Skip to main content

Safeguarding Rice from Arsenic Contamination Through the Adoption of Chemo-agronomic Measures

  • Chapter
  • First Online:

Abstract

Arsenic accumulation in rice grains is a serious issue. This is due to the fact that rice is consumed all over the world in different forms by children to adults and also in particular high amount in certain regions of the world. Further, rice, from both arsenic contaminated and rather uncontaminated areas, has been found to have higher than permissible levels of As in grains (0.2 mg kg−1 dw). The presence of arsenic has also been detected in rice-based food products including baby foods. Hence, there is a greater need to devise feasible low-cost practices to reduce arsenic in rice grains. A number of chemical-based agronomic, feasible approaches have been studied till date which do hold a promise for achieving desirable arsenic reduction in rice grains. The present chapter discusses up-to-date knowledge on strategies for arsenic reduction in rice grains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agostinho FB, Tubana BS, Martins MS, Datnoff LE (2017) Effect of different silicon sources on yield and silicon uptake of rice grown under varying phosphorus rates. Plan Theory 6:35

    Google Scholar 

  • Ali W, Isayenkov SV, Zhao FJ, Maathuis FJM (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339

    Article  CAS  Google Scholar 

  • Arnamwong S, Suksabye P, Thiravetyan P (2016) Using kaolin in reduction of arsenic in rice grains: effect of different types of kaolin, pH and arsenic complex. Bull Environ Contam Toxicol 96:556–561

    Article  CAS  Google Scholar 

  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007

    Article  Google Scholar 

  • Chauhan R, Awasthi S, Tripathi P, Mishra S, Dwivedi S, Niranjan A, Mallick S, Tripathi P, Pande V, Tripathi RD (2017) Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicol Environ Saf 138:47–55

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    Article  CAS  Google Scholar 

  • Detmann KC, Araújo WL, Martins SCV, Sanglard LMVP, Reis JV, Detmann E, Rodrigues FA, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196:752–762

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Dwivedi S, Deeba F, Kumar S et al (2015a) Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci Rep 5:16205

    Article  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S et al (2015b) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251

    Article  CAS  Google Scholar 

  • Dolphen R, Thiravetyan P (2019) Reducing arsenic in rice grains by leonardite and arsenic-resistant endophytic bacteria. Chemosphere 223:448–454

    Article  CAS  Google Scholar 

  • Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci 176:785–794

    CAS  Google Scholar 

  • Gao J, Lv J, Wu H, Dai Y, Nasir M (2018) Impacts of wheat straw addition on dissolved organic matter characteristics in cadmium-contaminated soils: insights from fluorescence spectroscopy and environmental implications. Chemosphere 193:1027–1035

    Article  CAS  Google Scholar 

  • Guo W, Zhu YG, Liu WJ, Liang YC, Geng CN, Wang SG (2007) Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition? Environ Pollut 148:251–257

    Article  CAS  Google Scholar 

  • Gupta P, Seth CS (2019) Nitrate supplementation attenuates As(V) toxicity in Solanum lycopersicum L.cv Pusa Rohini: insights into As(V) sub-cellular distribution, photosynthesis, nitrogen assimilation, and DNA damage. Plant Physiol Biochem 139:44–55

    Article  CAS  Google Scholar 

  • Hossain MB, Jahiruddin M, Loeppert RH, Panaullah GM, Islam MR, Duxbury JM (2009) The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167–176

    Article  CAS  Google Scholar 

  • Huhmann BL, Harvey CF, Uddin A, Choudhury I, Ahmed KM, Duxbury JM, Ellis T, van Geen A (2019) Inversion of high-arsenic soil for improved rice yield in Bangladesh. Environ Sci Technol 53(7):3410–3418

    Article  CAS  Google Scholar 

  • Islam S, Rahmn MM, Naidu R (2019) Impact of water and fertilizer management on arsenic bioaccumulation and speciation in rice plants grown under greenhouse conditions. Chemosphere 214:606–613

    Article  CAS  Google Scholar 

  • Kamiya T, Islam MR, Duan G, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee IJ (2015) Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J Hazard Mater 295:70–78

    Article  CAS  Google Scholar 

  • Kumar A, Singh RP, Singh PK, Awasthi S, Chakrabarty D, Trivedi PK, Tripathi RD (2014) Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.). Ecotoxicology 23:1153–1163

    Article  CAS  Google Scholar 

  • Kumar N, Dubey AK, Upadhyay AK, Gautam A, Ranjan R, Srikrishna S, Sahu N, Behera SK, Mallick S (2017) GABA accretion reduces Lsi-1 and Lsi-2 gene expressions and modulates physiological responses in Oryza sativa to provide tolerance towards arsenic. Sci Rep 7:8786

    Article  Google Scholar 

  • Kumar N, Gautam A, Dubey AK, Ranjan R, Pandey A, Kumari B, Singh G, Mandotra S, Chauhan PS, Srikrishna S, Dutta V, Mallick S (2019) GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis. Ecotoxicol Environ Saf 173:15–27

    Article  CAS  Google Scholar 

  • Kuramata M, Abe T, Matsumoto S, Ishikawa S (2011) Arsenic accumulation and speciation in Japanese paddy rice cultivars. Soil Sci Plant Nutr 57:248–258

    Article  CAS  Google Scholar 

  • Lee CH, Huang HH, Syu CH, Lin TH, Lee DY (2014) Increase of as release and phytotoxicity to rice seedlings in as-contaminated soils by Si fertilizer application. J Hazard Mater 276:253–261

    Article  CAS  Google Scholar 

  • Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ (2009) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783

    Article  CAS  Google Scholar 

  • Li L, Zhu C, Liu X, Li F, Li H, Ye J (2018) Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability. Environ Sci Pollut Res 25:34091–34102

    Article  CAS  Google Scholar 

  • Li R, Zhou Z, Xu X, Xie X, Zhang Q, Liu Y (2019) Effects of silicon application on uptake of arsenic and phosphorus and formation of iron plaque in rice seedlings grown in an arsenic-contaminated soil. Bull Environ Contam Toxicol (in press)

    Google Scholar 

  • Lin L, Li Z, Liu X, Qiu W, Song Z (2019) Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil. Environ Pollut 244:600–607

    Article  CAS  Google Scholar 

  • Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221

    Article  CAS  Google Scholar 

  • Liu CP, Wei L, Zhang SR, Xu XH, Li FB (2014) Effects of nanoscale silica sol foliar application on arsenic uptake, distribution and oxidative damage defense in rice (Oryza sativa L.) under arsenic stress. RSC Adv 4:57227

    Article  CAS  Google Scholar 

  • Liu C, Yu H-Y, Liu C, Lie F, Xu X, Wang Q (2015) Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink? Environ Pollut 199:95–101

    Article  CAS  Google Scholar 

  • Liu S, Lu Y, Yang C, Liu C, Ma L, Dang Z (2017) Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Environ Sci Pollut Res 24:23815–23824

    Article  CAS  Google Scholar 

  • Majumder A, Saha N, Ghosh S, Sarkar S, Kole SC (2013) In vitro assessment of arsenicals bioaccumulating potential of soil bacteria. J Environ Biol 34:841–846

    Google Scholar 

  • Maksymiec W, Wojcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427

    Article  CAS  Google Scholar 

  • Malik JA, Kumar S, Thakur P, Sharma S, Kaur N, Kaur R et al (2011) Promotion of growth in mungbean (Phaseolus aureus Roxb.) by selenium is associated with stimulation of carbohydrate metabolism. Biol Trace Elem Res 143:530–539

    Article  CAS  Google Scholar 

  • Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adamako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun GX, Zhu YG, Feldmann J, Raab A, Zhao FJ, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  Google Scholar 

  • Pandey C, Gupta M (2015) Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxic assay. J Hazard Mater 287:384–391

    Article  CAS  Google Scholar 

  • Pathare V, Srivastava S, Suprasanna P (2013) Evaluation of effects of arsenic on carbon, nitrogen, and sulfur metabolism in two contrasting varieties of Brassica juncea. Acta Physiol Plant 35:3377–3389

    Article  CAS  Google Scholar 

  • Rahman MA, Rahman MM, Reichman SM, Lim RP, Naidu R (2014) Arsenic speciation in Australian-grown and imported rice on sale in Australia: implications for human health risk. J Agric Food Chem 62:6016–6024

    Article  CAS  Google Scholar 

  • Rahman A, Mostofa MG, Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2015) Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating antioxidant defense and glyoxalase systems and stress markers. BioMed Res Int 2015:340812

    Google Scholar 

  • Rai AN, Srivastava S, Paladi RK, Suprasanna P (2012) Calcium supplementation modulates arsenic-induced alterations and augments arsenic accumulation in callus cultures of Indian mustard (Brassica juncea (L.) Czern.). Protoplasma 249:725–736

    Article  CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution, a global synthesis, RGS-IBG book series. Wiley-Blackwell, Oxford

    Google Scholar 

  • Sanglard LMVP, Martins SCV, Detmann KC, Silva PEM, Lavinsky AO, Silva MM, Detmann E, Araujo WL, DaMatta FM (2014) Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Physiol Plant 152:355–366

    Article  CAS  Google Scholar 

  • Schaller J, Wang J, Islam MR, Planer-Friedrich B (2018) Black carbon yields highest nutrient and lowest arsenic release when using rice residuals in paddy soils. Sci Rep 8:17004

    Article  Google Scholar 

  • Seyfferth AL, Fendorf S (2012) Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ Sci Technol 46:13176–13183

    Article  CAS  Google Scholar 

  • Seyfferth AL, Morris AH, Gill R, Kearns KA, Mann JN, Paukett M, Leskanic C (2016) Soil incorporation of silica-rich rice husk decreases inorganic arsenic in rice grain. J Agric Food Chem 64:3760–3766

    Article  CAS  Google Scholar 

  • Sharma P, Kumar A, Bhardwaj R (2013) Plant steroidal hormone epibrassinolide regulate – heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9

    Article  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front Plant Sci 6:340

    Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V, Dhankher OP, Norton GJ, Chakrabarty D, Tripathi RD (2017) A protective role of nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 115:163–173

    Article  CAS  Google Scholar 

  • Sohn E (2014) The toxic side of rice. Nature 514:S62–S63

    Article  Google Scholar 

  • Srivastava S, D’Souza SF (2009) Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 43:6308–6313

    Article  CAS  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Trivedi PK, Tandon PK (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936

    Article  CAS  Google Scholar 

  • Srivastava S, Suprasanna P, D’Souza SF (2011) Redox state and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248:805–815

    Article  CAS  Google Scholar 

  • Srivastava AK, Srivastava S, Mishra S, D’Souza SF, Suprasanna P (2014) Identification of redox-regulated components of arsenate (AsV) tolerance through thiourea supplementation in rice. Metallomics 6:1718–1730

    Article  CAS  Google Scholar 

  • Srivastava S, Akkarakaran JJ, Sounderajan S, Shrivastava M, Suprasanna P (2016) Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: impact on the expression of transporters and thiol metabolism. Geoderma 270:33–42

    Article  CAS  Google Scholar 

  • Srivastava S, Pathare VS, Sounderajan S, Suprasanna P (2019) Nitrogen supply influences arsenic accumulation and stress responses of rice (Oryza sativa L.) seedlings. J Hazard Mater 367:599–606

    Article  CAS  Google Scholar 

  • Stanislawska-Glubiak E, Korzeniowska J, Kocon A (2015) Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environ Sci Pollut Res 22:4706–4714

    Article  CAS  Google Scholar 

  • Talukder ASMHM, Meisner CA, Sarkar MAR, Islam MS (2011) Effect of water management, tillage options and phosphorus status on arsenic uptake in rice. Ecotoxicol Environ Saf 74:834–839

    Article  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defense system. Ecol Eng 52:96–103

    Article  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Kumar A, Mishra A, Chauhan PS, Norton GJ, Nautiyal CS (2014) Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants. Metallomics 6:1789

    Article  CAS  Google Scholar 

  • Upadhyay MK, Shukla A, Yadav P, Srivastava S (2019) A review of arsenic in crops, vegetables, animals and food products. Food Chem 276:608–618

    Article  CAS  Google Scholar 

  • Wang X, Yu H-Y, Li F, Liu T, Wu W, Liu C, Liu C, Zhang X (2019) Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3: possible mechanisms and environmental implications. Sci Total Environ 649:535–543

    Article  CAS  Google Scholar 

  • Williams PN, Raab A, Feldmann J, Meharg AA (2007) Market basket survey shows elevated levels of as in South Central US processed rice compared to California: consequences for human dietary exposure. Environ Sci Technol 41:2178–2183

    Article  CAS  Google Scholar 

  • Wu C, Ye ZH, Shu WS, Zhu YG, Wong MH (2011a) Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. J Exp Bot 62:2889–2898

    Article  CAS  Google Scholar 

  • Wu ZC, Ren HY, McGrath SP, Wu P, Zhao FJ (2011b) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508

    Article  CAS  Google Scholar 

  • Wu C, Zou Q, Xue S-G, Pan W-S, Huang L, Hartley W, Mo J-Y, Wong M-H (2016) The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL). Environ Pollut 212:27–33

    Article  CAS  Google Scholar 

  • Wu C, Huang L, Xue S-G, Huang Y-Y, Hartley W, Cui M-Q, Wong M-H (2017) Arsenic sorption by red mud-modified biochar produced from rice straw. Environ Sci Pollut Res 24:18168–18178

    Article  CAS  Google Scholar 

  • Yu H-Y, Wang X, Li F, Li B, Liu C, Wang Q, Lei J (2017) Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Environ Pollut 224:136–147

    Article  CAS  Google Scholar 

  • Zhang J, Zhao QZ, Duan GL, Huang YC (2011) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40

    Article  CAS  Google Scholar 

  • Zhang J, Zhao CY, Liu J, Song R, Du YX, Li JZ, Sun HZ, Duan GL, Zhao QZ (2016) Influence of sulfur on transcription of genes involved in arsenic accumulation in rice grains. Plant Mol Biol Report 34:556–565

    Article  CAS  Google Scholar 

  • Zou L, Zhang S, Duan D, Liang X, Shi J, Xu J, Tang X (2018) Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil. Environ Sci Pollut Res 25:8888–8902

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, S., Suprasanna, P., Tripathi, R.D. (2020). Safeguarding Rice from Arsenic Contamination Through the Adoption of Chemo-agronomic Measures. In: Srivastava, S. (eds) Arsenic in Drinking Water and Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-8587-2_16

Download citation

Publish with us

Policies and ethics