4 marine phytoplankters (Vol. 18)

    Google Scholar 

  • Fourest E, Volesky B (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30(1):277–282

    Article  CAS  Google Scholar 

  • Gaur R. Dehankhar N (2009) Equilibrium modelling and spectroscopic studies for the biosorption of zn+2 ions from aqueous solution using immobilized spirulina platensis (Vol. 6)

    Google Scholar 

  • González F, Romera E, Ballester A, Blázquez ML, Muñoz J, García-Balboa C (2011) Algal biosorption and biosorbents. In (pp 159–178)

    Google Scholar 

  • Henriques B, Rocha L, Lopes C, Figueira P, Monteiro JR, Duarte AR, Pereira E (2015) Study on bioaccumulation and biosorption of mercury by living marine macroalgae: Prospecting for a new remediation biotechnology applied to saline waters (Vol. 281)

    Google Scholar 

  • Jakimska A, Konieczka P, Skóra K, Namieśnik J (2011) Bioaccumulation of metals in tissues of marine animals, part II: metal concentrations in animal tissues (Vol. 20)

    Google Scholar 

  • Karthikeyan S, Balasubramanian R, Iyer CS (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour Technol 98(2):452–455

    Article  CAS  Google Scholar 

  • Kumar R, Goyal D (2009) Comparative biosorption of Pb2+ by live algal consortium and immobilized and dead biomass from aqueous solution (Vol. 47)

    Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. pp 2221–2267

    Google Scholar 

  • Lee M-G, Lim J-H, Kam S-K (2002) Biosorption characteristics in the mixed heavy metal solution by biosorbents of marine brown algae. Korean J Chem Eng 19(2):277–284

    Article  CAS  Google Scholar 

  • Liu Y, Shen L (2008) From Langmuir Kinetics to first- and second-order rate equations for adsorption (Vol. 24)

    Google Scholar 

  • Luciana R, Gervasio S, Troiani H, Gagneten AM (2013) Bioaccumulation and toxicity of copper and lead in Chlorella vulgaris (Vol. 4)

    Google Scholar 

  • Lupea M, Bulgariu L, Macoveanu M (2012) Biosorption of Cd(II) from aqueous solution on marine green algae biomass (Vol. 11)

    Google Scholar 

  • M Al Maghraby, D., & Hassan, I. (2017). Heavy metals bioaccumulation by the green alga Cladophera herpestica in Lake Mariut, Alexandria, Egypt (Vol. 1)

    Google Scholar 

  • M Ibrahim W, Abdel Aziz YS, Hamdy S, Gad NS (2018) Comparative study for biosorption of heavy metals from synthetic wastewater by different types of marine algae (Vol. 09)

    Google Scholar 

  • Maadane, A., Merghoub, N., El Mernissi, N., Tarik, A., Amzazi, S., Wahby, I., & Bakri, Y. (2017) Antimicrobial activity of marine microalgae isolated from Moroccan coastlines (Vol. 6)

    Google Scholar 

  • Manuel J, Vigneshwasran C, Annadurai S, Prakash Kumar BG, Velmurugan S (2016) Algal biosorption of heavy metals

    Google Scholar 

  • Matheickal J, Yu Q, Woodburn G (1999) Biosorption of Cadmium(II) from Aqueous solutions by pre-treated biomass of marine algae durvillaea potatorum (Vol. 33)

    Google Scholar 

  • Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process--a review. Appl Biochem Biotechnol 170(6):1389–1416

    Article  CAS  Google Scholar 

  • Moussout H. (2018). Critical of linear and nonlinear equations of pseudo-first-order and pseudo-second order kinetic models (Vol. 4)

    Google Scholar 

  • Nessim RB, Bassiouny A, Zaki HR, Moawad M, Kandeel KM (2011) Biosorption of lead and cadmium using marine algae (Vol. 27)

    Google Scholar 

  • Nirmal Kumar J, Kumar RN, Oommen C (2009) Removal of cadmium, mercury, and lead from aqueous solution using marine macroalgae as low-cost adsorbents. PRAJÑ-J Pure Appl Sci:28

    Google Scholar 

  • Patel G, Doshi H, Thakur M (2016) Biosorption and equilibrium study of copper by marine seaweeds from North West Cost of India. J Environ Sci Toxic Food Technol 10(7):54–64

    CAS  Google Scholar 

  • Purbonegoro T, Suratno PR, Husna N (2018) Toxicity of copper on the growth of marine microalgae Pavlova sp. and its chlorophyll-a (Vol. 118)

    Google Scholar 

  • Ramezani Moghaddam M, Fatemi S, Keshtkar A (2013) Adsorption of lead (Pb2+) and uranium (UO22+) cations by brown algae; experimental and thermodynamic modeling (Vol. 231)

    Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98(17):3344–3353

    Article  CAS  Google Scholar 

  • Salah M, El-Naggar N, Hamouda R, Mousa I (2018) Biosorption optimization, characterization, immobilization, and application of Gelidium amansii biomass for complete Pb2+ removal from aqueous solutions (Vol. 8)

    Google Scholar 

  • Schiewer S, Volesky B (2000) Biosorption by marine algae. In: Valdes JJ (ed) Bioremediation. Springer, Dordrecht, pp 139–169

    Chapter  Google Scholar 

  • Shafiq M, Alazba P, Amin M (2018) Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review (Vol. 47)

    Google Scholar 

  • Shams Khorramabadi G, Darvishi Cheshmeh Soltani R (2008) Evaluation of the marine algae gracilaria salicornia and sargassum sp. for the biosorption of Cr (VI) from aqueous solutions (Vol. 8)

    Google Scholar 

  • Simonin J-P, Bouté J (2016) Intraparticle diffusion-adsorption model to describe liquid/solid adsorption kinetics (Vol. 15)

    Google Scholar 

  • Sulaymon A (2014) Biosorption of heavy metals: A review (Vol. 3)

    Google Scholar 

  • Swaleh MM, Ruwa RK, Wainaina M, Ojwang LM, Shikuku SL, Maghanga JK (2016) Mariam M. Swaleha∗, Renison Ruwa b, Moses N. Wainainaa, Loice M. Ojwang’a, Samuel L. Shikuku a and Justin K. Maghangaa “Heavy Metals Bioaccumulation Assessment in acanthopleura gemmata from Fort Jesus Mombasa”. J Environ Sci, Toxicol Food Technol 10:39–45

    CAS  Google Scholar 

  • Sweetly J (2014) Macroalgae as a potentially low-cost biosorbent for heavy metal removal. A review. Int J Pharm Biol Arch 5(2)

    Google Scholar 

  • Tálos K, Pernyeszi T, Majdik C, Hegedusova A, Páger C (2012) Cadmium biosorption by baker’s yeast in aqueous suspension (Vol. 77)

    Google Scholar 

  • Torres M, Barros M, Campos CG, Pinto E, Rajamani S, Sayre R, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review (Vol. 71)

    Google Scholar 

  • Umar Mustapha M, Halimoon N (2015) Microorganisms and biosorption of heavy metals in the environment: a review paper (Vol. 07)

    Google Scholar 

  • Vieira RH, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3(1):17–24

    CAS  PubMed  Google Scholar 

  • Vilar VJ, Botelho CM, Loureiro JM, Boaventura RA (2008) Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column. Bioresour Technol 99(13):5830–5838

    Article  CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250

    Article  CAS  Google Scholar 

  • Volesky B, Kuyucak N (1988). Biosorbent for gold. In: Google Patents

    Google Scholar 

  • Wallenstein F, Couto R, Amaral A, Wilkinson M, Neto AI, Rodrigues A (2009) Baseline metal concentrations in marine algae from Sao Miguel (Azores) under different ecological conditions – Urban proximity and shallow water hydrothermal activity (Vol. 58)

    Google Scholar 

  • Yalcin S, Sezer S, Apak R (2012) Characterization and lead(II), cadmium(II), nickel(II) biosorption of dried marine brown macroalgae Cystoseira barbata. Environ Sci Pollut Res Int 19(8):3118–3125

    Article  CAS  Google Scholar 

  • Zinicovscaia I, Safonov A, Troshkina I, Demina L, German K (2018) Biosorption of Re(VII) from batch solutions and industrial effluents by cyanobacteria Spirulina platensis. CLEAN – Soil, Air, Water 46(7):1700576

    Article  Google Scholar 

Download references

Acknowledgments

Authors of this manuscript would like to thank the Council of Science and Technology Uttar Pradesh and School of Biochemical Engineering (IIT, BHU) Varanasi for providing their technical support.

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, P., Singh, J., Mishra, V. (2019). Biosorption-Cum-Bioaccumulation of Heavy Metals from Industrial Effluent by Brown Algae: Deep Insight. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-8739-5_13

Download citation

Publish with us

Policies and ethics