Skip to main content

Magnetic Nanomedicine

  • Chapter
  • First Online:
Nanomedicine in Brain Diseases
  • 524 Accesses

Abstract

Nanotechnology emerged as a promising field of science with a diversity of applications in energy storage, biotechnology, medicine, sensing, and healthcare monitoring and in each aspect of nature. Owing to the significant characteristics of the smaller size, easy modification, and tunable physical and chemical properties, magnetic nanomaterials have gained potential fame in the nanomedicine field. In terms of treatment and diagnosis, magnetic nanoparticles (MNP) cannot be replaced with any other material. Surface functionalization and coating of ferromagnetic and superparamagnetic nanoparticles not only make them biocompatible but also effective for drug delivery and killing tumor cells. In this book chapter, we highlighted the emerging applications of magnetic nanoparticles, from synthesis to potential applications. Specifically, brief introduction of magnetic nanomaterials and their physical properties is discussed in detail. Further, the facile synthesis methods to prepare MNPs and recent developments in MNPs as magnetic hyperthermia agents, as a drug transporter, and use in magnetic resonance imaging as a contrast agents are also elaborated profoundly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker JR, Quintana A, Piehler L, Banazak-Holl M, Tomalia D, Raczka E. The synthesis and testing of anti-Cancer therapeutic Nanodevices. Biomed Microdevices. 2001;3:61–9.

    Article  CAS  Google Scholar 

  2. Savage N, Thomas TA, Duncan JS. Nanotechnology applications and implications research supported by the US Environmental Protection Agency STAR grants program. J Environ Monit. 2007;9:1046–54.

    Article  CAS  PubMed  Google Scholar 

  3. Martin CR. Welcome to nanomedicine. Nanomedicine. 2006;1:5.

    Article  Google Scholar 

  4. Sonawane GH, Patil SP, Sonawane SH. Chapter 1 - Nanocomposites and its applications. In: Mohan Bhagyaraj S, Oluwafemi OS, Kalarikkal N, Thomas S, editors. Applications of nanomaterials. Cambridge, UK: Woodhead Publishing; 2018. p. 1–22.

    Google Scholar 

  5. Rahman M, Rebrov E. Microreactors for gold nanoparticles synthesis: from faraday to flow. PRO. 2014;2:466.

    Google Scholar 

  6. Schoonman J. Nanostructured materials in solid state ionics. Solid State Ion. 2000;135:5–19.

    Article  CAS  Google Scholar 

  7. Rabia Riasat NG, Riasat Z, Aslam I, Sakeena M. Effects of nanoparticles on gastrointestinal disorders and therapy. J Clin Toxicol. 2014;6:10.

    Google Scholar 

  8. Iqbal MZ, Wang F, Zhao H, Rafique MY, Wang J, Li Q. Structural and electrochemical properties of SnO nanoflowers as an anode material for lithium ion batteries. Scr Mater. 2012;67:665–8.

    Article  CAS  Google Scholar 

  9. Iqbal MZ, Wang F, Feng T, Zhao H, Rafique MY, Rafi ud D, Farooq MH, Javed Q u a J, Khan DF. Facile synthesis of self-assembled SnO nano-square sheets and hydrogen absorption characteristics. Mater Res Bull. 2012;47:3902–7.

    Article  CAS  Google Scholar 

  10. Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2:3–3.

    Article  Google Scholar 

  11. Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, Chen Y, Wang K, Liu C, Tan W. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev. 2011;63:1361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reeves DB, Weaver JB. Approaches for modeling magnetic nanoparticle dynamics. Crit Rev Biomed Eng. 2014;42:85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gun’ko Y. Magnetic nanomaterials and their applications. Nano. 2014;4:505.

    Google Scholar 

  14. Al Lehyani SHA, Hassan R, Alharbi AA, Alomayri T, Alamri H. Magnetic hyperthermia using cobalt ferrite nanoparticles: the influence of particle size. Research Article. Int J Adv Tech. 2017;8:6.

    Google Scholar 

  15. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167.

    Article  CAS  Google Scholar 

  16. Malekigorji M, Curtis ADM, Hoskins C. The use of iron oxide nanoparticles for pancreatic cancer therapy. J Nanomed Res. 2014;1:12.

    Google Scholar 

  17. Lee H, Shin T-H, Cheon J, Weissleder R. Recent developments in magnetic diagnostic systems. Chem Rev. 2015;115:10690–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100:1–11.

    Article  CAS  PubMed  Google Scholar 

  19. Masih D, Frank S, Joachim L, Nathalie R, Biplab S, Werner K, Heiko W. Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys. 2012;45:195001.

    Article  CAS  Google Scholar 

  20. Kai W, Liang T, Diqing S, Jian-Ping W. Magnetic dynamics of ferrofluids: mathematical models and experimental investigations. J Phys D Appl Phys. 2017;50:085005.

    Article  CAS  Google Scholar 

  21. Kim T, Shima M. Reduced magnetization in magnetic oxide nanoparticles. J Appl Phys. 2007;101:09M516.

    Article  CAS  Google Scholar 

  22. Dutta P, Pal S, Seehra MS, Shah N, Huffman GP. Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles. J Appl Phys. 2009;105:07B501.

    Article  CAS  Google Scholar 

  23. Demortière A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Bégin-Colin S. Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale. 2011;3:225–32.

    Article  PubMed  Google Scholar 

  24. Teja AS, Koh P-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater. 2009;55:22–45.

    Article  CAS  Google Scholar 

  25. Lu A-H, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46:1222–44.

    Article  CAS  Google Scholar 

  26. Mohammadzadeh A, Sadri M, Seyed Afghahi SS, Alizadeh Y, Najafian S, Hosseini H. In vitro biocompatibility of low and medium molecular weight chitosan–coated Fe3O4 nanoparticles. Nanomed Res J. 2017;2:250–9.

    CAS  Google Scholar 

  27. Atila Dinçer C, Yildiz N, Karakeçili A, Aydoğan N, Çalimli A. Synthesis and characterization of Fe3O4-MPTMS-PLGA nanocomposites for anticancer drug loading and release studies. Artif Cells Nanomed Biotechnol. 2017;45:1408–14.

    Article  PubMed  CAS  Google Scholar 

  28. Jeun M, Lee S, Kang JK, Tomitaka A, Kang KW, Kim YI, Takemura Y, Chung K-W, Kwak J, Bae S. Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Appl Phys Lett. 2012;100:092406.

    Article  CAS  Google Scholar 

  29. Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X. Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine. 2012;7:4809–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Patil JV, Mali SS, Kamble AS, Hong CK, Kim JH, Patil PS. Electrospinning: a versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl Surf Sci. 2017;423:641–74.

    Article  CAS  Google Scholar 

  31. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2017; https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  32. Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. Small (Weinheim an der Bergstrasse, Germany). 2014;10:631–45.

    Article  CAS  Google Scholar 

  33. Annu, Ali A, Ahmed S. Green synthesis of metal, metal oxide nanoparticles, and their various applications. In: Martínez LMT, Kharissova OV, Kharisov BI, editors. Handbook of ecomaterials. Cham: Springer; 2018. p. 1–45.

    Google Scholar 

  34. Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Hecht S. Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotechnol. 2007;2:687.

    Article  CAS  PubMed  Google Scholar 

  35. Ikkala O, ten Brinke G. Functional materials based on self-assembly of polymeric Supramolecules. Science. 2002;295:2407–9.

    Article  CAS  PubMed  Google Scholar 

  36. Rawat RS. Dense plasma focus-from alternative fusion source to versatile high energy density plasma source for plasma nanotechnology. J Phys Conf Ser. 2015;591:25.

    Article  CAS  Google Scholar 

  37. Sun S, Murray CB, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287:1989–92.

    Article  CAS  PubMed  Google Scholar 

  38. Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H. Colloidal synthesis and self-assembly of CoPt3 nanocrystals [J. Am. Chem. Soc. 2002, 124, 11480−11485]. J Am Chem Soc. 2002(124):13958.

    Article  CAS  Google Scholar 

  39. Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3:891.

    Article  CAS  PubMed  Google Scholar 

  40. Armijo LM, Brandt YI, Mathew D, Yadav S, Maestas S, Rivera AC, Cook NC, Withers NJ, Smolyakov GA, Adolphi NL, Monson TC, Huber DL, Smyth HDC, Osiński M. Iron oxide nanocrystals for magnetic hyperthermia applications. Nano. 2012;2:134.

    CAS  Google Scholar 

  41. Grasset F, Labhsetwar N, Li D, Park DC, Saito N, Haneda H, Cador O, Roisnel T, Mornet S, Duguet E, Portier J, Etourneau J. Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: powder, colloidal solution, and zinc ferrite−silica Core−Shell nanoparticles. Langmuir. 2002;18:8209–16.

    Article  CAS  Google Scholar 

  42. Park S-J, Kim S, Lee S, Khim ZG, Char K, Hyeon T. Synthesis and magnetic studies of uniform Iron Nanorods and Nanospheres. J Am Chem Soc. 2000;122:8581–2.

    Article  CAS  Google Scholar 

  43. Puntes VF, Krishnan KM, Alivisatos AP. Colloidal nanocrystal shape and size control: the case of cobalt. Science. 2001;291:2115–7.

    Article  CAS  PubMed  Google Scholar 

  44. Benjamin JS. Dispersion strengthened superalloys by mechanical alloying. Metall Trans. 1970;1:2943–51.

    CAS  Google Scholar 

  45. Lukashev RV, Alekova AF, Korchagina SK, Chibirova FK. Mechanical processing of γ-Fe2O3. Inorg Mater. 2015;51:134–7.

    Article  CAS  Google Scholar 

  46. Arbain R, Othman M, Palaniandy S. Preparation of iron oxide nanoparticles by mechanical milling. Miner Eng. 2011;24:1–9.

    Article  CAS  Google Scholar 

  47. Chen C-N, Chen Y-L, Tseng WJ. Surfactant-assisted de-agglomeration of graphite nanoparticles by wet ball mixing. J Mater Process Technol. 2007;190:61–4.

    Article  CAS  Google Scholar 

  48. Jiang Y, Liu J, Suri PK, Kennedy G, Thadhani NN, Flannigan DJ, Wang J-P. Preparation of an α″-Fe16N2 magnet via a ball milling and shock compaction approach. Adv Eng Mat. 2016;18:1009–16.

    Article  CAS  Google Scholar 

  49. Chakka VM, Altuncevahir B, Jin ZQ, Li Y, Liu JP. Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys. 2006;99:08E912.

    Article  CAS  Google Scholar 

  50. Yiping W, Yang L, Chuanbing R, Liu JP. Sm–co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology. 2007;18:465701.

    Article  CAS  Google Scholar 

  51. Kim EH, Lee HS, Kwak BK, Kim B-K. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater. 2005;289:328–30.

    Article  CAS  Google Scholar 

  52. De Matteis L, Custardoy L, Fernández-Pacheco R, Magén C, de la Fuente JM, Marquina C, Ibarra MR. Ultrathin MgO coating of superparamagnetic magnetite nanoparticles by combined coprecipitation and sol–gel synthesis. Chem Mater. 2012;24:451–6.

    Article  CAS  Google Scholar 

  53. Xie C-Y, Meng S-X, Xue L-H, Bai R-X, Yang X, Wang Y, Qiu Z-P, Binks BP, Guo T, Meng T. Light and magnetic dual-responsive Pickering emulsion micro-reactors. Langmuir. 2017;33:14139–48.

    Article  CAS  PubMed  Google Scholar 

  54. Salazar-Alvarez G, Muhammed M, Zagorodni AA. Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci. 2006;61:4625–33.

    Article  CAS  Google Scholar 

  55. Basak S, Chen D-R, Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci. 2007;62:1263–8.

    Article  CAS  Google Scholar 

  56. Rasekh M, Ahmad Z, Cross R, Hernández-Gil J, Wilton-Ely JD, Miller PW. Facile preparation of drug-loaded tristearin encapsulated superparamagnetic iron oxide nanoparticles using coaxial electrospray processing. Mol Pharm. 2017;14:2010–23.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Y, Yang Y, Duan H, Lü C. Mussel-inspired catechol-formaldehyde resin coated Fe3O4 Core-Shell magnetic Nanospheres: An effective catalyst support for highly active palladium nanoparticles. ACS Appl Mater Interfaces. 2018;10:44535.

    Article  CAS  PubMed  Google Scholar 

  58. Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C. Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano. 2017;11:2284–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater. 2007;19:1821–31.

    Article  CAS  Google Scholar 

  60. Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H. Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J Am Chem Soc. 2002;124:11480–5.

    Article  CAS  PubMed  Google Scholar 

  61. Chen D, Zhang Y, Chen B, Kang Z. Coupling effect of microwave and mechanical forces during the synthesis of ferrite nanoparticles by microwave-assisted ball milling. Ind Eng Chem Res. 2013;52:14179–84.

    Article  CAS  Google Scholar 

  62. Iida H, Takayanagi K, Nakanishi T, Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci. 2007;314:274–80.

    Article  CAS  PubMed  Google Scholar 

  63. Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, Liu Y, Song J, Li Z, Ruan H, Fan W, Lin L, Munasinghe J, Chen X, Wu A. Multifunctional Theranostic nanoparticles based on exceedingly small magnetic Iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano. 2017;11:10992–1004.

    Article  CAS  PubMed  Google Scholar 

  64. Barrow M, Taylor A, García Carrión J, Mandal P, Park BK, Poptani H, Murray P, Rosseinsky MJ, Adams DJ. Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media Mol Imaging. 2016;11:362–70.

    Article  CAS  PubMed  Google Scholar 

  65. Sato T, Iijima T, Seki M, Inagaki N. Magnetic properties of ultrafine ferrite particles. J Magn Magn Mater. 1987;65:252–6.

    Article  CAS  Google Scholar 

  66. Berkowitz A, Schuele W, Flanders P. Influence of crystallite size on the magnetic properties of acicular γ-Fe2O3 particles. J Appl Phys. 1968;39:1261–3.

    Article  CAS  Google Scholar 

  67. Morales M, Andres-Verges M, Veintemillas-Verdaguer S, Montero M, Serna C. Structural effects on the magnetic properties of γ-Fe2O3 nanoparticles. J Magn Magn Mater. 1999;203:146–8.

    Article  CAS  Google Scholar 

  68. Coey JMD. Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett. 1971;27:1140.

    Article  CAS  Google Scholar 

  69. Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124:8204–5.

    Article  CAS  PubMed  Google Scholar 

  70. Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater. 2007;19:3163–6.

    Article  CAS  Google Scholar 

  71. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G. Monodisperse mfe 2o4 (m= fe, co, mn) nanoparticles. J Am Chem Soc. 2004;126:273–9.

    Article  CAS  PubMed  Google Scholar 

  72. Peng X, Wickham J, Alivisatos A. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc. 1998;120:5343–4.

    Article  CAS  Google Scholar 

  73. O’Brien S, Brus L, Murray CB. Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J Am Chem Soc. 2001;123:12085–6.

    Article  PubMed  CAS  Google Scholar 

  74. Redl FX, Black CT, Papaefthymiou GC, Sandstrom RL, Yin M, Zeng H, Murray CB, O’Brien SP. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc. 2004;126:14583–99.

    Article  CAS  PubMed  Google Scholar 

  75. Rockenberger J, Scher EC, Alivisatos AP. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc. 1999;121:11595–6.

    Article  CAS  Google Scholar 

  76. Samia AC, Hyzer K, Schlueter JA, Qin C-J, Jiang JS, Bader SD, Lin X-M. Ligand effect on the growth and the digestion of co nanocrystals. J Am Chem Soc. 2005;127:4126–7.

    Article  CAS  PubMed  Google Scholar 

  77. Li Y, Afzaal M, O’Brien P. The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility. J Mater Chem. 2006;16:2175–80.

    Article  CAS  Google Scholar 

  78. Jana NR, Chen Y, Peng X. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater. 2004;16:3931–5.

    Article  CAS  Google Scholar 

  79. Zeng H, Rice PM, Wang SX, Sun S. Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J Am Chem Soc. 2004;126:11458–9.

    Article  CAS  PubMed  Google Scholar 

  80. Maity D, Ding J, Xue J-M. Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct Mater Lett. 2008;1:189–93.

    Article  CAS  Google Scholar 

  81. Kahlweit M. Ostwald ripening of precipitates. Adv Colloid Interf Sci. 1975;5:1–35.

    Article  CAS  Google Scholar 

  82. LaMer VK, Dinegar RH. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc. 1950;72:4847–54.

    Article  CAS  Google Scholar 

  83. Groult H, Poupard N, Herranz F, Conforto E, Bridiau N, Sannier F, Bordenave S, Piot J-M, Ruiz-Cabello J, Fruitier-Arnaudin I. Family of bioactive heparin-coated iron oxide nanoparticles with positive contrast in magnetic resonance imaging for specific biomedical applications. Biomacromolecules. 2017;18:3156–67.

    Article  CAS  PubMed  Google Scholar 

  84. Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci. 2011;2:118–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang K-W, Chieh J-J, Yeh C-K, Liao S-H, Lee Y-Y, Hsiao P-Y, Wei W-C, Yang H-C, Horng H-E. Ultrasound-induced magnetic imaging of tumors targeted by biofunctional magnetic nanoparticles. ACS Nano. 2017;11:3030–7.

    Article  CAS  PubMed  Google Scholar 

  86. Wang Y-XJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001;11:2319–31.

    Article  CAS  PubMed  Google Scholar 

  87. Lu M, Cohen MH, Rieves D, Pazdur R. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85:315–9.

    CAS  PubMed  Google Scholar 

  88. Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale. 2015;7:11142–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Iqbal MZ, Ma X, Chen T, Zhang L e, Ren W, Xiang L, Wu A. Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T 1 magnetic resonance imaging (MRI). J Mater Chem B. 2015;3:5172–81.

    Article  CAS  PubMed  Google Scholar 

  90. Song Q, Zhang ZJ. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc. 2004;126:6164–8.

    Article  CAS  PubMed  Google Scholar 

  91. Wetz F, Soulantica K, Falqui A, Respaud M, Snoeck E, Chaudret B. Hybrid co–au nanorods: controlling au nucleation and location. Angew Chem Int Ed. 2007;46:7079–81.

    Article  CAS  Google Scholar 

  92. Puntes VF, Zanchet D, Erdonmez CK, Alivisatos AP. Synthesis of hcp-co nanodisks. J Am Chem Soc. 2002;124:12874–80.

    Article  CAS  PubMed  Google Scholar 

  93. Mao B, Kang Z, Wang E, Lian S, Gao L, Tian C, Wang C. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull. 2006;41:2226–31.

    Article  CAS  Google Scholar 

  94. Zhu H, Yang D, Zhu L. Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surf Coat Technol. 2007;201:5870–4.

    Article  CAS  Google Scholar 

  95. Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A. Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater. 2005;285:296–302.

    Article  CAS  Google Scholar 

  96. Sobal NS, Hilgendorff M, Moehwald H, Giersig M, Spasova M, Radetic T, Farle M. Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system ag/co. Nano Lett. 2002;2:621–4.

    Article  CAS  Google Scholar 

  97. Chen D, Xu R. Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull. 1998;33:1015–21.

    Article  CAS  Google Scholar 

  98. Xuan S, Wang F, Wang Y-XJ, Jimmy CY, Leung KC-F. Facile synthesis of size-controllable monodispersed ferrite nanospheres. J Mater Chem. 2010;20:5086–94.

    Article  CAS  Google Scholar 

  99. Wu W, Wu Z, Yu T, Jiang C, Kim W-S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16:023501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Xuan S, Wang Y-XJ, Yu JC, Cham-Fai Leung K. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem Mater. 2009;21:5079–87.

    Article  CAS  Google Scholar 

  101. Kim J, Tran VT, Oh S, Kim C-S, Hong JC, Kim S, Joo Y-S, Mun S, Kim M-H, Jung J-W. Scalable Solvothermal synthesis of superparamagnetic Fe3O4 nanoclusters for bio-separation and Theragnostic probes. ACS Appl Mater Interfaces. 2018;10:41935.

    Article  CAS  PubMed  Google Scholar 

  102. Jalajerdi R, Gholamian F, Shafie H, Moraveji A, Ghanbari D. Thermal and magnetic characteristics of cellulose acetate-Fe3O4. J Nanostruct. 2011;1:105–9.

    Google Scholar 

  103. Ghanbari D, Salavati-Niasari M. Hydrothermal synthesis of different morphologies of MgFe 2 O 4 and magnetic cellulose acetate nanocomposite. Korean J Chem Eng. 2015;32:903–10.

    Article  CAS  Google Scholar 

  104. Ghanbari D, Salavati-Niasari M, Sabet M. Preparation of flower-like magnesium hydroxide nanostructure and its influence on the thermal stability of poly vinyl acetate and poly vinyl alcohol. Compos Part B. 2013;45:550–5.

    Article  CAS  Google Scholar 

  105. Hedayati K, Goodarzi M, Ghanbari D. Hydrothermal synthesis of Fe3O4 nanoparticles and flame resistance magnetic poly styrene nanocomposite. J Nanostruct. 2017;7:32–9.

    CAS  Google Scholar 

  106. Li J, Pei Q, Wang R, Zhou Y, Zhang Z, Cao Q, Wang D, Mi W, Du Y. Enhanced photocatalytic performance through magnetic field boosting carrier transport. ACS Nano. 2018;12:3351–9.

    Article  CAS  PubMed  Google Scholar 

  107. Kim J, Tran VT, Oh S, Kim C-S, Hong JC, Kim S, Joo Y-S, Mun S, Kim M-H, Jung J-W, Lee J, Kang YS, Koo J-W, Lee J. Scalable Solvothermal synthesis of superparamagnetic Fe3O4 nanoclusters for bioseparation and Theragnostic probes. ACS Appl Mater Interfaces. 2018;10:41935–46.

    Article  CAS  PubMed  Google Scholar 

  108. West JL, Halas NJ. Applications of nanotechnology to biotechnology: commentary. Curr Opin Biotechnol. 2000;11:215–7.

    Article  CAS  PubMed  Google Scholar 

  109. Davis S. Biomedical applications of nanotechnology—implications for drug targeting and gene therapy. Trends Biotechnol. 1997;15:217–24.

    Article  CAS  PubMed  Google Scholar 

  110. Hussein AK. Applications of nanotechnology in renewable energies—a comprehensive overview and understanding. Renew Sust Energ Rev. 2015;42:460–76.

    Article  CAS  Google Scholar 

  111. Li X, Zhang F, Zhao D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem Soc Rev. 2015;44:1346–78.

    Article  CAS  PubMed  Google Scholar 

  112. Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrion C, de Aberasturi DJ, Merk V, Barcikowski S, Parak WJ. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface. 2014;11:20130931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.

    Article  CAS  Google Scholar 

  114. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  CAS  PubMed  Google Scholar 

  115. Xu C, Sun S. Monodisperse magnetic nanoparticles for biomedical applications. Polym Int. 2007;56:821–6.

    Article  CAS  Google Scholar 

  116. Villanueva A, Cañete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, del Puerto Morales M, Miranda R. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology. 2009;20:115103.

    Article  PubMed  CAS  Google Scholar 

  117. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2:22–32.

    Article  Google Scholar 

  118. Hugander A, Robins HI, Martin P, Schmitt C. Temperature distribution during radiant heat whole-body hyperthermia: experimental studies in the dog. Int J Hyperth. 1987;3:199–208.

    Article  CAS  Google Scholar 

  119. Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129:2628–35.

    Article  CAS  PubMed  Google Scholar 

  120. Chung S, Hoffmann A, Bader S, Liu C, Kay B, Makowski L, Chen L. Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl Phys Lett. 2004;85:2971–3.

    Article  CAS  Google Scholar 

  121. Kötitz R, Weitschies W, Trahms L, Brewer W, Semmler W. Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. J Magn Magn Mater. 1999;194:62–8.

    Article  Google Scholar 

  122. Soukup D, Moise S, Céspedes E, Dobson J, Telling ND. In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. ACS Nano. 2015;9:231–40.

    Article  CAS  PubMed  Google Scholar 

  123. Dieckhoff J, Eberbeck D, Schilling M, Ludwig F. Magnetic-field dependence of Brownian and Néel relaxation times. J Appl Phys. 2016;119:043903.

    Article  CAS  Google Scholar 

  124. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.

    Article  CAS  PubMed  Google Scholar 

  126. Qin S-Y, Zhang A-Q, Cheng S-X, Rong L, Zhang X-Z. Drug self-delivery systems for cancer therapy. Biomaterials. 2017;112:234–47.

    Article  CAS  PubMed  Google Scholar 

  127. Li S, Li C, Jin S, Liu J, Xue X, Eltahan AS, Sun J, Tan J, Dong J, Liang X-J. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo. Biomaterials. 2017;144:119–29.

    Article  CAS  PubMed  Google Scholar 

  128. Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano. 2016;10:2436–46.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang Z, Wang J, Nie X, Wen T, Ji Y, Wu X, Zhao Y, Chen C. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc. 2014;136:7317–26.

    Article  CAS  PubMed  Google Scholar 

  130. Singh A, Sahoo SK. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today. 2014;19:474–81.

    Article  CAS  PubMed  Google Scholar 

  131. Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res. 2015;48:1276–85.

    Article  CAS  PubMed  Google Scholar 

  132. Shi D, Sadat M, Dunn AW, Mast DB. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale. 2015;7:8209–32.

    Article  CAS  PubMed  Google Scholar 

  133. Zhou Q, Zhang B, Han D, Chen R, Qiu F, Wu J, Jiang H. Photo-responsive reversible assembly of gold nanoparticles coated with pillar [5] arenes. Chem Commun (Camb). 2015;51:3124–6.

    Article  CAS  Google Scholar 

  134. Fantechi E, Innocenti C, Zanardelli M, Fittipaldi M, Falvo E, Carbo M, Shullani V, Di Cesare Mannelli L, Ghelardini C, Ferretti AM. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano. 2014;8:4705–19.

    Article  CAS  PubMed  Google Scholar 

  135. Deatsch AE, Evans BA. Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater. 2014;354:163–72.

    Article  CAS  Google Scholar 

  136. Pankhurst Q, Thanh N, Jones S, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2009;42:224001.

    Article  CAS  Google Scholar 

  137. Hedayatnasab Z, Abnisa F, Daud WMAW. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des. 2017;123:174–96.

    Article  CAS  Google Scholar 

  138. Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012;2012:1.

    Article  CAS  Google Scholar 

  139. Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–4.

    Article  CAS  Google Scholar 

  140. Garitaonandia JS, Insausti M, Goikolea E, Suzuki M, Cashion JD, Kawamura N, Ohsawa H, Gil de Muro I, Suzuki K, Plazaola F. Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: iocalization of the magnetism by element selective techniques. Nano Lett. 2008;8:661–7.

    Article  CAS  PubMed  Google Scholar 

  141. Brezovich IA. Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. Med Phys Mono. 1988;16:82–111.

    Google Scholar 

  142. Dennis C, Jackson A, Borchers J, Hoopes P, Strawbridge R, Foreman A, Van Lierop J, Grüttner C, Ivkov R. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009;20:395103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chatterjee J, Bettge M, Haik Y, Chen CJ. Synthesis and characterization of polymer encapsulated Cu–Ni magnetic nanoparticles for hyperthermia applications. J Magn Magn Mater. 2005;293:303–9.

    Article  CAS  Google Scholar 

  144. Das R, Rinaldi-Montes N, Alonso J, Amghouz Z, Garaio E, García J, Gorria P, Blanco J, Phan M, Srikanth H. Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers. ACS Appl Mater Interfaces. 2016;8:25162–9.

    Article  CAS  PubMed  Google Scholar 

  145. Jiang Q, Zheng S, Hong R, Deng S, Guo L, Hu R, Gao B, Huang M, Cheng L, Liu G. Folic acid-conjugated Fe3O4 magnetic nanoparticles for hyperthermia and MRI in vitro and in vivo. Appl Surf Sci. 2014;307:224–33.

    Article  CAS  Google Scholar 

  146. Parchur AK, Sharma G, Jagtap JM, Gogineni VR, LaViolette PS, Flister MJ, White SB, Joshi A. Vascular interventional radiology-guided Photothermal therapy of colorectal Cancer liver metastasis with Theranostic gold Nanorods. ACS Nano. 2018;12:6597–611.

    Article  CAS  PubMed  Google Scholar 

  147. Han X, Huang J, Jing X, Yang D, Lin H, Wang Z, Li P, Chen Y. Oxygen-deficient Black Titania for synergistic/enhanced Sonodynamic and Photoinduced Cancer therapy at near infrared-II biowindow. ACS Nano. 2018;12:4545–55.

    Article  CAS  PubMed  Google Scholar 

  148. Saeed M, Iqbal MZ, Ren W, Xia Y, Liu C, Khan WS, Wu A. Controllable synthesis of Fe 3 O 4 nanoflowers: enhanced imaging guided cancer therapy and comparison of photothermal efficiency with black-TiO 2. J Mater Chem B. 2018;6:3800–10.

    Article  CAS  PubMed  Google Scholar 

  149. Gangopadhyay P, Gallet S, Franz E, Persoons A, Verbiest T. Novel superparamagnetic core (shell) nanoparticles for magnetic targeted drug delivery and hyperthermia treatment. IEEE Trans Magn. 2005;41:4194–6.

    Article  Google Scholar 

  150. Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C. Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO Core–Shell nanoparticles by tuning dipole–dipole interactions. Adv Funct Mater. 2012;22:3737–44.

    Article  CAS  Google Scholar 

  151. Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, Li R, Su Q, Han Y, Liu X. Sub-10 nm Fe3O4@ Cu2–x S Core–Shell nanoparticles for dual-modal imaging and Photothermal therapy. J Am Chem Soc. 2013;135:8571–7.

    Article  CAS  PubMed  Google Scholar 

  152. Tang J, Zhou H, Liu J, Liu J, Li W, Wang Y, Hu F, Huo Q, Li J, Liu Y. Dual-mode imaging-guided synergistic chemo-and magnetohyperthermia therapy in a versatile nanoplatform to eliminate cancer stem cells. ACS Appl Mater Interfaces. 2017;9:23497–507.

    Article  CAS  PubMed  Google Scholar 

  153. Di Corato R, Béalle G, Kolosnjaj-Tabi J, Espinosa A, Clement O, Silva AK, Menager C, Wilhelm C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano. 2015;9:2904–16.

    Article  PubMed  CAS  Google Scholar 

  154. Berry CC, Curtis AS. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36:R198.

    Article  CAS  Google Scholar 

  155. Guibert C, Dupuis V, Peyre V, Fresnais J. Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J Phys Chem C. 2015;119:28148–54.

    Article  CAS  Google Scholar 

  156. Georgiadou V, Tangoulis V, Arvanitidis I, Kalogirou O, Dendrinou-Samara C. Unveiling the physicochemical features of CoFe2O4 nanoparticles synthesized via a variant hydrothermal method: NMR relaxometric properties. J Phys Chem C. 2015;119:8336–48.

    Article  CAS  Google Scholar 

  157. Kotoulas A, Dendrinou-Samara C, Sarafidis C, Kehagias T, Arvanitidis J, Vourlias G, Angelakeris M, Kalogirou O. Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency. J Nanopart Res. 2017;19:399.

    Article  CAS  Google Scholar 

  158. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293:483–96.

    Article  CAS  Google Scholar 

  159. Chen X, Klingeler R d, Kath M, El Gendy AA, Cendrowski K, Kalenczuk RJ, Borowiak-Palen E. Magnetic silica nanotubes: synthesis, drug release, and feasibility for magnetic hyperthermia. ACS Appl Mater Interfaces. 2012;4:2303–9.

    Article  CAS  PubMed  Google Scholar 

  160. Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K. Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol. 2011;63:141–63.

    Article  CAS  PubMed  Google Scholar 

  161. Zuo X, Wu C, Zhang W, Gao W. Magnetic carbon nanotubes for self-regulating temperature hyperthermia. RSC Adv. 2018;8:11997–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Widder KJ, Senyei AE, Scarpelli DG. Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med. 1978;158:141–6.

    Article  CAS  PubMed  Google Scholar 

  163. Zhe Liu FK, Gätjens J. Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J Nanomater. 2010;2010:15.

    Google Scholar 

  164. Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA. Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv. 2017;8:947–56.

    Article  CAS  PubMed  Google Scholar 

  165. Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine. 2012;7:3637.

    PubMed  PubMed Central  Google Scholar 

  166. Saadeh Y, Vyas D. Nanorobotic applications in medicine: current proposals and designs. Am J Robot Surg. 2014;1:4–11.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Holzinger M, Le Goff A, Cosnier S. Nanomaterials for biosensing applications: a review. Front Chem. 2014;2:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3:133.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Almalik A, Benabdelkamel H, Masood A, Alanazi IO, Alradwan I, Majrashi MA, Alfadda AA, Alghamdi WM, Alrabiah H, Tirelli N. Hyaluronic acid coated chitosan nanoparticles reduced the immunogenicity of the formed protein Corona. Sci Rep. 2017;7:10542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Martens TF, Remaut K, Deschout H, Engbersen JF, Hennink WE, Van Steenbergen MJ, Demeester J, De Smedt SC, Braeckmans K. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J Control Release. 2015;202:83–92.

    Article  CAS  PubMed  Google Scholar 

  171. Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, Mitragotri S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci. 2013;110:10753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Müller J, Bauer KN, Prozeller D, Simon J, Mailänder V, Wurm FR, Winzen S, Landfester K. Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials. 2017;115:1–8.

    Article  PubMed  CAS  Google Scholar 

  173. Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target. 2015;23:619–26.

    Article  CAS  PubMed  Google Scholar 

  174. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, Jiang X. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3:2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. Recent progress on nanostructures for drug delivery applications. J Nanomater. 2016;2016:20.

    Google Scholar 

  176. Kumari A, Kumar V, Yadav S. Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res. 2012;7:34–42.

    Article  CAS  Google Scholar 

  177. Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71.

    Article  CAS  Google Scholar 

  178. Xu L, Qiu L, Sheng Y, Sun Y, Deng L, Li X, Bradley M, Zhang R. Biodegradable pH-responsive hydrogels for controlled dual-drug release. J Mater Chem B. 2018;6:510–7.

    Article  CAS  PubMed  Google Scholar 

  179. Al-Ahmady Z, Kostarelos K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem Rev. 2016;116:3883–918.

    Article  CAS  PubMed  Google Scholar 

  180. Zhang Z, Zhang D, Wei L, Wang X, Xu Y, Li H-W, Ma M, Chen B, Xiao L. Temperature responsive fluorescent polymer nanoparticles (TRFNPs) for cellular imaging and controlled releasing of drug to living cells. Colloids Surf B: Biointerfaces. 2017;159:905–12.

    Article  CAS  PubMed  Google Scholar 

  181. Bai Y, Xie F-Y, Tian W. Controlled self-assembly of Thermo-responsive amphiphilic H-shaped polymer for adjustable drug release. Chin J Polym Sci. 2018;36:406–16.

    Article  CAS  Google Scholar 

  182. Anirudhan T, Nair AS. Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. J Mater Chem B. 2018;6:428–39.

    Article  CAS  PubMed  Google Scholar 

  183. Mathiyazhakan M, Wiraja C, Xu C. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-Micro Lett. 2018;10:10.

    Article  CAS  Google Scholar 

  184. Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6:11553–73.

    Article  CAS  PubMed  Google Scholar 

  185. Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q, Zhu X. Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release. 2018;272:145–58.

    Article  CAS  PubMed  Google Scholar 

  186. Ma G, Lin W, Yuan Z, Wu J, Qian H, Xu L, Chen S. Development of ionic strength/pH/enzyme triple-responsive zwitterionic hydrogel of the mixed L-glutamic acid and L-lysine polypeptide for site-specific drug delivery. J Mater Chem B. 2017;5:935–43.

    Article  CAS  PubMed  Google Scholar 

  187. Alonso J, Khurshid H, Devkota J, Nemati Z, Khadka NK, Srikanth H, Pan J, Phan M-H. Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. J Appl Phys. 2016;119:083904.

    Article  CAS  Google Scholar 

  188. Grillo R, Gallo J, Stroppa DG, Carbó-Argibay E, Lima R, Fraceto LF, Bañobre-López M. Sub-micrometer magnetic nanocomposites: insights into the effect of magnetic nanoparticles interactions on the optimization of SAR and MRI performance. ACS Appl Mater Interfaces. 2016;8:25777–87.

    Article  CAS  PubMed  Google Scholar 

  189. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116:5338–431.

    Article  CAS  PubMed  Google Scholar 

  190. Chen C-W, Syu W-J, Huang T-C, Lee Y-C, Hsiao J-K, Huang K-Y, Yu H-P, Liao M-Y, Lai P-S. Encapsulation of au/Fe 3 O 4 nanoparticles into a polymer nanoarchitecture with combined near infrared-triggered chemo-photothermal therapy based on intracellular secondary protein understanding. J Mater Chem B. 2017;5:5774–82.

    Article  CAS  PubMed  Google Scholar 

  191. Wu W, Jiang CZ, Roy VA. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale. 2016;8:19421–74.

    Article  CAS  PubMed  Google Scholar 

  192. Wahajuddin SA. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol. 2011;45:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine. 2018;13:953–71.

    Article  CAS  PubMed  Google Scholar 

  195. Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11:1449–70.

    Article  CAS  PubMed  Google Scholar 

  196. Gao Z, Li Y, You C, Sun K, An P, Sun C, Wang M, Zhu X, Sun B. Iron oxide nanocarrier-mediated combination therapy of cisplatin and artemisinin for combating drug resistance through highly increased toxic reactive oxygen species generation. ACS Appl Bio Mater. 2018;1:270–80.

    Article  CAS  PubMed  Google Scholar 

  197. Kosmas C, Muñoz Estrella A, Sourlas A, Silverio D, Hilario E, Montan P, Guzman E. Inclisiran: a new promising agent in the management of hypercholesterolemia. Diseases. 2018;6:63.

    Article  CAS  PubMed Central  Google Scholar 

  198. Prilepskii AY, Fakhardo AF, Drozdov AS, Vinogradov VV, Dudanov IP, Shtil AA, Bel’tyukov PP, Shibeko AM, Koltsova EM, Nechipurenko DY. Urokinase-conjugated magnetite nanoparticles as a promising drug delivery system for targeted thrombolysis: synthesis and preclinical evaluation. ACS Appl Mater Interfaces. 2018;10:36764–75.

    Article  CAS  PubMed  Google Scholar 

  199. Hsiao M-H, Mu Q, Stephen ZR, Fang C, Zhang M. Hexanoyl-chitosan-PEG copolymer coated iron oxide nanoparticles for hydrophobic drug delivery. ACS Macro Lett. 2015;4:403–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Clary L, Verderone G, Santaella C, Vierling P. Membrane permeability and stability of liposomes made from highly fluorinated double-chain phosphocholines derived from diaminopropanol, serine or ethanolamine. Biochim Biophys Acta Biomembr. 1997;1328:55–64.

    Article  Google Scholar 

  201. Gabizon A, Dagan A, Goren D, Barenholz Y, Fuks Z. Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res. 1982;42:4734–9.

    CAS  PubMed  Google Scholar 

  202. Immordino ML, Brusa P, Arpicco S, Stella B, Dosio F, Cattel L. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J Control Release. 2003;91:417–29.

    Article  CAS  PubMed  Google Scholar 

  203. Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W. Iron oxide nanoparticles-based vaccine delivery for Cancer treatment. Mol Pharm. 1791-1799;2018:15.

    Google Scholar 

  204. Mody KT, Popat A, Mahony D, Cavallaro AS, Yu C, Mitter N. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale. 2013;5:5167–79.

    Article  CAS  PubMed  Google Scholar 

  205. Gillies RJ, Bhujwalla ZM, Evelhoch J, Garwood M, Neeman M, Robinson SP, Sotak CH, Van Der Sanden B. Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia (New York, NY). 2000;2:139–51.

    Article  CAS  Google Scholar 

  206. Furman-Haran E, Schechtman E, Kelcz F, Kirshenbaum K, Degani H. Magnetic resonance imaging reveals functional diversity of the vasculature in benign and malignant breast lesions. Cancer. 2005;104:708–18.

    Article  PubMed  Google Scholar 

  207. Bowtell R. Colourful future for MRI. Nature. 2008;453:993.

    Article  CAS  PubMed  Google Scholar 

  208. Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E. Magnetic nanoparticle design for medical applications. Prog Solid State Chem. 2006;34:237–47.

    Article  CAS  Google Scholar 

  209. Hoehn M, Himmelreich U, Kruttwig K, Wiedermann D. Molecular and cellular MR imaging: potentials and challenges for neurological applications. J Magn Reson Imaging. 2008;27:941–54.

    Article  PubMed  Google Scholar 

  210. Alford R, Ogawa M, Choyke PL, Kobayashi H. Molecular probes for the in vivo imaging of cancer. Mol Bio Syst. 2009;5:1279–91.

    CAS  Google Scholar 

  211. Longmire M, Choyke PL, Kobayashi H. Dendrimer-based contrast agents for molecular imaging. Curr Top Med Chem. 2008;8:1180–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bouzigues C, Gacoin T, Alexandrou A. Biological applications of rare-earth based nanoparticles. ACS Nano. 2011;5:8488–505.

    Article  CAS  PubMed  Google Scholar 

  213. Hanaoka K. Development of responsive lanthanide-based magnetic resonance imaging and luminescent probes for biological applications. Chem Pharm Bull. 2010;58:1283–94.

    Article  CAS  Google Scholar 

  214. Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009;21:2133–48.

    Article  CAS  Google Scholar 

  215. Ivanuša T, Beravs K, Medič J, Serša I, Serša G, Jevtič V, Demsar F, Mikac U. Dynamic contrast enhanced MRI of mouse fibrosarcoma using small-molecular and novel macromolecular contrast agents. Phys Med. 2007;23:85–90.

    Article  PubMed  Google Scholar 

  216. Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev. 2010;110:3019–42.

    Article  CAS  PubMed  Google Scholar 

  217. Ripoll J, Ntziachristos V, Cannet C, Babin AL, Kneuer R, Gremlich H-U, Beckmann N. Investigating pharmacology in vivo using magnetic resonance and optical imaging. Drugs RD. 2008;9:277–306.

    Article  CAS  Google Scholar 

  218. Reilly RF. Risk for nephrogenic systemic fibrosis with gadoteridol (pro Hance) in patients who are on long-term hemodialysis. Clin J Am Soc Nephrol CJASN. 2008;3:747–51.

    Article  CAS  PubMed  Google Scholar 

  219. Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, Nagel E, Bauer WR. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:31.

    Article  PubMed  PubMed Central  Google Scholar 

  220. McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev. 2008;60:1241–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lawaczeck R, Menzel M, Pietsch H. Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl Organomet Chem. 2004;18:506–13.

    Article  CAS  Google Scholar 

  222. Hu S-H, Gao X. Nanocomposites with spatially separated functionalities for combined imaging and Magnetolytic therapy. J Am Chem Soc. 2010;132:7234–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jun Y-w, Choi J-s, Cheon J. Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem Commun. 2007:1203–14.

    Google Scholar 

  224. Fulton DA, O’Halloran M, Parker D, Senanayake K, Botta M, Aime S. Efficient relaxivity enhancement in dendritic gadolinium complexes: effective motional coupling in medium molecular weight conjugates. Chem Commun. 2005:474–6.

    Google Scholar 

  225. Haris M, Yadav SK, Rizwan A, Singh A, Wang E, Hariharan H, Reddy R, Marincola FM. Molecular magnetic resonance imaging in cancer. J Transl Med. 2015;13:313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1 https://doi.org/10.3402/nano.v3401i3400.5358.

  227. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284–304.

    Article  CAS  PubMed  Google Scholar 

  228. Lin MM, Kim DK, Haj AJE, Dobson J. Development of Superparamagnetic Iron Oxide Nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nano Biosci. 2008;7:298–305.

    Article  Google Scholar 

  229. Nathan J, Wittenberg CLH. Using nanoparticles to push the limits of detection. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:237–54.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the continuous support by National Key R&D Program of China (2018YFC0910601), Natural Science Foundation of China (U1432114 to Aiguo Wu and 81950410638 and 81650410654 to M. Zubair Iqbal), Zhejiang Province Financial Supporting (2017C03042, LY18H180011), and the Science & Technology Bureau of Ningbo City (2015B11002, 2017C110022). Furthermore, the authors also acknowledge Shanghai Synchrotron Radiation Facility at Line BL15U (No. h15 sr0021) used for X-ray fluorescence imaging and National Synchrotron Radiation Laboratory in Hefei used for soft X-ray imaging (No. 2016-HLS-PT-002193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, M.Z., Dar, G.I., Ali, I., Wu, A. (2019). Magnetic Nanomedicine. In: Xue, X. (eds) Nanomedicine in Brain Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8731-9_10

Download citation

Publish with us

Policies and ethics