Skip to main content

Allosteric Modulation of Intrinsically Disordered Proteins

  • Chapter
  • First Online:
Protein Allostery in Drug Discovery

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1163))

Abstract

The allosteric property of globular proteins is applauded as their intrinsic ability to regulate distant sites, and this property further plays a critical role in a wide variety of cellular regulatory mechanisms. Recent advancements and studies have revealed the manifestation of allostery in intrinsically disordered proteins or regions as allosteric sites present within or mediated by IDP/IDRs facilitates the signaling interactions for various biological mechanisms which would otherwise be impossible for globular proteins to regulate. This thematic review has highlighted the biological outcomes that can be achieved by the mechanism of allosteric regulation of intrinsically disordered proteins or regions. The similar mechanism has been implemented on Adenovirus 5 early region 1A and tumor apoptosis protein p53 in correspondence with other partners in binary and ternary complexes, which are the subject of the current review. Both these proteins regulate once they bind to their partners, consequently, forming either a binary or a ternary complex. Allosteric regulation by IDPs is currently a subject undergoing intense study, and the ongoing research work will ensure a better understanding of precision and efficiency of cellular regulation by them. Allosteric regulation mechanism can also be researched by intrinsically disordered protein-specific force field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATM:

Ataxia-telangiectasia mutated (gene ATM)

ATR:

Ataxia-telangiectasia and Rad3-related (ATR)

CAK:

CDK-activating kinase

CBP:

CREB-binding protein (CREBBP)

CDC2:

Cell division cycle 2 kinase

CDKs:

Cyclin-dependent kinases (multiple members)

CHK1:

Cell cycle checkpoint kinase 1 (CHEK1)

CHK2:

Cell cycle checkpoint kinase 2 (CHEK2)

CK1:

Casein kinase 1 (multiple isoforms)

CK2:

Casein kinase 2 (multiple isoforms)

CSN:

COP9 signalosome (protein complex)

DNA-PK:

DNA-dependent protein kinase (PRKDC)

ERK2:

p42 mitogen-activated protein kinase (MAPK1)

FACT:

Facilitating chromatin-mediated transcription

HIPK2:

Homeodomain-interacting protein kinase 2

JNK:

Jun N-terminal kinase (MAPK8)

MDM2:

Mouse double-minute 2 homologue

P38:

p38 mitogen-activated protein kinase (MAPK14)

P300:

E1A-binding protein, 300-kDa (EP300)

PCAF:

P300/CBP-associated factor

PKC:

Protein kinase C (multiple isoforms)

PKR:

Double-stranded RNA-dependent protein kinase (PRKR)

PIAS:

Protein inhibitor of activated STAT (multiple isoforms)

PIN1:

Peptidyl-prolyl-cis-trans isomerase 1

RSK2:

Ribosomal S6 kinase 2 (RPS6KA3)

SET9:

SET domain-containing protein 9 (SET9)

STK15:

Serine/threonine protein kinase 15

TAF II250:

TATA-binding protein-associated factor 250-kD (TAF1)

References

  1. Changeux JP (1961) The feedback control mechanisms of biosynthetic L-threonine deaminase by L-isoleucine. Cold Spring Harb Symp Quant Biol 26:313–318

    Article  CAS  PubMed  Google Scholar 

  2. Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Article  CAS  PubMed  Google Scholar 

  3. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  4. Freiburger LA, Baettig OM, Sprules T, Berghuis AM, Auclair K, Mittermaier AK (2011) Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat Struct Mol Biol 18(3):288–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nussinov R, Tsai CJ, Ma B (2013) The underappreciated role of allostery in the cellular network. Annu Rev Biophys 42:169–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koshland DE Jr, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5(1):365–385

    Article  CAS  PubMed  Google Scholar 

  7. Hilser VJ, Wrabl JO, Motlagh HN (2012) Structural and energetic basis of allostery. Annu Rev Biophys 41:585–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nussinov R, Tsai CJ (2015) Allostery without a conformational change? Revisiting the paradigm. Curr Opin Struct Biol 30:17–24

    Article  CAS  PubMed  Google Scholar 

  9. May LT, Leach K, Sexton PM, Christopoulos A (2007) Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51

    Article  CAS  PubMed  Google Scholar 

  10. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD (2016) Dynamic protein interaction networks and new structural paradigms in signaling. Chem Rev 116(11):6424–6462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bah A, Forman-Kay JD (2016) Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem R115:695056

    Google Scholar 

  13. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8):e100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wright PE, Dyson HJ (2014) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18

    Article  CAS  Google Scholar 

  15. Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584

    Article  CAS  PubMed  Google Scholar 

  16. Flock T, Weatheritt RJ, Latysheva NS, Babu MM (2014) Controlling entropy to tune the functions of intrinsically disordered regions. Curr Opin Struct Biol 26:62–72

    Article  CAS  PubMed  Google Scholar 

  17. Tompa P (2013) Multisteric regulation by structural disorder in modular signaling proteins: an extension of the concept of allostery. Chem Rev 114(13):6715–6732

    Article  PubMed  CAS  Google Scholar 

  18. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38(3):285–293

    Article  CAS  PubMed  Google Scholar 

  19. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Article  CAS  PubMed  Google Scholar 

  20. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science (New York, NY) 296(5568):750–752

    Article  CAS  Google Scholar 

  21. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  CAS  PubMed  Google Scholar 

  22. Nevins JR, Ginsberg HS, Blanchard JM, Wilson MC, Darnell JE Jr (1979) Regulation of the primary expression of the early adenovirus transcription units. J Virol 32(3):727–733

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stephens C, Harlow E (1987) Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. EMBO J 6(7):2027–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ulfendahl PJ, Linder S, Kreivi JP, Nordqvist K, Sevensson C, Hultberg H, Akusjarvi G (1987) A novel adenovirus-2 E1A mRNA encoding a protein with transcription activation properties. EMBO J 6(7):2037–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Culp JS, Webster LC, Friedman DJ, Smith CL, Huang WJ, Wu FY, Rosenberg M, Ricciardi RP (1988) The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for trans-activation. Proc Natl Acad Sci U S A 85(17):6450–6454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kimelman D, Miller JS, Porter D, Roberts BE (1985) E1a regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. J Virol 53(2):399–409

    CAS  PubMed  PubMed Central  Google Scholar 

  27. van Ormondt H, Maat J, Dijkema R (1980) Comparison of nucleotide sequences of the early E1a regions for subgroups A, B and C of human adenoviruses. Gene 12(1–2):63–76

    Article  PubMed  Google Scholar 

  28. Lyons RH, Ferguson BQ, Rosenberg M (1987) Pentapeptide nuclear localization signal in adenovirus E1a. Mol Cell Biol 7(7):2451–2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krippl B, Ferguson B, Rosenberg M, Westphal H (1984) Functions of purified E1A protein microinjected into mammalian cells. Proc Natl Acad Sci 81(22):6988–6992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harlow E, Whyte P, Franza BR Jr, Schley C (1986) Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol Cell Biol 6(5):1579–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yee SP, Branton PE (1985) Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 147(1):142–153

    Article  CAS  PubMed  Google Scholar 

  32. Blobel GA (2000) CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 95(3):745–755

    Article  CAS  PubMed  Google Scholar 

  33. Giordano A, Avantaggiati ML (1999) p300 and CBP: partners for life and death. J Cell Physiol 181(2):218–230

    Article  CAS  PubMed  Google Scholar 

  34. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  CAS  PubMed  Google Scholar 

  35. Dyson HJ, Wright PE (2016) Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem 291(13):6714–6722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Egan C, Bayley ST, Branton PE (1989) Binding of the Rb1 protein to E1A products is required for adenovirus transformation. Oncogene 4(3):383–388

    CAS  PubMed  Google Scholar 

  37. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E (1988) Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334(6178):124–129

    Article  CAS  PubMed  Google Scholar 

  38. Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB (2001) Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3(7):667–674

    Article  CAS  PubMed  Google Scholar 

  39. Subramanian T, Zhao LJ, Chinnadurai G (2013) Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection. Virology 443(2):313–320

    Article  CAS  PubMed  Google Scholar 

  40. Tremblay ML, Dumont DJ, Branton PE (1989) Analysis of phosphorylation sites in the exon 1 region of E1A proteins of human adenovirus type 5. Virology 169(2):397–407

    Article  CAS  PubMed  Google Scholar 

  41. Hateboer G, Gennissen A, Ramos YF, Kerkhoven RM, Sonntag-Buck V, Stunnenberg HG, Bernards R (1995) BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J 14(13):3159–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pines J, Hunter T (1990) Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature 346(6286):760–763

    Article  CAS  PubMed  Google Scholar 

  43. Ewen ME, Xing YG, Lawrence JB, Livingston DM (1991) Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66(6):1155–1164

    Article  CAS  PubMed  Google Scholar 

  44. Tsai LH, Harlow E, Meyerson M (1991) Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature 353(6340):174–177

    Article  CAS  PubMed  Google Scholar 

  45. Hannon GJ, Demetrick D, Beach D (1993) Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev 7(12a):2378–2391

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Graham C, Lacy S, Duncan AM, Whyte P (1993) The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev 7(12a):2366–2377

    Article  CAS  PubMed  Google Scholar 

  47. Cohen MJ, Yousef AF, Massimi P, Fonseca GJ, Todorovic B, Pelka P, Turnell AS, Banks L, Mymryk JS (2013) Dissection of the C-terminal region of E1A redefines the roles of CtBP and other cellular targets in oncogenic transformation. J Virol 87(18):10348–10355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geisberg JV, Lee WS, Berk AJ, Ricciardi RP (1994) The zinc finger region of the adenovirus E1A transactivating domain complexes with the TATA box binding protein. Proc Natl Acad Sci U S A 91(7):2488–2492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hateboer G, Timmers HT, Rustgi AK, Billaud M, van’t Veer LJ, Bernards R (1993) TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein. Proc Natl Acad Sci U S A 90(18):8489–8493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Song CZ, Loewenstein PM, Toth K, Green M (1995) Transcription factor TFIID is a direct functional target of the adenovirus E1A transcription-repression domain. Proc Natl Acad Sci U S A 92(22):10330–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boyer TG, Berk AJ (1993) Functional interaction of adenovirus E1A with holo-TFIID. Genes Dev 7(9):1810–1823

    Article  CAS  PubMed  Google Scholar 

  52. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577

    CAS  PubMed  Google Scholar 

  53. Thakur JK, Yadav A, Yadav G (2013) Molecular recognition by the KIX domain and its role in gene regulation. Nucleic Acids Res 42(4):2112–2125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (2002) Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP) The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain. J Biol Chem 277(45):43168–43174

    Article  CAS  PubMed  Google Scholar 

  55. Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (1997) Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator: coactivator interactions. Cell 91(6):741–752

    Article  CAS  PubMed  Google Scholar 

  56. De Guzman RN, Goto NK, Dyson HJ, Wright PE (2006) Structural basis for cooperative transcription factor binding to the CBP coactivator. J Mol Biol 355(5):1005–1013

    Article  PubMed  CAS  Google Scholar 

  57. Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ (2001) MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 21(7):2249–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim PM, Sboner A, Xia Y, Gerstein M (2008) The role of disorder in interaction networks: a structural analysis. Mol Syst Biol 4:179

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ, Kurdistani SK (2008) Epigenetic reprogramming by adenovirus e1a. Science 321(5892):1086–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. White E (2001) Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene 20(54):7836

    Article  CAS  PubMed  Google Scholar 

  61. Ferreon JC, Martinez-Yamout MA, Dyson HJ, Wright PE (2009b) Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proc Natl Acad Sci U S A 106(32):13260–13265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ferreon ACM, Ferreon JC, Wright PE, Deniz AA (2013) Modulation of allostery by protein intrinsic disorder. Nature 498(7454):390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Anderson CW, Appella E (2009) Signaling to the p53 tumor suppressor through pathways activated by genotoxic and non-genotoxic stresses. In: Handbook of cell signaling, 2nd edn. Elsevier, pp 2185–2204

    Google Scholar 

  64. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53

    Article  CAS  PubMed  Google Scholar 

  65. Avalos JL, Celic I, Muhammad S, Cosgrove MS, Boeke JD, Wolberger C (2002) Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell 10(3):523–535

    Article  CAS  PubMed  Google Scholar 

  66. Bochkareva E, Kaustov L, Ayed A, Yi G-S, Lu Y, Pineda-Lucena A, Liao JC, Okorokov AL, Milner J, Arrowsmith CH (2005) Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci U S A 102(43):15412–15417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265(5170):346–355

    Article  CAS  PubMed  Google Scholar 

  68. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ (2004) Regulation of p53 activity through lysine methylation. Nature 432(7015):353

    Article  CAS  PubMed  Google Scholar 

  69. Di Lello P, Jenkins LMM, Jones TN, Nguyen BD, Hara T, Yamaguchi H, Dikeakos JD, Appella E, Legault P, Omichinski JG (2006) Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol Cell 22(6):731–740

    Article  PubMed  CAS  Google Scholar 

  70. Gorina S, Pavletich NP (1996) Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274(5289):1001–1005

    Article  CAS  PubMed  Google Scholar 

  71. Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP (2002) Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev 16(5):583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953

    Article  CAS  PubMed  Google Scholar 

  73. Kuszewski J, Gronenborn AM, Clore GM (1999) Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc 121(10):2337–2338

    Article  CAS  Google Scholar 

  74. Lilyestrom W, Klein MG, Zhang R, Joachimiak A, Chen XS (2006) Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev 20(17):2373–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lowe ED, Tews I, Cheng KY, Brown NR, Gul S, Noble ME, Gamblin SJ, Johnson LN (2002) Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 41(52):15625–15634

    Article  CAS  PubMed  Google Scholar 

  76. Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sanchez R, Zeleznik-Le NJ, Ze R, Zhou M-M (2004) Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol Cell 13(2):251–263

    Article  CAS  PubMed  Google Scholar 

  77. Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F (2001) Crystal structure of the 14-3-3ζ: serotonin N-acetyltransferase complex: a role for scaffolding in enzyme regulation. Cell 105(2):257–267

    Article  CAS  PubMed  Google Scholar 

  78. Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC (1998) 14-3-3ζ binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273(26):16305–16310

    Article  CAS  PubMed  Google Scholar 

  79. Poux AN, Marmorstein R (2003) Molecular basis for Gcn5/PCAF histone acetyltransferase selectivity for histone and nonhistone substrates. Biochemistry 42(49):14366–14374

    Article  CAS  PubMed  Google Scholar 

  80. Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB (1999) Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell 4(2):153–166

    Article  CAS  PubMed  Google Scholar 

  81. Wu H, Maciejewski MW, Marintchev A, Benashski SE, Mullen GP, King SM (2000) Solution structure of a dynein motor domain associated light chain. Nat Struct Mol Biol 7(7):575

    Article  CAS  Google Scholar 

  82. Dawson R, Müller L, Dehner A, Klein C, Kessler H, Buchner J (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol 332(5):1131–1141

    Article  CAS  PubMed  Google Scholar 

  83. Lee H, Mok KH, Muhandiram R, Park K-H, Suk J-E, Kim D-H, Chang J, Sung YC, Choi KY, Han K-H (2000) Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 275(38):29426–29432

    Article  CAS  PubMed  Google Scholar 

  84. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. FEBS J 272(20):5129–5148

    Article  CAS  PubMed  Google Scholar 

  85. Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. In: Pacific symposium on biocomputing, pp 473–484

    Google Scholar 

  86. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18(5):343–384

    Article  CAS  PubMed  Google Scholar 

  87. Ferreon JC, Lee CW, Arai M, Martinez-Yamout MA, Dyson HJ, Wright PE (2009a) Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proc Natl Acad Sci U S A 106(16):6591–6596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Teufel DP, Freund SM, Bycroft M, Fersht AR (2007) Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc Natl Acad Sci U S A 104(17):7009–7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feng H, Jenkins LMM, Durell SR, Hayashi R, Mazur SJ, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E (2009) Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17(2):202–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miller Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ, Tropea JE, Bai Y, Appella E (2015) Characterization of the p300 Taz2–p53 TAD2 complex and comparison with the p300 Taz2–p53 TAD1 complex. Biochemistry 54(11):2001–2010

    Article  CAS  PubMed  Google Scholar 

  91. Popowicz G, Czarna A, Holak T (2008) Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 7(15):2441–2443

    Article  CAS  PubMed  Google Scholar 

  92. Vise PD, Baral B, Latos AJ, Daughdrill GW (2005) NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain. Nucleic Acids Res 33(7):2061–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, Mylonas E, Svergun DI, Blackledge M, Fersht AR (2008) Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci U S A 105(15):5762–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Borcherds W, Theillet F-X, Katzer A, Finzel A, Mishall KM, Powell AT, Wu H, Manieri W, Dieterich C, Selenko P (2014) Disorder and residual helicity alter p53-Mdm2 binding affinity and signaling in cells. Nat Chem Biol 10(12):1000

    Article  CAS  PubMed  Google Scholar 

  95. Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P (2014) The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 23(8):1077–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gao J, Xu D (2012) Correlation between posttranslational modification and intrinsic disorder in protein. In: Biocomputing 2012. World Scientific, pp 94–103

    Google Scholar 

  97. Theillet F-X, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon M-K, Kriwacki RW, Landrieu I, Lippens G, Selenko P (2012) Cell signaling, post-translational protein modifications and NMR spectroscopy. J Biomol NMR 54(3):217–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tsai C-J, Ma B, Nussinov R (2009) Protein–protein interaction networks: how can a hub protein bind so many different partners? Trends Biochem Sci 34(12):594–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee CW, Ferreon JC, Ferreon ACM, Arai M, Wright PE (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Natl Acad Sci U S A 107(45):19290–19295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schon O, Friedler A, Bycroft M, Freund SM, Fersht AR (2002) Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol 323(3):491–501

    Article  CAS  PubMed  Google Scholar 

  101. Kohn KW, Pommier Y (2005) Molecular interaction map of the p53 and Mdm2 logic elements, which control the Off–On switch of p53 in response to DNA damage. Biochem Biophys Res Commun 331(3):816–827

    Article  CAS  PubMed  Google Scholar 

  102. Berger M, Stahl N, Del Sal G, Haupt Y (2005) Mutations in proline 82 of p53 impair its activation by Pin1 and Chk2 in response to DNA damage. Mol Cell Biol 25(13):5380–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15(2):164–171

    Article  CAS  PubMed  Google Scholar 

  104. Kawaguchi Y, Ito A, Appella E, Yao T-P (2006) Charge modification at multiple C-terminal lysine residues regulates p53 oligomerization and its nucleus-cytoplasm trafficking. J Biol Chem 281(3):1394–1400

    Article  CAS  PubMed  Google Scholar 

  105. Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268(10):2764–2772

    Article  CAS  PubMed  Google Scholar 

  106. Di Stefano V, Soddu S, Sacchi A, D'orazi G (2005) HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21 Waf1 after nonapoptotic DNA damage. Oncogene 24(35):5431

    Article  PubMed  CAS  Google Scholar 

  107. Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT (2000) Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol 20(22):8458–8467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dornan D, Bheddah S, Newton K, Ince W, Frantz GD, Dowd P, Koeppen H, Dixit VM, French DM (2004) COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res 64(20):7226–7230

    Article  CAS  PubMed  Google Scholar 

  109. Esser C, Scheffner M, Höhfeld J (2005) The chaperone associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem

    Google Scholar 

  110. Nikolaev AY, Li M, Puskas N, Qin J, Gu W (2003) Parc: a cytoplasmic anchor for p53. Cell 112(1):29–40

    Article  CAS  PubMed  Google Scholar 

  111. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112(6):779–791

    Article  CAS  PubMed  Google Scholar 

  112. Schmidt D, Müller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A 99(5):2872–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xirodimas DP, Saville MK, Bourdon J-C, Hay RT, Lane DP (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118(1):83–97

    Article  CAS  PubMed  Google Scholar 

  114. Liu H, Song D, Lu H, Luo R, Chen HF (2018) Intrinsically disordered protein specific force field CHARMM 36 IDPSFF. Chem Biol Drug Des 92(4):1722–1735

    Article  CAS  PubMed  Google Scholar 

  115. Song D, Luo R, Chen H-F (2017a) The IDP-specific force field ff14IDPSFF improves the conformer sampling of intrinsically disordered proteins. J Chem Inf Model 57(5):1166–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Song D, Wang W, Ye W, Ji D, Luo R, Chen HF (2017b) ff14IDPs force field improving the conformation sampling of intrinsically disordered proteins. Chem Biol Drug Des 89(1):5–15

    Article  CAS  PubMed  Google Scholar 

  117. Wang W, Ye W, Jiang C, Luo R, Chen HF (2014) New force field on modeling intrinsically disordered proteins. Chem Biol Drug Des 84(3):253–269

    Article  CAS  PubMed  Google Scholar 

  118. Ye W, Ji D, Wang W, Luo R, Chen H-F (2015) Test and evaluation of ff99IDPs force field for intrinsically disordered proteins. J Chem Inf Model 55(5):1021–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the Center for HPC at Shanghai Jiao Tong University, the National Key Research and Development Program of China (2018YFC0310803 and 2017YFE0103300), the National Natural Science Foundation of China (31770771 and 31620103901), and the Medical Engineering Cross Fund of Shanghai Jiao Tong University (YG2015MS56 and YG2017MS08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Feng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rehman, A.U., Rahman, M.U., Arshad, T., Chen, HF. (2019). Allosteric Modulation of Intrinsically Disordered Proteins. In: Zhang, J., Nussinov, R. (eds) Protein Allostery in Drug Discovery. Advances in Experimental Medicine and Biology, vol 1163. Springer, Singapore. https://doi.org/10.1007/978-981-13-8719-7_14

Download citation

Publish with us

Policies and ethics