Skip to main content

Buckling of Graphene Monolayer Under In-Plane Compression

  • Chapter
  • First Online:
Nanomechanics of Graphene and Design of Graphene Composites

Part of the book series: Springer Theses ((Springer Theses))

  • 519 Accesses

Abstract

For graphene monolayer, the out-of-plane induced by in-plane loading is buckling, which is one of the basic out-of-plane deformations raised in Chap. 1. The static and dynamic buckling of graphene monolayer is studied by theoretical mechanical models and numerous simulations in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geim AK (2009) Science 324(5934):1530

    CAS  Google Scholar 

  2. Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) Nat Mater 6(9):652

    Article  CAS  Google Scholar 

  3. Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) ACS Nano 5(5):3645

    Article  CAS  Google Scholar 

  4. Heersche HB, Jarillo-Herrero P, Oostinga JB, Vandersypen LM, Morpurgo AF (2007) Nature 446(7131):56

    Article  CAS  Google Scholar 

  5. Trbovic J, Minder N, Freitag F, Schönenberger C (2010) Nanotechnology 21(27):274005

    Article  CAS  Google Scholar 

  6. Lu X, Dou H, Gao B, Yuan C, Yang S, Hao L, Shen L, Zhang X (2011) Electrochim Acta 56(14):5115

    Article  CAS  Google Scholar 

  7. Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Nano Lett 8(8):2458

    Article  CAS  Google Scholar 

  8. Taziev R, Prinz VY (2011) Nanotechnology 22(30):305705

    Article  CAS  Google Scholar 

  9. Guinea F, Horovitz B, Le Doussal P (2008) Phys Rev B 77(20):205421

    Article  Google Scholar 

  10. Guinea F, Horovitz B, Le Doussal P (2009) Solid State Commun 149(27–28):1140

    Article  CAS  Google Scholar 

  11. De Parga AV, Calleja F, Borca B, Passeggi M Jr, Hinarejos J, Guinea F, Miranda R (2008) Phys Rev Lett 100(5):056807

    Article  Google Scholar 

  12. Thompson-Flagg RC, Moura MJ, Marder M (2009) Eur Lett 85(4):46002

    Article  Google Scholar 

  13. Huang M, Yan H, Chen C, Song D, Heinz TF, Hone J (2009) Proc Natl Acad Sci 106(18):7304

    Article  CAS  Google Scholar 

  14. Proctor JE, Gregoryanz E, Novoselov KS, Lotya M, Coleman JN, Halsall MP (2009) Phys Rev B 80(7):073408

    Article  Google Scholar 

  15. Xu Y, Gao H, Chen H, Yuan Y, Zhu K, Chen H, Jin Z, Yu B (2012) Appl Phys Lett 100(5):052111

    Article  Google Scholar 

  16. Zhu W, Low T, Perebeinos V, Bol AA, Zhu Y, Yan H, Tersoff J, Avouris P (2012) Nano Lett 12(7):3431

    Article  CAS  Google Scholar 

  17. Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D, Jaszczak JA, Geim A (2008) Phys Rev Lett 100(1):016602

    Article  CAS  Google Scholar 

  18. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, Adamson D, Schniepp H, Chen X, Ruoff R et al (2008) Nat Nanotechnol 3(6):327

    Article  CAS  Google Scholar 

  19. Zhang Z, Duan W, Wang C (2012) Nanoscale 4(16):5077

    Article  CAS  Google Scholar 

  20. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442(7100):282

    Article  CAS  Google Scholar 

  21. Rafiee M, Rafiee J, Yu ZZ, Koratkar N (2009) Appl Phys Lett 95(22):223103

    Article  Google Scholar 

  22. Paronyan TM, Pigos EM, Chen G, Harutyunyan AR (2011) ACS Nano 5(12):9619

    Article  CAS  Google Scholar 

  23. Gao L, Guest JR, Guisinger NP (2010) Nano Lett 10(9):3512

    Article  CAS  Google Scholar 

  24. Wintterlin J, Bocquet ML (2009) Surf Sci 603(10–12):1841

    Article  CAS  Google Scholar 

  25. Mao Y, Wang WL, Wei D, Kaxiras E, Sodroski JG (2011) ACS Nano 5(2):1395

    Article  CAS  Google Scholar 

  26. Frank O, Tsoukleri G, Parthenios J, Papagelis K, Riaz I, Jalil R, Novoselov KS, Galiotis C (2010) ACS Nano 4(6):3131

    Article  CAS  Google Scholar 

  27. Pradhan S (2009) Phys Lett A 373(45):4182

    Article  CAS  Google Scholar 

  28. Sakhaee-Pour A (2009) Comput Mater Sci 45(2):266

    Article  CAS  Google Scholar 

  29. Pradhan S, Murmu T (2009) Comput Mater Sci 47(1):268

    Article  CAS  Google Scholar 

  30. Zhao H, Min K, Aluru N (2009) Nano Lett 9(8):3012

    Article  CAS  Google Scholar 

  31. Ma T, Li B, Chang T (2011) Appl Phys Lett 99(20):201901

    Article  Google Scholar 

  32. Kim DH, Rogers JA (2009) ACS Nano 3(3):498

    Article  CAS  Google Scholar 

  33. Osvath Z, Lefloch F, Bouchiat V, Chapelier C (2013) Nanoscale 5(22):10996

    Article  CAS  Google Scholar 

  34. Dragoman D, Dragoman M (2008) Appl Phys Lett 93(10):103105

    Article  Google Scholar 

  35. Smolyanitsky A, Tewary VK (2013) Nanotechnology 24(5):055701

    Article  CAS  Google Scholar 

  36. Plimpton S (1995) J Comput Phys 117(1):1

    Article  CAS  Google Scholar 

  37. Liew K, Wei J, He X (2007) Phys Rev B 75(19):195435

    Article  Google Scholar 

  38. Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phys 112(14):6472

    Article  CAS  Google Scholar 

  39. Li J (2003) Model Simul Mater Sci Eng 11(2):173

    Article  Google Scholar 

  40. Vanderbilt D (1990) Phys Rev B 41(11):7892

    Article  CAS  Google Scholar 

  41. Chen Y, Lu J, Gao Z (2007) J Phys Chem C 111(4):1625

    Article  CAS  Google Scholar 

  42. Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlogl U, Yang W et al (2011) Nano Lett 12(1):141

    Article  Google Scholar 

  43. Giannopoulos GI (2012) Comput Mater Sci 53(1):388

    Article  CAS  Google Scholar 

  44. Wang H, Upmanyu M (2012) Nanoscale 4(12):3620

    Article  CAS  Google Scholar 

  45. Timoshenko SP, Gere JM (2009) Theory of elastic stability. Courier Corporation

    Google Scholar 

  46. Yue K, Gao W, Huang R, Liechti KM (2012) J Appl Phys 112(8):083512

    Article  Google Scholar 

  47. Guo Y, Guo W (2013) Nanoscale 5(1):318

    Article  CAS  Google Scholar 

  48. Shenoy V, Reddy C, Ramasubramaniam A, Zhang Y (2008) Phys Rev Lett 101(24):245501

    Article  CAS  Google Scholar 

  49. Rhodes J (2003) Thin-Walled Struct 41(2–3):207

    Article  Google Scholar 

  50. Rees DW (2009) Mechanics of optimal structural design: minimum weight structures. Wiley

    Google Scholar 

  51. Wang C, Liu Y, Lan L, Tan H (2013) Nanoscale 5(10):4454

    Article  CAS  Google Scholar 

  52. Runte S, Lazić P, Vo-Van C, Coraux J, Zegenhagen J, Busse C (2014) Phys Rev B 89(15):155427

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X. (2019). Buckling of Graphene Monolayer Under In-Plane Compression. In: Nanomechanics of Graphene and Design of Graphene Composites. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-8703-6_3

Download citation

Publish with us

Policies and ethics