Skip to main content

Seed Priming Toward Enhanced Chilling Tolerance in Field Crops: An Overview

  • Chapter
  • First Online:
Priming and Pretreatment of Seeds and Seedlings

Abstract

Abiotic stresses are the most important limiting factors for crop productivity worldwide in the wake of climatic change. Among the various kinds of abiotic stresses, chilling is one of the important components that limit the growth and final productivity of field crops. Chilling-induced adversities in plant growth and yield mainly occur due to physical and biochemical damages, physiological alterations, and molecular disruptions. Several management approaches are being tested in reducing the detrimental impacts of chilling stress. Seed priming can be a good approach to overcome the negative effects of the chilling stress in different crops. Primed seeds show increased germination rates and better seedling establishment which result in high level of chilling stress tolerance and vigorous plant growth. This chapter provides an overview of physiological, morphological, and biochemical responses of crops to chilling stress and highlights the role of seed priming in augmenting chilling tolerance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

AQP:

Aquaporin

But:

Butenolide

CAT:

Catalase

Ct:

Chitosan

GA3:

Gibberellic acid

H2O2:

Hydrogen peroxide

KNO3:

Potassium nitrate

LEAs:

Late embryogenesis abundant proteins

PAs:

Polyamines

PB:

Plant biostimulants

PEG:

Polyethylene glycol

POD:

Peroxidase

Put:

Putrescine

ROS:

Reactive oxygen species

SMP:

Solid matrix priming

SOD:

Superoxide dismutase

References

  • Abebe AT, Modi AT (2009) Hydropriming in dry bean (Phaseolus vulgaris L.). Res J Seed Sci 2:23–31

    Article  Google Scholar 

  • Afzal I, Basra SM, Ahmad N, Cheema MA, Warraich EA, Khaliq A (2002) Effect of priming and growth regulator treatments on emergence and seedling growth of hybrid maize (Zea mays L.). Int J Agric Biol 4:303–306

    CAS  Google Scholar 

  • Ajouri H, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167:630–636

    Article  Google Scholar 

  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  CAS  PubMed  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42

    Article  CAS  PubMed  Google Scholar 

  • Al-Mudaris MA, Jutzi SC (1999) The influence of fertilizer-based seed priming treatment on emergence and seedling growth of Sorghum bicolor and Pennisetum glaucum in pot trials under greenhouse conditions. J Agron Crop Sci 182:135–141

    Article  CAS  Google Scholar 

  • Altman A (2006) Polyamines and wounded storage tissues–inhibition of RNase activity and solute leakage. Physiol Plant 54:194–198

    Article  Google Scholar 

  • Amooaghaie R, Nikzad K (2013) The role of nitric oxide in priming-induced low-temperature tolerance in two genotypes of tomato. Seed Sci Res 23:123–131

    CAS  Google Scholar 

  • Andaya VC, Mackill DJ (2003) Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J Exp Bot 54:257–2585

    Article  Google Scholar 

  • Arif M, Waqas M, Nawab K, Shahid M (2007) Effect of seed priming in Zn solutions on chickpea and wheat. Afr Crop Sci Conf Proc 8:237–240

    Google Scholar 

  • Arif M, Jan MT, Marwat KB, Khan MA (2008) Seed priming improves emergence and yield of soybean. Pak J Bot 40:1169–1177

    Google Scholar 

  • Aroca R, Vernieri P, Irigoyen JJ, Sancher-Diaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679

    Article  CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana Cor15a has cis-acting elements that confer cold-regulated, drought-regulated and ABA-regulated gene-expression. Plant Mol Biol 24:701–713

    Article  CAS  PubMed  Google Scholar 

  • Barba-Espın G, Hernandez JA, Diaz-Vivancos P (2012) Role of H2O2 in pea seed germination. Plant Signal Behav 7:193–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barea JM, Salamanca CP, Herrera MA (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean ecosystem. Appl Environ Microbiol 59:129–133

    PubMed  PubMed Central  Google Scholar 

  • Beckers GJM, Jaskiewicz M, Liu YD (2009) Underwood WR, He SY, Zhang SQ, Conrath U. mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Haj-Salah H, Tardieu F (1995) Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length. Plant Physiol 109:861–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett AJ, Whipps JM (2008) Dual application of beneficial microorganisms to seed during drum priming. Appl Soil Ecol 38:83–89

    Article  Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206

    Article  CAS  Google Scholar 

  • Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, et al. (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  PubMed  CAS  Google Scholar 

  • Blomster T, Salojarvi J, Sipari N, Brosche M, Ahlfors R, Keinanen M, Overmyer K, Kangasjarvi J (2011) Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol 157:1866–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolkhina O, Virolainen E, Fagerstedt K (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Google Scholar 

  • Boucher V, Buitink J, Lin X, Boudet J, Hoekstra FA, Hundertmark M, Renard D, Leprince O (2010) MtPM25 is an atypical hydrophobic late embryogenesis-abundant protein that dissociates cold and desiccation-aggregated proteins. Plant Cell Environ 33:418–430

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hortic Sci 21:1005–1112

    Google Scholar 

  • Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2014) Biostimulants and crop responses: a review. Biol Agric Hortic 31:1–17

    Article  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum pre emergence damping off in sh2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Candat A, Paszkiewicz G, Neveu M, Gautier R, Logan DC, Avelange-Macherel MH, Macherel D (2014) The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell:114

    Google Scholar 

  • Casenave EC, Toselli ME (2007) Hydropriming as a pre-treatment for cotton germination under thermal and water stress conditions. Seed Sci Technol 35:88–98

    Article  Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Sci 180:212–220

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Arora R, Arora U (2010) Osmopriming of spinach (Spinacia oleracea L. cv. Bloomsdale) seeds and germination performance under temperature and water stress. Seed Sci Technol 38:45–57

    Article  Google Scholar 

  • Chen H, Chu P, Zhou Y, Li Y, Liu J, Ding Y et al (2012a) Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. J Exp Bot 63:4107–4121

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Fessehaie A, Arora R (2012b) Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Sci 183:27–36

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Fessehaie A, Arora R (2013) Aquaporin expression during seed osmopriming and post-priming germination in spinach. Biol Plant 57:193–198

    Article  CAS  Google Scholar 

  • Chen W, Guo C, Hussain S, Zhu B, Deng F, Xue Y, et al. (2015) Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage. Environ Sci Pollut Res 23:1254–1264

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Guo C, Hussain S, Zhu B, Deng F, Xue Y, Geng M, Wu L (2016) Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage. Environ Sci Pollut Res 23:1254–1264

    Article  CAS  Google Scholar 

  • Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y et al (2007) An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics 8:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444. https://doi.org/10.1016/j.tplants.2007.07.00

    Article  CAS  PubMed  Google Scholar 

  • Clarke HJ, Siddique KHM (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crop Res 90:323–334

    Article  Google Scholar 

  • Cruz R, Milach S (2004) Cold tolerance at the germination stage of rice: methods of evaluation and characterization of genotypes. Sci Agric 61:1–8

    Article  Google Scholar 

  • Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutforth HW, Shaykewich CF, Cho CM (1986) Effect of soil water and temperature on corn (Zea mays L.) root growth during emergence. Can J Soil Sci 66:51–58

    Article  Google Scholar 

  • Demir I, Ozuaydın I, Yasar F, Staden JV (2012) Effect of smoke derived butenolide priming treatment on pepper and salvia seeds in relation to transplant quality and catalase activity. S Afr J Bot 78:83–87

    Article  CAS  Google Scholar 

  • Deng B, Du W, Liu C, Sun W, Tian S, Dong H (2012) Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? Plant Growth Regul 66:37–47

    Article  CAS  Google Scholar 

  • Devinar G, Llanes A, Masciarelli O, Luna V (2013) Different relative humidity conditions combined with chloride and sulfate salinity treatments modify abscisic acid and salicylic acid levels in the halophyte Prosopis strombulifera. Plant Growth Regul 70:247–256

    Article  CAS  Google Scholar 

  • Draganić I, Lekić S (2012) Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions. Turk J Agric For 36:421–428

    Google Scholar 

  • Dure L, Crouch M, Harada JJ, Ho T, Mundy J, Quatrano RS, Thomas TL, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  PubMed  Google Scholar 

  • Elkoca E, Haliloglu K, Esitken A, Ercisli S (2007) Hydro- and osmopriming improve chickpea germination. Acta Agric Scand Sect B Soil Plant Sci 57:193–200

    Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang L (2015) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Article  Google Scholar 

  • Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60:501–516

    Article  Google Scholar 

  • Finch-Savage WE, Dent KC, Clark LJ (2004) Soak conditions and temperature following sowing influence the response of maize (Zea mays L.) seeds to on-farm priming (pre-sowing seed soak). Field Crop Res 90:361–374

    Article  Google Scholar 

  • Foti R, Aburenia K, Tigerea A, Gotosab J, Gerec J (2008) The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. J Arid Environ 72:1127–1130

    Article  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao YP, Bonham-Smith PC, Gusta LV (2002) The role of peroxiredoxin antioxidant and calmodulin in ABA-primed seeds of Brassica napus exposed to abiotic stresses during germination. J Plant Physiol 159:951–958

    Article  CAS  Google Scholar 

  • Gao CH, Hu J, Zhang S (2009) Association of polyamines in governing the chilling sensitivity of maize genotypes. Plant Growth Regul 57:31–38

    Article  CAS  Google Scholar 

  • Ghana SG, Schillinger WF (2003) Seed priming winter wheat for germination, emergence, and yield. Crop Sci 43:2135–2141

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goswami A, Banerjee R, Raha S (2013) Drought resistance in rice seedlings conferred by seed priming: role of the anti-oxidant defense mechanisms. Protoplasma 250:1115–1129

    Article  CAS  PubMed  Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamza B, Suggars A (2001) Biostimulants: myths and realities. TurfGrass Trends 8:6–10

    Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in the control of plant function. Plant Sci 181:555–559

    Article  CAS  PubMed  Google Scholar 

  • Harris D, Joshi A, Khan PA, Gothkar P et al (1999) On-farm seed priming in semiarid agriculture: development and evaluation in maize, rice and chickpea in India using participatory methods. Exp Agric 35:15–29

    Article  Google Scholar 

  • Harris D, Rashid A, Miraj G, Arif M, Shah H (2007) ‘On-farm’ seed priming with zinc sulphate solution – a cost-effective way to increase the maize yields of resource-poor farmers. Field Crop Res 102:119–127

    Article  Google Scholar 

  • Hasanuzzaman M, Anwar HM, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012) Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    Article  CAS  PubMed  Google Scholar 

  • He L, Nada K, Tachibana S (2002) Effects of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). J Jpn Soc Hort Sci 71:490–498

    Article  CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot 48:1105–1113

    Article  CAS  Google Scholar 

  • Huang M, Guo Z (2005) Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant 9:81–84

    Article  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118. https://doi.org/10.1186/1471-2164-9-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Maqsood MA (2011) Root zone temperature influences nutrient accumulation and use in maize. Pak J Bot 43:1551–1556

    Google Scholar 

  • Hussain S, Zheng M, Khan F, Khaliq A, Fahad S, Peng S et al (2015) Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci Rep 5:8101. https://doi.org/10.1038/srep08101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016a) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116. https://doi.org/10.3389/fpls.2016.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016b) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439

    PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018a) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393. https://doi.org/10.3389/fpls.2018.00393

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khaliq A, Tanveer M, Matloob A, Hussain HA (2018b) Aspirin priming circumvents the salinity-induced effects on wheat emergence and seedling growth by regulating starch metabolism and antioxidant enzyme activities. Acta Physiol Plant 40(4):68

    Article  CAS  Google Scholar 

  • Imran M, Mahmood A, Römheld V, Neumann G (2013) Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. Eur J Agron 49:141–148

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2007) Seed preconditioning modulates growth, ionic relations, and photosynthetic capacity in adult plants of hexaploid wheat under salt stress. J Plant Nutr 30:381–396

    Article  CAS  Google Scholar 

  • Jain N, Kulkarni MG, Van Staden J (2006) Abutenolide isolated from smoke can overcome the detrimental effect of extreme temperatures during tomato seed germination. Plant Growth Regul 49:263–267

    Article  CAS  Google Scholar 

  • Janowiak F, Markowski A (1994) Changes in leaf water relations and injuries in maize seedlings induced by different chilling conditions. J Agron Crop Sci 172:19–28

    Article  Google Scholar 

  • Janowiak F, Maas B, Dörffling K (2002) Importance of abscisic acid for chilling tolerance of maize seedlings. J Plant Physiol 159:635–643

    Article  CAS  Google Scholar 

  • Jett LW, Welbaum GE, Morse RD (1996) Effect of matric and osmotic priming treatments on broccoli seed germination. J Am Soc Hortic Sci 121:423–429

    Article  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Kaspar TC, Bland WL (1992) Soil temperature and root growth. Soil Sci 154:290–299

    Article  Google Scholar 

  • Kang HM, Saltveit ME (2002a) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115(4):571–576

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Saltveit ME (2002b) Reduced chilling tolerance in elongating cucumber seedling radicles is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity. Physiol Plant 115(2):244–250

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2002) Effect of osmo- and hydropriming of chickpea on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul 37:17–22

    Article  CAS  Google Scholar 

  • Kaya MD, Okcu G, Atak M, Cikili Y, Kolsarici O (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Khaliq A, Aslam F, Matloob A, Hussain S, Geng M, Wahid A et al (2015) Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biol Trace Elem Res 166:236–244

    Article  CAS  PubMed  Google Scholar 

  • Khan MB, Gurchani MA, Hussain M, Freed S, Mahmood K (2011) Wheat seed enhancement by vitamin and hormonal priming. Pak J Bot 43:1495–1499

    Google Scholar 

  • Khan TA, Fariduddin Q, Yusuf M (2017) Low-temperature stress: is phytohormones application a remedy? Environ Sci Pollut Res 24:21574–21590

    Article  CAS  Google Scholar 

  • Khan F, Hussain S, Tanveer M, Khan S, Hussain HA, Iqbal B, Geng M (2018) Coordinated effects of lead toxicity and nutrient deprivation on growth, oxidative status, and elemental composition of primed and non-primed rice seedlings. Environ Sci Pollut Res 25:21185. https://doi.org/10.1007/s11356-018-2262-1

    Article  CAS  Google Scholar 

  • Kovacs Z, Simon-Sarkadi L, Szucs A, Kocsy G (2010) Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38:623–631

    Article  CAS  PubMed  Google Scholar 

  • Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Zmienko A et al (2015) Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113

    Article  CAS  PubMed  Google Scholar 

  • Kubik KK, Eastin JA, Eskridge KM (1988) Solid matrix priming of tomato and pepper. In: Proceedings of the international conference on stand establishment for horticultural crops. Lancaster, Pennsylvania, pp 86–96

    Google Scholar 

  • Kumar RR, Goswami S, Singh K, Rai GK, Rai RD (2013) Modulation of redox signal transduction in plant system through induction of free radical/ROS scavenging redox-sensitive enzymes and metabolites. Aus J Crop Sci 7:1744–1751

    Google Scholar 

  • Lee SS, Kim JH, Hong SB, Yuu SH, Park EH (1998) Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean J Crop Sci 43:194–198

    Google Scholar 

  • Leyva A, Jarillo JA, Salinas J, Martinezzapater JM (1995) Low-temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase messenger-RNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108:39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Jiang H, Liu F, Cai J, Dai T, Cao W, Jiang D (2013) Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regul 71:31–40

    Article  CAS  Google Scholar 

  • Li Z, Peng Y, Zhang XQ, Ma X, Huang LK, Yan YH (2014) Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules 19:18003–18024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li XN, Pu HC, Liu FL, Zhou Q, Cai J, Dai TB et al (2015) Winter wheat photosynthesis and grain yield responses to spring freeze. Agron J 107:1002–1010

    Article  Google Scholar 

  • Li Z, Xu J, Gao Y, Wang C, Guo G, Luo Y, Huang Y, Hu W, Sheteiwy MS, Guan Y, Hu J (2017) The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Front Plant Sci 8:1153. https://doi.org/10.3389/fpls.2017.01153

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang L, Liu L, Guo Y, Ren H (2011) Alleviating effect of exogenous nitric oxide in cucumber seedling against chilling stress. Afr J Biotechnol 10:4380–4386

    Google Scholar 

  • Lorenzo MCB (1991) Seed invigoration of soybean and corn through solid matrix priming. BS, Philippines

    Google Scholar 

  • Lukatkin AS, Brazaitytė A, Bobinas Č, Duchovskis P (2012) Chilling injury in chilling-sensitive plants: a review. Zemdirbyste-Agriculture 99:111–124

    Google Scholar 

  • Macovei A, Tuteja N (2013) Different expression of miRNAs targeting helicases in rice in response to low and high dose rate γ-ray treatments. Plant Signal Behav 8:25128

    Article  CAS  Google Scholar 

  • Manish K, Geetika S, Renu B, Sandeep K, Gaganodeep J (2010) Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress. Indian J Biochem Biophys 47:378–382

    Google Scholar 

  • Manjunatha G, Raj SN, Shetty NP, Shetty HS (2008) Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease. Pestic Biochem Physiol 91:1–11

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Martínez-Tellez MA, Ramos-Clamont MG, Gardea AA, Vargas-Arispuro I (2002) Effect of infiltrated polyamines on polygalacturonase activity and injury response in zucchini squash (Cucurbita pepo L.). Biochem Biophys Res Commun 295:98–101

    Article  PubMed  CAS  Google Scholar 

  • Maughan S, Foyer CH (2006) Engineering and genetic approaches to modulating the glutathione network in plants. Physiol Plant 126:382–397

    Article  CAS  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Mercado MFO, Fernandez PG (2002) Solid matrix priming of soybean seeds. Philipp J Crop Sci 27:27–35

    Google Scholar 

  • Miao Y, LvD WP, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2009) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Kim Y, Song LH, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu JK (2006) Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580:6537–6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moeinzadeh A, Sharif-Zadeh F, Ahmadzadeh M, Heidari Tajabadi F (2010) Biopriming of sunflower (Helianthus annuus L.) seeds with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust J Crop Sci 4:564–570

    Google Scholar 

  • Moradi A, Younesi O (2009) Effects of osmo- and hydropriming on seed parameters of grain sorghum (Sorghum bicolor L.). Aust J Basic Appl Sci 3:1696–1700

    CAS  Google Scholar 

  • Munekage YN, Inoue S, Yoneda Y, Yokota A (2015) Distinct palisade tissue development processes promoted by leaf autonomous signalling and long‐distance signalling in A rabidopsis thaliana. Plant, Cell Environ 38(6):1116–116

    Article  CAS  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Inaba T (2008) Evaluation of the protective activities of a late embryogenesis abundant (LEA) related protein, Cor15am, during various stresses in vitro. Biosci Biotechnol Biochem 72:1642–1645

    Article  CAS  PubMed  Google Scholar 

  • Nascimento WM, West SH (1998) Priming and seed orientation affect emergence and seed coat adherence and seedling development of muskmelon transplants. Hortic Sci 33:847–848

    Google Scholar 

  • Nayyar H (2005) Putrescine increases floral retention, pod set and seed yield in cold stressed chickpea. J Agron Crop Sci 191:340–345

    Article  CAS  Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Environ Exp Bot 53:39–48

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  PubMed  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Pandita VK, Anand A, Nagarajan S, Seth R, Sinha SN (2010) Solid matrix priming improves seed emergence and crop performance in okra. Seed Sci Technol 38:665–674

    Article  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Patade VY, Khatri D, Manoj K, Kumari M, Ahmed Z (2012) Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes. Mol Biol Rep 39:10603–10613

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Janas KM (2007) Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings. Acta Physiol Plant 29:509–517

    Article  CAS  Google Scholar 

  • Posmyk MM, Corbineau F, Vinel D, Bailly C, Côme D (2001) Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiol Plant 111:473–482

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Prasad TK (1997) Role of catalase in inducing chilling tolerance in pre emergence maize seedlings. Plant Physiol 114:1369–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakesh P, Prasad RD, Devi GU, Bhat BN (2017) Effect of biopolymers and synthetic seed coating polymers on castor and groundnut seed. Int J Pure Appl Biosci 5(4):2043–2048

    Article  Google Scholar 

  • Rehman A, Farooq M, Naveed M, Nawaz A, Shahzad B (2018) Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur J Agron 94:98–107

    Article  CAS  Google Scholar 

  • Richner W, Soldati A, Stamp P (1996) Shoot-to-root relations in field-grown maize seedlings. Agron J J88:56–61

    Article  Google Scholar 

  • Ros CR, Belland W, White PF (2000) Phosphorous seed coating and soaking for improving seedling growth of Oryza sativa (rice) cv IR66. Seed Sci Technol 28:391–401

    Google Scholar 

  • Rossel JB, Wilson PB, Hussain D, Woo NS, Gordon MJ, Mewett OP, Howell KA, Whelan J, Kazan K, Pogson BJ (2007) Systemic and intracellular responses to photooxidative stress in Arabidopsis. Plant Cell 19:4091–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  • Sahu MP, Kumawat SM, D’Souza SF, Ramaswamy NK, Singh G (2005) Sulphydryl bioregulator technology for increasing mustard production. Res Bull RAUBARC:1–52

    Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Beazrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factor of wheat plants. Bulg J Plant Physiol Spec Issue:314–319

    Google Scholar 

  • Sarhan F, Oullet F, Vazquez-Tello A (1997) The wheat wcs 120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol Plant 101:439–445

    Article  CAS  Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21:329–340

    Article  CAS  PubMed  Google Scholar 

  • Sethi V, Raghuram B, Sinha AK, Chattopadhyay S (2014) A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell 26:3343–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao CX, Hu J, Song WJ, Hu WM (2005) Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling. J Zhejiang Univ Agric Life Sci 31:705–708

    CAS  Google Scholar 

  • Sharma HSS, Fleming C, Selby C, Rao JR, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490

    Article  CAS  Google Scholar 

  • Sharmila P, Puthur JT, Pardha Saradhi P (2000) Vesicular arbuscular mycorrhizal fungi improves establishment of micropropagated plants. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic/Plenum, New York, pp 236–250

    Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Soeda Y, Konings MC, Vorst O, van Houwelingen AM, Stoopen GM, Maliepaard CA et al (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137:354–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro-, chemo-, and hormonal priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32:1135–1144

    Article  Google Scholar 

  • Starck Z, Niemyska B, Bogdan J, Tawalbeh RNA (2000) RNA response of tomato plants to chilling stress in association with nutrient or phosphorus starvation. Plant Soil 226:99–106

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:14570–14575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart CR, Martin BA, Reding L, Cerwick S (1990) Seedling growth, mitochondrial characteristics, and alternative respiratory capacity of corn genotypes differing in cold tolerance. Plant Physiol 92:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky SHAI, Mittler RON, Miller GAD (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270

    Article  CAS  PubMed  Google Scholar 

  • Svensson J, Ismail A, Palva ET, Close TJ (2002) Dehydrins. In: Storey KB, Storey JM (eds) Sensing, signalling and cell adaptation. Elsevier Science, Amsterdam, pp 155–171

    Chapter  Google Scholar 

  • Taka T (2004) The relationship of antioxidant enzymes and some physiological parameters in maize during chilling. Plant Soil Environ 50:27–32

    Article  Google Scholar 

  • Taylor AG, Allen PS, Bennett MA, Bradford KJ, Burris JS, Misra MK (1998) Seed enhancements. Seed Sci Res 8(2):245–256

    Article  Google Scholar 

  • Taylor NL, Day DA, Millar AH (2002) Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem 277:42663–42668

    Article  CAS  PubMed  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) An overview: cold stress effects on reproductive development in grain crops. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Thomas UC, Varughese K, Thomas A, Sadanandan S (2000) Seed priming–for increased vigour, viability and productivity of upland rice. Leisa India 4:14

    Google Scholar 

  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:96086

    Article  CAS  Google Scholar 

  • Turk H, Erdal S, Genisel M, Atici O, Demir Y, Yanmis D (2014) The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regul 74:139–152

    Article  CAS  Google Scholar 

  • van Buer J, Cvetkovic J, Baier M (2016) Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling in Arabidopsis thaliana. BMC Plant Biol 16(1):163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Vinocur O, Altman AS (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Chen Q, Hussain S, Mei J, Dong H, Peng S, Huang L, Cui K, Nie L (2016) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep 6. https://doi.org/10.1038/srep19637

  • Warrington IJ, Kanemasu ET (1983) Corn growth response to temperature and photoperiod I. seedling emergence, tassel initiation, and anthesis. Agron J 75:749–754

    Article  Google Scholar 

  • Wechsberg GE, Probert RJ, Bray CM (1994) The relationship between ‘dehydrinlike’ protein sand seed longevity in Ranunculus sceleratus L. J Exp Bot 45:1027–1030

    Article  CAS  Google Scholar 

  • Wilhelm KS, Thomashow MF (1993) Arabidopsis thaliana Cor15b, an apparent homolog of Cor15a, is strongly responsive to cold and ABA, but not drought. Plant Mol Biol 23:1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Wise RR (1995) Chilling-enhanced photo oxidation: the production, action and study of re active oxygen species produced during chilling in the light. Photosynth Res 45:7997

    Article  Google Scholar 

  • Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Molecular processes induced in primed seeds—increasing the potential to stabilize crop yields under drought conditions. J Plant Physiol 203:116–126

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yadav PV, Kumari M, Ahmed Z (2011) Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res J Seed Sci 4:125–136

    Article  Google Scholar 

  • Yagmur M, Kaydan D (2008) Alleviation of osmotic strength of water and salt in germination and seedling growth of triticale with seed priming treatments. Afr J Biotechnol 7:2156–2162

    CAS  Google Scholar 

  • Yan Q, Duan Z, Jingdong M, Xun L, Fei D (2012) Effects of root-zone temperature and N, P, and K supplies on nutrient uptake of cucumber (Cucumis sativus L.) seedlings in hydroponics. Soil Sci Plant Nutr 58:707–717

    Article  CAS  Google Scholar 

  • Yilmaz AH, Ekiz I, Gültekin B, Torun H, Barut K, Cakmak I (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J Plant Nutr 21:2257–2264

    Article  CAS  Google Scholar 

  • Yordanova R, Popova L (2007) Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen Appl Plant Physiol 33:155–170

    CAS  Google Scholar 

  • Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133(2):910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Cui S, Li J, Wei J, Kirkham MB (1995) Protoplasmic factors, antioxidant responses, and chilling resistance in maize. Plant Physiol Biochem 33:567–575

    CAS  Google Scholar 

  • Zhang S, Hu J, Liu N, Zhu Z (2006) Presowing seed hydration treatment enhances the cold tolerance of direct-sown rice. Seed Sci Technol 34(3):593–601

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, HuLY WSH, Luo JP, Jones RL (2010) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52(6):556–567

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li S, Jiang T, Liu Z, Zhang W (2012) Chilling stress- the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence. PLoS One 7:36126

    Article  CAS  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

  • Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J et al (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78:167–178

    Article  CAS  Google Scholar 

  • Zhou YG, Yang YD, Qi YG, Zhang ZM, Wang XJ, Hu XJ (2002) Effects of chitosan on some physiological activity in germinating seed of peanut. J Peanut Sci 31:22–25

    Google Scholar 

  • Zhu JJ, Li YR, Liao JX (2013) Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. Plant Physiol Biochem 73:427–433

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, H.A., Hussain, S., Anjum, S.A., Hussain, S. (2019). Seed Priming Toward Enhanced Chilling Tolerance in Field Crops: An Overview. In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_13

Download citation

Publish with us

Policies and ethics