Skip to main content

Abstract

The term biofuels refer mainly to fuels derived from biomass, which can be considered as plants and organic residues. In this chapter attention will be focused on liquid biofuels that can be used mainly for transportation. As reported in the IEA Technology Road Map for biofuels, presented in 2011, they can be divided in two main categories, based on the type of technologies used: conventional biofuels (sugar- and starch-based ethanol, conventional biodiesel, biogas) and advanced biofuels (cellulosic ethanol, hydrotreated vegetable oil, biomass-to-liquids, biosynthetic syngas, etc.). The production of these biofuels is object of big research efforts directed through process intensification and increase of the efficiency of biomass conversion into an energy vector. For this reason this chapter takes into account the production of first-generation biodiesel, first-generation bioethanol, second-generation biodiesel, second-generation bioethanol, and hydrotreated vegetable oils focusing on their market and the most importantly production techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels, Bioprod Biorefin 5:93–114

    Article  CAS  Google Scholar 

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progr Energy Comb Sci 33(3):233–271

    Article  CAS  Google Scholar 

  • Albers SC, Berklund AM, Graff GD (2016) The rise and fall of innovation in biofuels. Nat Biotechnol 34:814–821

    Article  CAS  Google Scholar 

  • Aleiferis PG, Serras-Pereira J, Richardson D (2013) Characterisation of flame development with ethanol, butanol, iso-octane, gasoline and methane in a direct-injection spark-ignition engine. Fuel 109:256–278

    Article  CAS  Google Scholar 

  • Al-Hasan M (2003) Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Conver Manag 44(9):1547–1561

    Article  CAS  Google Scholar 

  • Arnold M, Tainter JA, Strumsky D (2019) Productivity of innovation in biofuel technologies. Energy Policy 124:54–62

    Article  CAS  Google Scholar 

  • Assman G, Blasey G, Gutsche B, Jeromin L, Rigal J, Armengand R, Cormary B (1996) Continuous progress for the production of lower alkyl esters. US Patent No. 5,514,820.

    Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875

    Article  CAS  Google Scholar 

  • Balki MK, Sayin C, Canakci M (2014) The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel 115:901–906

    Article  CAS  Google Scholar 

  • Barbanera M, Lascaro E, Foschini D, Cotana F, Buratti C (2018) Optimization of bioethanol production from steam exploded hornbeam wood (Ostrya carpinifolia) by enzymatic hydrolysis. Renew Energy 124:136–143

    Article  CAS  Google Scholar 

  • Bergthorson JM, Thomson MJ (2015) A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew Sustain Energy Rev 42:1393–1417

    Article  CAS  Google Scholar 

  • BiofuelsDigets (2017) Ground delay: where are the sustainable aviation fuels? http://www.biofuelsdigest.com/bdigest/2017/02/20/ground-delaywhere-are-the-sustainable-aviation-fuels/

  • Boerrigter H (2006) Economy of Biomass-to-Liquids (BTL) plants – An engineering assessment. Energy research Centre of the Netherlands [Report ECN-C-06-019]

    Google Scholar 

  • Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25

    Article  CAS  Google Scholar 

  • Bridgwater AV, Maniatis K (2014) The production of biofuels by the thermochemical processing of biomass. In: Archer MD, Barber J (eds) Molecular to global photosynthesis. edIC Press, New York, pp 521–612

    Google Scholar 

  • Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28:237–259

    Article  CAS  Google Scholar 

  • Buratti C, Barbanera M, Lascaro E (2015) Ethanol production from vineyard pruning residues with steam explosion pretreatment. Environ Progr Sustain Energy 34(3):802–809

    Article  CAS  Google Scholar 

  • Buratti C, Foschini D, Barbanera M, Fantozzi F (2018) Fermentable sugars production from peach tree prunings: response surface model optimization of NaOH alkaline pretreatment. Biomass Bioenergy 112:128–137

    Article  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  CAS  Google Scholar 

  • Canakci M, Ozsezen AN, Alptekin E, Eyidogan M (2013) Impact of alcohol-gasoline fuel blends on the exhaust emission of an SI engine. Renew Energy 52:111–117

    Article  CAS  Google Scholar 

  • Cardona C, Sanchez O (2007) Fuel ethanol production: process design trends and integration opportunities. Biores Technol 98:2415–2457

    Article  CAS  Google Scholar 

  • Cavalaglio G, Gelosia M, D’Antonio S, Nicolini A, Pisello AL, Barbanera M, Cotana F (2016) Lignocellulosic ethanol production from the recovery of stranded driftwood residues. Energies 9(8):634

    Article  CAS  Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549

    Article  CAS  Google Scholar 

  • Chiaramonti D (2007) Bioethanol: role and production technologies. In: Ranalli P (ed) Improvement of crop plants for industrial end uses. Springer, Dordrecht, pp 209–251

    Chapter  Google Scholar 

  • Christensen E, Yanowitz J, Ratcliff M, McCormick RL (2011) Renewable oxygenate blending effects on gasoline properties. Energy Fuels 25(10):4723–4733. https://doi.org/10.1021/ef2010089

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  CAS  Google Scholar 

  • Coniglio L, Bennadji H, Glaude PA, Herbinet O, Billaud F (2013) Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and modeling – Advances and future refinements. Progr Energy Combust Sci 39(4):340–382

    Article  Google Scholar 

  • Corporan E, Edwards T, Shafer L, MJ DW, Klingshirn C, Zabarnick S, West Z, Striebich R, Graham J, Klein J (2011) Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels. Energy Fuels 25(3):955–966. https://doi.org/10.1021/ef101520v

    Article  CAS  Google Scholar 

  • Costantini V, Crespi F, Curci Y (2013) BioPat: an investigative tool for analysis of industry evolution, technological paths and policy input in the biofuels sector. In: Costantini V, Mazzanti M (eds) The dynamics of environmental and economic systems: innovation, Environmental Policy and Competitiveness. Springer, Dordrecht, pp 203–226

    Chapter  Google Scholar 

  • Costantini V, Crespi F, Martini C, Pennacchio L (2015a) Demand-pull and technology-push public support for eco-innovation: the case of the biofuels sector. Res Policy 44:577–595

    Article  Google Scholar 

  • Costantini V, Crespi F, Curci Y (2015b) A keyword selection method for mapping technological knowledge in specific sectors through patent data: the case of biofuels sector. Econ Innov New Technol 24:282–308

    Article  Google Scholar 

  • Cotana F, Barbanera M, Foschini D, Lascaro E, Buratti C (2015) Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning. Energy Proc 82:389–394

    Article  CAS  Google Scholar 

  • Datta R, Maher MA, Jones C, Brinker RW (2011) Ethanol – the primary renewable liquid fuel. J Chem Technol Biotechnol 86:473–480

    Article  CAS  Google Scholar 

  • Demirbas A (2009a) Biofuels securing the planet’s future energy needs. Energy Conver Manag 50(9):2239–2249

    Article  CAS  Google Scholar 

  • Demirbas MF (2009b) Biorefineries for biofuel upgrading: A critical review. Appl Energy 86(1):S151–S161

    Article  CAS  Google Scholar 

  • Dimitriou I, Goldingay H, Bridgwater AV (2018) Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production. Renew Sustain Energy Rev 88:60–175

    Article  CAS  Google Scholar 

  • Dry ME (2002a) The Fischer-Tropsch process: 1950–2000. Catal Today 71(3–4):227–241

    Article  CAS  Google Scholar 

  • Dry ME (2002b) High quality diesel via the Fischer-Tropsch process – a review. J Chem Technol Biotechnol 77(1):43–50

    Article  CAS  Google Scholar 

  • Dwivedi P, Alavalapati JRR, Lal P (2009) Cellulosic ethanol production in the United States: conversion technologies, current production status, economics, and emerging developments. Energy Sustain Dev 13:174–182

    Article  CAS  Google Scholar 

  • Eckey EW (1956) Esterification and interesterification. J Am Oil Chem Sot 33:575–579

    Article  Google Scholar 

  • Eilers J, Posthuma SA, Sie ST (1990) The Shell Middle Distillate Synthesis process (SMDS). Catal Lett 7:253–270

    Article  CAS  Google Scholar 

  • Fan Y, Wu G, Su F, Li K, Xu L, Han X, Yan Y (2016) Dendrimer-coated magnetic multiwalled carbon nanotubes: synthesis, characterization, and employed in immobilization of lipases toward catalyzing biodiesel production. Fuel 178:172–178

    Article  CAS  Google Scholar 

  • Fan Y, Su F, Li K, Ke C, Yan Y (2017) Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production. Sci Rep 7:45643. https://doi.org/10.1038/srep45643

    Article  Google Scholar 

  • Festel G, Würmseher M, Rammer C, Boles E, Bellof M (2014) Modelling production cost scenarios for biofuels and fossil fuels in Europe. J Clean Prod 66:242–253

    Article  Google Scholar 

  • Fleisch TH, Sills RA, Briscoe MD (2002) Emergence of the gas-to-liquids industry: a review of global GTL developments. J Nat Gas Chem 11:1–14

    CAS  Google Scholar 

  • Foong TM, Morganti KJ, Brear MJ, da Silva G, Yang Y, Dryer FL (2014) The octane numbers of ethanol blended with gasoline and its surrogates. Fuel 115:727–739

    Article  CAS  Google Scholar 

  • Freedman B, Butterileld RO, Pryde EH (1986) Transesterification kinetics of soybean oil. J Am Oil Chem Sot 63:1375–1380

    Article  CAS  Google Scholar 

  • Fürnsinn S (2007) Outwitting the dilemma of scale: cost and energy efficient scale-down of the Fischer-Tropsch fuel production from biomass [Ph.D. Thesis]. Vienna University of Technology

    Google Scholar 

  • Gautam M, Martin DW II (2000) Combustion characteristics of higher-alcohol/gasoline blends. Proc Inst Mech Eng, Part A: J Power Energy 214(5):497–511. https://doi.org/10.1243/0957650001538047

    Article  Google Scholar 

  • Giakoumis EG, Rakopoulos CD, Dimaratos AM, Rakopoulos DC (2012) Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends. Progr Energy Combust Sci 38(5):691–715

    Article  CAS  Google Scholar 

  • Gill SS, Tsolakis A, Dearn KD, Rodriguez-Fernandez J (2011) Combustion characteristics and emissions of Fischer-Tropsch diesel fuels in IC engines. Progr Energy Combust Sci 37(4):503–523

    Article  CAS  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  Google Scholar 

  • Graboski MS, McCormick RL (1998) Combustion of fat and vegetable oil derived fuels in diesel engines. Progr Energy Combust Sci 24(2):125–164

    Article  CAS  Google Scholar 

  • Gravalos I, Moshou D, Gialamas T, Xyradakis P, Kateris D, Tsiropoulos Z (2013) Emissions characteristics of spark ignition engine operating on lower-higher molecular mass alcohol blended gasoline fuels. Renew Energy 50:27–32

    Article  CAS  Google Scholar 

  • GREENEA (2015) Is HVO the Holy Grail of the World Biodiesel Market?

    Google Scholar 

  • Gui MM, Lee KT, Bhatia S (2008) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33:1646–1653

    Article  CAS  Google Scholar 

  • Hahn-hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwagrauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  CAS  Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    Article  CAS  Google Scholar 

  • Hilbers TJ, Sprakel LMJ, van den Enk LBJ, Zaalberg B, van den Berg H, van der Ham LGJ (2015) Green diesel from hydrotreated vegetable oil process design study. Chem Eng Technol 38:651–657. https://doi.org/10.1002/ceat.201400648

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Hoekman SK, Robbins C (2012) Review of the effects of biodiesel on NOx emissions. Fuel Process Technol 96:237–249

    Article  CAS  Google Scholar 

  • Hofbauer H, Rauch R, Ripfel-Nitsche K (2009) Gas cleaning for synthesis applications. In: Bridgwater AV, Hofbauer H, van Loo S (eds) Thermal biomass conversion. CPL Press, Newbury, pp 211–266

    Google Scholar 

  • Huber G, Iborra S (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  • Hughes JP (1953) Hydrogenation of fatty oils. J Am Oil Chem Soc 30:506–515. https://doi.org/10.1007/BF02641690

    Article  Google Scholar 

  • IEA (2018) World energy outlook 2018, available from: https://webstore.iea.org/world-energy-outlook-2018. Accessed 3 Feb 2019

  • Jacquet N, Quiévy N, Vanderghem C, Janas S, Blecker C, Wathelet B, Devaux J, Paquot M (2011) Influence of steam explosion on the thermal stability of cellulose fibres. Polym Degrad Stab 96(9):1582–1588

    Article  CAS  Google Scholar 

  • Jeczmionek Ł, Porzycka-Semczuk K (2014) Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: thermal effects – theoretical considerations. Fuel 131:1–5. https://doi.org/10.1016/j.fuel.2014.04.055

    Article  CAS  Google Scholar 

  • Kaewmeesri R, Srifa A, Itthibenchapong V, Faungnawakij K (2015) Deoxygenation of waste chicken fats to green diesel over Ni/Al2O3: effect of water and free fatty acid content. Energy Fuels 29:833–840. https://doi.org/10.1021/ef5023362

    Article  CAS  Google Scholar 

  • Karavalakis G, Short D, Vu D, Villela M, Asa-Awuku A, Durbin TD (2014) Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. Fuel 128:410–421

    Article  CAS  Google Scholar 

  • Keil FJ (1999) Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater 29:49–66

    Article  CAS  Google Scholar 

  • Kessler J, Sperling D (2016) Tracking U.S. biofuel innovation through patents. Energy Policy 98:97–107

    Article  CAS  Google Scholar 

  • Kiatkittipong W, Phimsen S, Kiatkittipong K, Wongsakulphasatch S, Laosiripojana N, Assabumrungrat S (2013) Diesel-like hydrocarbon production from hydroprocessing of relevant refining palm oil. Fuel Process Technol 116:16–26

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375

    Article  Google Scholar 

  • Knothe G (2010) Biodiesel and renewable diesel: a comparison. Progr Energy Combust Sci 36(3):364–373

    Article  CAS  Google Scholar 

  • Kohse-Höinghaus K, Oßwald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR (2010) Biofuel combustion chemistry: from ethanol to biodiesel. Angew Chem – Int Ed 49(21):3572–3597

    Article  CAS  Google Scholar 

  • Kojima M, Johnson T (2005) Potential for biofuels for transport in developing countries, The International Bank for Reconstruction and Development/The World Bank, Energy Sector Management Assistance Programme Report

    Google Scholar 

  • Köpke M, Mihalcea C, Bromley JC, Simpson SD (2011) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:320–325

    Article  CAS  Google Scholar 

  • Ku HC, Tu CH (2005) Densities and Viscosities Of Binary And Ternary Mixtures Of Ethanol, 2-Butanone, And 2,2,4-Trimethylpentane At T = (298.15, 308.15, and 318.15) K. J Chem Eng Data 50(2):608–615. https://doi.org/10.1021/je049655w

    Article  CAS  Google Scholar 

  • Kumar S, Singh N, Prasad R (2010) Anhydrous ethanol: a renewable source of energy. Renew Sustain Energy Rev 14:1830–1844

    Article  CAS  Google Scholar 

  • Kurian JK, Nair GR, Hussain A, Vijaya Raghavan GS (2013) Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew Sustain Energy Rev 25:205–219

    Article  CAS  Google Scholar 

  • Lai JYW, Lin KC, Violi A (2011) Biodiesel combustion: advances in chemical kinetic modeling. Progr Energy Combust Sci 37(1):1–14

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28(4):500–518

    Article  CAS  Google Scholar 

  • Lapuerta M, Armas O, Rodriguez-Fernandez J (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34(2):198–223

    Article  CAS  Google Scholar 

  • Larson ED, Jin H, Celik FE (2009) Large-scale gasification-based coproduction of fuels and electricity from switchgrass. Biofuels Bioprod Bioref 3:174–194

    Article  CAS  Google Scholar 

  • LeBlanc JR, Schneider RV, Strait RB (1994) Production of methanol. In: Cheng WH, Kung HH (eds) Methanol production and use. Marcel Dekker, New York

    Google Scholar 

  • Lee S (1990) Methanol synthesis technology. CRC Press, Cleveland

    Google Scholar 

  • Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095

    Article  CAS  Google Scholar 

  • Lewis R, Datar R, Huhnke RL (2006) Biomass to ethanol. Encycl Chem Process 1:143–151

    Google Scholar 

  • Li J, Henriksson G, Gellerstedt G (2005) Carbon reactions during high-temperature steam treatment of aspen wood. Appl Biochem Biotechnol 125:175. https://doi.org/10.1385/ABAB:125:3:175

    Article  CAS  Google Scholar 

  • Li K, Fan Y, He Y, Zeng L, Han X, Yan Y (2017) Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis. Sci Rep 7:16473. https://doi.org/10.1038/s41598-017-16626-5

    Article  CAS  Google Scholar 

  • Liu Y, Yan YJ, Zhang X, Tan H, Xin L, Yao A (2010) Combined lipases catalyzed transesterification for biodiesel production: optimization and kinetics. AIChE J 56(6):1659–1665

    Article  CAS  Google Scholar 

  • Liu Y, Liu T, Li C, Yan Y (2011a) Biodiesel synthesis catalyzed by Burkholderia cenocepacia lipase supported on macroporous resin NKA in solvent-free and isooctane systems. Energy Fuels 25(3):1206–1212

    Article  CAS  Google Scholar 

  • Liu Y, Chen D, Yan Y, Peng C, Xu L (2011b) Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresour Technol 102(22):10414–10418

    Article  CAS  Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorious IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Maiden CJ (1988) The New Zealand gas-to-gasoline project. In: Bibby DM, Chang CD, Howe RF, Yurchak S (eds) Methane conversion, Studies in surface science and catalysis, vol 36. Elsevier, Amsterdam, pp 1–16

    Google Scholar 

  • Mangena S (2012) Coal gasification and liquefaction – SA experiences and opportunities. In: 4th EU – South Africa Clean Coal Working Group Meeting, Sasol Technology (Pty) Ltd

    Google Scholar 

  • May JB (1994) Wet milling: process and products. In: White PJ, Johnson LA (eds) Corn chemistry and technology. St. Paul, American Association of Cereal Chemist, pp 377–395

    Google Scholar 

  • Melero JA, Iglesias J, Garcia A (2012) Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy Environ Sci 5:7393. https://doi.org/10.1039/c2ee21231e

    Article  CAS  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energy Rev 27:77–93

    Article  CAS  Google Scholar 

  • Morgan T, Santillan-Jimenez E, Harman-Ware AE, Ji Y, Grubb D, Crocker M (2012) Catalytic deoxygenation of triglycerides to hydrocarbons over supported nickel catalysts. Chem Eng J 189-190:346–355. https://doi.org/10.1016/j.cej.2012.02.027

    Article  CAS  Google Scholar 

  • Mueller CJ, Boehman AL, Martin GC (2009) An experimental investigation of the origin of increased NOx emissions when fueling a heavy-duty compression- ignition engine with soy biodiesel. SAE Paper 2009-01-1792

    Google Scholar 

  • Neste Oil Corporation (n.d.). Annual report 2010. Retrieved from http://www.nesteoil.com. Accessed 10 Feb 2019.

  • Noureddini H, Zhu D (1997) Kinetics of transesterification of soybean oil. J Am Oil Chem Sot 74:1457–1463

    Article  CAS  Google Scholar 

  • Palash SM, Kalam MA, Masjuki HH, Masum BM, Rizwanul Fattah IM, Mofijur M (2013) Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew Sustain Energy Rev 23:473–490

    Article  CAS  Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:305–312

    Article  CAS  Google Scholar 

  • Peng F, Ren JL, Xu F, Sun RC (2011) Chemicals from hemicelluloses: a review. In: Zhu JY, Zhang X, Pan X (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass. ACS Symposium Series, Washington, DC, pp 219–259

    Chapter  Google Scholar 

  • Probstein RF, Hicks RE (2006) Synthetic fuels. Dover Publications Inc., Mineola

    Google Scholar 

  • Rajasekar E, Murugesan A, Subramanian R, Nedunchezhian N (2010) Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels. Renew Sustain Energy Rev 14(7):2113–2121

    Article  CAS  Google Scholar 

  • Renewable Fuels Association (2015) Ethanol facts: environment. http://www.ethanolrfa.org/pages/ethanol-facts-environment. Accessed 3 Feb 2019

  • Rodríguez-Antón LM, Gutiérrez-Martín F, Martinez-Arevalo C (2015) Experimental determination of some physical properties of gasoline, ethanol and ETBE ternary blends. Fuel 156:81–86

    Article  CAS  Google Scholar 

  • Rogers KA, Zheng Y (2016) Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: a review and new insights. Chem Sus Chem 9:1750–1772. https://doi.org/10.1002/cssc.201600144

    Article  CAS  Google Scholar 

  • Ruane J, Sonnino A, Agostini A (2010) Bioenergy and the potential contribution of agricultural biotechnologies in developing countries. Biomass Bioenergy 34:1427–1439

    Article  Google Scholar 

  • Saxena P, Williams FA (2007) Numerical and experimental studies of ethanol flames. Proc Combust Inst 31(1):1149–1156

    Article  CAS  Google Scholar 

  • Shah V, Jurjevic M, Badia D (2007) Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 23:512–515

    Article  CAS  Google Scholar 

  • Silva LN, Fortes ICP, De Sousa FP, Pasa VMD (2016) Biokerosene and green diesel from macauba oils via catalytic deoxygenation over Pd/C. Fuel 164:329–338. https://doi.org/10.1016/j.fuel.2015.09.081

    Article  CAS  Google Scholar 

  • Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st- to 2nd-generation biofuel technologies – full report- an overview of current industry and RD&D activities. International Energy Agency

    Google Scholar 

  • Singh V, Rausch KD, Yang P, Shapouri H, Belyea RL, Tumbleson ME (2001) Modified dry grind ethanol process, University of Illinois at Urbana–Champaign. Report No UILU No. 2001-7021

    Google Scholar 

  • Skutsch M, de los Rios E, Solis S, Riegelhaupt E, Hinojosa D, Gerfert S, Gao Y, Masera O (2011) Jatropha in Mexico: environmental and social impacts of an incipient biofuel program. Ecol Soc 16:4–11

    Article  Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation and biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  • Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy 31:416–425

    Article  Google Scholar 

  • Somerville C (2011) Biofuels. Curr Biol 17:115–119

    Article  CAS  Google Scholar 

  • Spath PL, Dayton DC (2003) Preliminary screening – technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass- derived syngas. National Renewable Energy Laboratory [Report NREL/TP-510-34929]

    Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  CAS  Google Scholar 

  • Stidham WD, Seaman DW, Danzer MF (2000) Method for preparing a lower alkyl ester product from vegetable oil. US Patent No. 6,127,560

    Google Scholar 

  • Strumsky D, Lobo J, Tainter JA (2010) Complexity and the productivity of innovation. Syst Res Behav Sci 27:496–509

    Article  Google Scholar 

  • Su F, Li G, Fan Y, Yan Y (2016) Enhanced performance of lipase via microcapsulation and its application in biodiesel preparation. Sci Rep 6:29670. https://doi.org/10.1038/srep29670

    Article  CAS  Google Scholar 

  • Sun J, Caton JA, Jacobs TJ (2010) Oxides of nitrogen emissions from biodiesel fueled diesel engines. Prog Energy Combust Sci 26:667–695

    CAS  Google Scholar 

  • Swanson RM et al (2010) Techno-economic analysis of biofuels production based on gasification. National Renewable Energy Laboratory [Report NREL/TP-6A20-46587]

    Google Scholar 

  • Szybist JP, Kirby SR, Boehman AL (2005) NOx emissions of alternative diesel fuels: a comparative analysis of biodiesel and FT diesel. Energy Fuels 19(4):1484–1492. https://doi.org/10.1021/ef049702q

    Article  CAS  Google Scholar 

  • Szybist JP, Song J, Alam M, Boehman AL (2007) Biodiesel combustion, emissions and emission control. Fuel Process Technol 88(7):679–691

    Article  CAS  Google Scholar 

  • Tainter JA, Strumsky D, Taylor TG, Arnold M, Lobo J (2018) Depletion vs. innovation; the fundamental question of sustainability. In: Burlando R, Tartaglia A (eds) Physical limits to economic growth: perspectives of economic, social, and complexity science. Routledge, London, pp 65–93

    Google Scholar 

  • Taschler D (2009) Optimization of a Biomass-based Fischer-Tropsch Synthesis – Location Güssing [Ph.D. Thesis]. Vienna University of Technology

    Google Scholar 

  • The German Energy Agency (2006) Biomass to liquid – BtL implementation report, summary. Deutsche Energie-Agentur GmbH (DENA), Berlin

    Google Scholar 

  • The Royal Society (2008) Sustainable biofuels: prospects and challenges. Policy document, 01/08. The Royal Society, London

    Google Scholar 

  • Topp-Jorgensen J (1988) Topsoe integrated gasoline synthesis – the TIGAS process. In: Methane conversion, Studies in surface science and catalysis, vol 36. Elsevier, Amsterdam, pp 293–305

    Google Scholar 

  • Ungerman AJ, Heindel TJ (2007) Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol Progr 23:613–620

    Article  CAS  Google Scholar 

  • Van der Drift A et al (2004) Entrained flow gasification of biomass. Ash behaviour, feeding issues, and system analyses. Energy research Centre of the Netherlands [Report ECN-C-−04-039]

    Google Scholar 

  • Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86(10):1097–1107

    Article  CAS  Google Scholar 

  • Varatharajan K, Cheralathan M (2012) Influence of fuel properties and composition on NOx emissions from biodiesel powered diesel engines: A review. Renew Sustain Energy Rev 16(6):3702–3710

    Article  CAS  Google Scholar 

  • Vásquez MC, Silva EE, Castillo EF (2017) Hydrotreatment of vegetable oils: a review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 105:197–206

    Article  CAS  Google Scholar 

  • Veriansyah B, Han JY, Kim SK, Hong SA, Kim YJ, Lim JS, Shu YW, Oh SG, Kim J (2012) Production of renewable diesel by hydroprocessing of soybean oil: effect of catalysts. Fuel 94:578–585. https://doi.org/10.1016/j.fuel.2011.10.057

    Article  CAS  Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2(1):573–584

    Article  CAS  Google Scholar 

  • WA A (1998) Report on biomass drying technology. National Renewable Energy Laboratory. [Report NREL/TP-570-25885]

    Google Scholar 

  • Wang M (2000) Greet 1.5—transportation fuel-cycle model. Illinois: Argonne National Laboratory, Available at http://greet.anl.gov/publications.html

  • Wang W, Gowdagiri S, Oehlschlaeger MA (2013) Comparative study of the autoignition of methyl decenoates, unsaturated biodiesel fuel surrogates. Energy Fuels 27(9):5527–5532. https://doi.org/10.1021/ef4012593

    Article  CAS  Google Scholar 

  • Westbrook CK (2013) Biofuels combustion. Annu Rev Phys Chem 64:201–219

    Article  CAS  Google Scholar 

  • Westbrook CK, Pitz WJ, Sarathy SM, Mehl M (2013) Detailed chemical kinetic modeling of the effects of CC double bonds on the ignition of biodiesel fuels. Proc Combust Inst 34(2):3049–3056

    Article  CAS  Google Scholar 

  • Wyman CE (1996) Ethanol production from lignocellulosic biomass: overview. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC, pp 1–18

    Google Scholar 

  • Wyman CE (2004) Ethanol fuel. In: Cleveland CJ, Ayres RU, Costanza R, Goldemberg J et al (eds) Encyclopedia of energy, Elsevier science, vol 2. Elsevier, New York, pp 541–555

    Chapter  Google Scholar 

  • Xue J, Grift TE, Hansen AC (2011) Effect of biodiesel on engine performances and emissions. Renew Sustain Energy Rev 15(2):1098–1116

    Article  CAS  Google Scholar 

  • Yan Y, Li X, Wang G, Gui X, Li G, Su F, Wang X, Liu T (2014) Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl Energy 113:1614–1631

    Article  CAS  Google Scholar 

  • Yilmaz N (2012) Comparative analysis of biodiesel-ethanol-diesel and biodiesel-methanol-diesel blends in a diesel engine. Energy 40(1):210–213

    Article  CAS  Google Scholar 

  • Yurchak S (1988) Development of mobil’s fixed-bed methanol-to-gasoline (MTG) process. In: Methane conversion, Studies in surface science and catalysis, vol 36. Elsevier, Amsterdam, pp 251–272

    Google Scholar 

  • Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Bioethanol production from renewable sources: Current perspectives and technological progress. Renew Sustain Energy Rev 71:475–501

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Bioref 6:465–482. https://doi.org/10.1002/bbb.1331

    Article  CAS  Google Scholar 

  • Zhao X, Wei L, Julson J, Qiao Q, Dubey A, Anderson G (2015) Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel. Nat Biotechnol 32:300–312. https://doi.org/10.1016/j.nbt.2015.01.004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Bartocci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartocci, P., Tschentscher, R., Yan, Y., Yang, H., Bidini, G., Fantozzi, F. (2020). Biofuels: Types and Process Overview. In: Srivastava, N., Srivastava, M., Mishra, P., Gupta, V. (eds) Biofuel Production Technologies: Critical Analysis for Sustainability . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-8637-4_1

Download citation

Publish with us

Policies and ethics