Skip to main content

The Model Legume Medicago truncatula: Past, Present, and Future

  • Chapter
  • First Online:
Plant Biotechnology: Progress in Genomic Era

Abstract

Legumes are indispensable as food for us, feed for our livestock, and as a major contributor towards sustainable agricultural practices. Seed development, and root nodule symbiosis in legumes are the two main areas where majority of research is focused. Though Arabidopsis thaliana is a plant model with huge publicly-available resources, a model for legumes is always needed to study the unique characteristics of this family. Since last few decades, Medicago truncatula is being used as a model for studying plant-microbe interaction, seed development, and abiotic stress on plants. Many genomic resources have been developed, including the genome sequence, spatio-temporal gene expression data, germplasm collection, and collection of different types of mutants. This chapter describes the path followed by Medicago truncatula to become a model legume, along with all the above-mentioned genomic resources in detail. We have also discussed the ways of utilizing these resources in forward and reverse genetic studies. Concerted use of these resources with genome-wide analyses, molecular breeding programmes, and latest targeted genetic editing techniques has limit-less potential of empowering legumes as future food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10), R106. https://doi.org/10.1186/gb-2010-11-10-r106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, D. G., Gallusci, P., Lullien, V., Khan, H., Gherardi, M., & Huguet, T. (1988). Identification of two groups of leghemoglobin genes in alfalfa (Medicago sativa) and a study of their expression during root nodule development. Plant Molecular Biology, 11(6), 761–772. https://doi.org/10.1007/BF00019516.

    Article  CAS  PubMed  Google Scholar 

  • Barker, D. G., Bianchi, S., Blondon, F., Dattée, Y., Duc, G., Essad, S., Flament, P., Gallusci, P., Génier, G., Guy, P., Muel, X., Tourneur, J., Dénarié, J., & Huguet, T. (1990). Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Molecular Biology Reporter, 8(1), 40–49.

    Article  CAS  Google Scholar 

  • Barnett, M. J., Toman, C. J., Fisher, R. F., & Long, S. R. (2004). A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proceedings of the National Academy of Sciences of the United States of America, 101(47), 16636–16641. https://doi.org/10.1073/pnas.0407269101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, C. J., Dixon, R. A., Farmer, A. D., Flores, R., Inman, J., Gonzales, R. A., Harrison, M. J., Paiva, N. L., Scott, A. D., Weller, J. W., & May, G. D. (2001). The Medicago Genome Initiative: A model legume database. Nucleic Acids Research, 29(1), 114–117.

    Article  CAS  Google Scholar 

  • Benaben, V., Duc, G., Lefebvre, V., & Huguet, T. (1995). TE7, an inefficient symbiotic mutant of Medicago truncatula Gaertn. cv Jemalong. Plant Physiology, 107(1), 53–62.

    Article  CAS  Google Scholar 

  • Benedito, V. A., Torres-Jerez, I., Murray, J. D., Andriankaja, A., Allen, S., Kakar, K., Wandrey, M., Verdier, J., Zuber, H., Ott, T., Moreau, S., Niebel, A., Frickey, T., Weiller, G., He, J., Dai, X., Zhao, P. X., Tang, Y., & Udvardi, M. K. (2008). A gene expression atlas of the model legume Medicago truncatula. The Plant Journal, 55(3), 504–513. https://doi.org/10.1111/j.1365-313X.2008.03519.x.

    Article  CAS  PubMed  Google Scholar 

  • Benlloch, R., d’Erfurth, I., Ferrandiz, C., Cosson, V., Beltran, J. P., Canas, L. A., Kondorosi, A., Madueno, F., & Ratet, P. (2006). Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Plant Physiology, 142(3), 972–983. https://doi.org/10.1104/pp.106.083543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boscari, A., Del Giudice, J., Ferrarini, A., Venturini, L., Zaffini, A. L., Delledonne, M., & Puppo, A. (2013). Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: Which role for nitric oxide? Plant Physiology, 161(1), 425–439. https://doi.org/10.1104/pp.112.208538.

    Article  CAS  PubMed  Google Scholar 

  • Broeckling, C. D., Huhman, D. V., Farag, M. A., Smith, J. T., May, G. D., Mendes, P., Dixon, R. A., & Sumner, L. W. (2005). Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany, 56(410), 323–336. https://doi.org/10.1093/jxb/eri058.

    Article  CAS  PubMed  Google Scholar 

  • Brummer, E. C., Bouton, J. H., & Kochert, G. (1995). Analysis of annual Medicago species using RAPD markers. Genome, 38(2), 362–367.

    Article  CAS  Google Scholar 

  • Burghardt, L. T., Young, N. D., & Tiffin, P. (2017). A guide to genome-wide association studies (GWAS) in plants. Current Opinion in Plant Biology, 2, 22–38.

    Article  Google Scholar 

  • Catoira, R., Galera, C., de Billy, F., Penmetsa, R. V., Journet, E. P., Maillet, F., Rosenberg, C., Cook, D., Gough, C., & Denarie, J. (2000). Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell, 12(9), 1647–1666.

    Article  CAS  Google Scholar 

  • Cermak, T., Curtin, S. J., Gil-Humanes, J., Cegan, R., Kono, T. J. Y., Konecna, E., Belanto, J. J., Starker, C. G., Mathre, J. W., Greenstein, R. L., & Voytas, D. F. (2017). A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 29(6), 1196–1217. https://doi.org/10.1105/tpc.16.00922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabaud, M., de Carvalho-Niebel, F., & Barker, D. G. (2003). Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Reports, 22(1), 46–51. https://doi.org/10.1007/s00299-003-0649-y.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C., Bowman, J. L., & Meyerowitz, E. M. (2016). Field guide to plant model systems. Cell, 167(2), 325–339. https://doi.org/10.1016/j.cell.2016.08.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, X., Wang, M., Lee, H. K., Tadege, M., Ratet, P., Udvardi, M., Mysore, K. S., & Wen, J. (2014). An efficient reverse genetics platform in the model legume Medicago truncatula. The New Phytologist, 201(3), 1065–1076. https://doi.org/10.1111/nph.12575.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X., Krom, N., Zhang, S., Mysore, K. S., Udvardi, M., & Wen, J. (2017). Enabling reverse genetics in Medicago truncatula using high-throughput sequencing for Tnt1 flanking sequence recovery. Methods in Molecular Biology, 1610, 25–37. https://doi.org/10.1007/978-1-4939-7003-2_3.

    Article  CAS  PubMed  Google Scholar 

  • Choi, H. K., Kim, D., Uhm, T., Limpens, E., Lim, H., Mun, J. H., Kalo, P., Penmetsa, R. V., Seres, A., Kulikova, O., Roe, B. A., Bisseling, T., Kiss, G. B., & Cook, D. R. (2004). A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics, 166(3), 1463–1502.

    Article  CAS  Google Scholar 

  • Comai, L., & Henikoff, S. (2006). TILLING: Practical single-nucleotide mutation discovery. The Plant Journal, 45(4), 684–694. https://doi.org/10.1111/j.1365-313X.2006.02670.x.

    Article  CAS  PubMed  Google Scholar 

  • Cook, D. R. (1999). Medicago truncatula – a model in the making!: Commentary. Current Opinion in Plant Biology, 2(4), 310–304.

    Article  Google Scholar 

  • Covitz, P. A., Smith, L. S., & Long, S. R. (1998). Expressed sequence tags from a root-hair-enriched medicago truncatula cDNA library. Plant Physiology, 117(4), 1325–1332.

    Article  CAS  Google Scholar 

  • Curtin, S. J., Tiffin, P., Guhlin, J., Trujillo, D. I., Burghart, L. T., Atkins, P., Baltes, N. J., Denny, R., Voytas, D. F., Stupar, R. M., & Young, N. D. (2017). Validating genome-wide association candidates controlling quantitative variation in nodulation. Plant Physiology, 173(2), 921–931. https://doi.org/10.1104/pp.16.01923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula. The Plant Journal, 34(1), 95–106.

    Article  Google Scholar 

  • Dixon, R. A., & Pasinetti, G. M. (2010). Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiology, 154(2), 453–457. https://doi.org/10.1104/pp.110.161430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon, R. A., & Sumner, L. W. (2003). Legume natural products: Understanding and manipulating complex pathways for human and animal health. Plant Physiology, 131(3), 878–885. https://doi.org/10.1104/pp.102.017319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dona, M., Confalonieri, M., Minio, A., Biggiogera, M., Buttafava, A., Raimondi, E., Delledonne, M., Ventura, L., Sabatini, M. E., Macovei, A., Giraffa, G., Carbonera, D., & Balestrazzi, A. (2013). RNA-Seq analysis discloses early senescence and nucleolar dysfunction triggered by Tdp1alpha depletion in Medicago truncatula. Journal of Experimental Botany, 64(7), 1941–1951. https://doi.org/10.1093/jxb/ert063.

    Article  CAS  PubMed  Google Scholar 

  • Frugoli, J., & Harris, J. (2001). Medicago truncatula on the move! Plant Cell, 13(3), 458–463.

    Article  CAS  Google Scholar 

  • Gallardo, K., Le Signor, C., Vandekerckhove, J., Thompson, R. D., & Burstin, J. (2003). Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiology, 133(2), 664–682. https://doi.org/10.1104/pp.103.025254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamas, P., Niebel Fde, C., Lescure, N., & Cullimore, J. (1996). Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Molecular Plant-Microbe Interactions, 9(4), 233–242.

    Article  CAS  Google Scholar 

  • Graham, P. H., & Vance, C. P. (2003). Legumes: Importance and constraints to greater use. Plant Physiology, 131(3), 872–877. https://doi.org/10.1104/pp.017004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandbastien, M. A., Spielmann, A., & Caboche, M. (1989). Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature, 337(6205), 376–380. https://doi.org/10.1038/337376a0.

    Article  CAS  PubMed  Google Scholar 

  • Jardinaud, M. F., Boivin, S., Rodde, N., Catrice, O., Kisiala, A., Lepage, A., Moreau, S., Roux, B., Cottret, L., Sallet, E., Brault, M., Emery, R. J., Gouzy, J., Frugier, F., & Gamas, P. (2016). A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis. Plant Physiology, 171(3), 2256–2276. https://doi.org/10.1104/pp.16.00711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, C., Chen, C., Huang, Z., Liu, R., & Verdier, J. (2015). ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data. BMC Bioinformatics, 16, 72. https://doi.org/10.1186/s12859-015-0507-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, Y., Sakiroglu, M., Krom, N., Stanton-Geddes, J., Wang, M., Lee, Y. C., Young, N. D., & Udvardi, M. (2015). Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Plant, Cell & Environment, 38(10), 1997–2011. https://doi.org/10.1111/pce.12520.

    Article  CAS  Google Scholar 

  • Koornneef, M., & Meinke, D. (2010). The development of Arabidopsis as a model plant. The Plant Journal, 61(6), 909–921. https://doi.org/10.1111/j.1365-313X.2009.04086.x.

    Article  CAS  PubMed  Google Scholar 

  • Le Signor, C., Aime, D., Bordat, A., Belghazi, M., Labas, V., Gouzy, J., Young, N. D., Prosperi, J. M., Leprince, O., Thompson, R. D., Buitink, J., Burstin, J., & Gallardo, K. (2017). Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. The New Phytologist, 214(4), 1597–1613. https://doi.org/10.1111/nph.14500.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Trieu, A. T., Blaylock, L. A., & Harrison, M. J. (1998). Cloning and characterization of two phosphate transporters from Medicago truncatula roots: Regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant-Microbe Interactions, 11(1), 14–22. https://doi.org/10.1094/MPMI.1998.11.1.14.

    Article  CAS  PubMed  Google Scholar 

  • Manthey, K., Krajinski, F., Hohnjec, N., Firnhaber, C., Puhler, A., Perlick, A. M., & Kuster, H. (2004). Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Molecular Plant-Microbe Interactions, 17(10), 1063–1077. https://doi.org/10.1094/MPMI.2004.17.10.1063.

    Article  CAS  PubMed  Google Scholar 

  • Meng, Y., Hou, Y., Wang, H., Ji, R., Liu, B., Wen, J., Niu, L., & Lin, H. (2017). Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Reports, 36(2), 371–374. https://doi.org/10.1007/s00299-016-2069-9.

    Article  CAS  PubMed  Google Scholar 

  • Nam, Y. W. P., Erend, R. V., Kim, G. P., Cook, D., & R, D. (1999). Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theoretical and Applied Genetics, 98(3–4), 338–346.

    Google Scholar 

  • Nolan, K. E., Rose, R. J., & Gorst, J. R. (1989). Regeneration of Medicago truncatula from tissue culture: Increased somatic embryogenesis using explants from regenerated plants. Plant Cell Reports, 8(5), 278–281. https://doi.org/10.1007/BF00274129.

    Article  CAS  PubMed  Google Scholar 

  • Ohyanagi, H., Takano, T., Terashima, S., Kobayashi, M., Kanno, M., Morimoto, K., Kanegae, H., Sasaki, Y., Saito, M., Asano, S., Ozaki, S., Kudo, T., Yokoyama, K., Aya, K., Suwabe, K., Suzuki, G., Aoki, K., Kubo, Y., Watanabe, M., Matsuoka, M., & Yano, K. (2015). Plant Omics Data Center: An integrated web repository for interspecies gene expression networks with NLP-based curation. Plant & Cell Physiology, 56(1), e9. https://doi.org/10.1093/pcp/pcu188.

    Article  CAS  Google Scholar 

  • Penmetsa, R. V., & Cook, D. R. (2000). Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiology, 123(4), 1387–1398.

    Article  CAS  Google Scholar 

  • van Rensburg, H. J., & Strijdom, B. W. (1982). Competitive abilities of rhizobium meliloti strains considered to have potential as inoculants. Applied and Environmental Microbiology, 44(1), 98–106.

    PubMed  PubMed Central  Google Scholar 

  • Rogers, C., Wen, J., Chen, R., & Oldroyd, G. (2009). Deletion-based reverse genetics in Medicago truncatula. Plant Physiology, 151(3), 1077–1086. https://doi.org/10.1104/pp.109.142919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose, R. J. (2008). Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: Past, present and future. Functional Plant Biology, 35, 253–264.

    Article  Google Scholar 

  • Roux, B., Rodde, N., Moreau, S., Jardinaud, M. F., & Gamas, P. (2018). Laser capture micro-dissection coupled to RNA sequencing: A powerful approach applied to the model legume Medicago truncatula in interaction with Sinorhizobium meliloti. Methods in Molecular Biology, 1830, 191–224. https://doi.org/10.1007/978-1-4939-8657-6_12.

    Article  CAS  PubMed  Google Scholar 

  • Sandhu, D., Ghosh, J., Johnson, C., Baumbach, J., Baumert, E., Cina, T., Grant, D., Palmer, R. G., & Bhattacharyya, M. K. (2017). The endogenous transposable element Tgm9 is suitable for generating knockout mutants for functional analyses of soybean genes and genetic improvement in soybean. PLoS One, 12(8), e0180732. https://doi.org/10.1371/journal.pone.0180732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton-Geddes, J., Paape, T., Epstein, B., Briskine, R., Yoder, J., Mudge, J., Bharti, A. K., Farmer, A. D., Zhou, P., Denny, R., May, G. D., Erlandson, S., Yakub, M., Sugawara, M., Sadowsky, M. J., Young, N. D., & Tiffin, P. (2013). Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One, 8(5), e65688. https://doi.org/10.1371/journal.pone.0065688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starker, C. G., Parra-Colmenares, A. L., Smith, L., Mitra, R. M., & Long, S. R. (2006). Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiology, 140(2), 671–680. https://doi.org/10.1104/pp.105.072132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szybiak-Strozycka, U., Lescure, N., Cullimore, J. V., & Gamas, P. (1995). A cDNA encoding a PR-1-like protein in the model legume Medicago truncatula. Plant Physiology, 107(1), 273–274.

    Article  CAS  Google Scholar 

  • Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., Cayrel, A., Endre, G., Zhao, P. X., Chabaud, M., Ratet, P., & Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54(2), 335–347. https://doi.org/10.1111/j.1365-313X.2008.03418.x.

    Article  CAS  PubMed  Google Scholar 

  • Tang, H., Krishnakumar, V., Bidwell, S., Rosen, B., Chan, A., Zhou, S., Gentzbittel, L., Childs, K. L., Yandell, M., Gundlach, H., Mayer, K. F., Schwartz, D. C., & Town, C. D. (2014). An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics, 15, 312. https://doi.org/10.1186/1471-2164-15-312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, M. R., Rose, R. J., & Nolan, K. E. (1992). Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Reports, 11(3), 113–117. https://doi.org/10.1007/BF00232161.

    Article  CAS  PubMed  Google Scholar 

  • Thoquet, P., Gherardi, M., Journet, E. P., Kereszt, A., Ane, J. M., Prosperi, J. M., & Huguet, T. (2002). The molecular genetic linkage map of the model legume Medicago truncatula: An essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biology, 2, 1.

    Article  Google Scholar 

  • Veerappan, V., Jani, M., Kadel, K., Troiani, T., Gale, R., Mayes, T., Shulaev, E., Wen, J., Mysore, K. S., Azad, R. K., & Dickstein, R. (2016). Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing. BMC Genomics, 17, 141. https://doi.org/10.1186/s12864-016-2452-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdier, J., Lalanne, D., Pelletier, S., Torres-Jerez, I., Righetti, K., Bandyopadhyay, K., Leprince, O., Chatelain, E., Vu, B. L., Gouzy, J., Gamas, P., Udvardi, M. K., & Buitink, J. (2013). A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiology, 163(2), 757–774. https://doi.org/10.1104/pp.113.222380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu, W. T., Chang, P. L., Moriuchi, K. S., & Friesen, M. L. (2015). Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula. BMC Evolutionary Biology, 15, 59. https://doi.org/10.1186/s12862-015-0322-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T. L., Domoney, C., Hedley, C. L., Casey, R., & Grusak, M. A. (2003). Can we improve the nutritional quality of legume seeds? Plant Physiology, 131(3), 886–891. https://doi.org/10.1104/pp.102.017665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Verdier, J., Benedito, V. A., Tang, Y., Murray, J. D., Ge, Y., Becker, J. D., Carvalho, H., Rogers, C., Udvardi, M., & He, J. (2013). LegumeGRN: A gene regulatory network prediction server for functional and comparative studies. PLoS One, 8(7), e67434. https://doi.org/10.1371/journal.pone.0067434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, R. C., Long, F., Maruoka, E. M., & Cooper, J. B. (1994). A new proline-rich early nodulin from Medicago truncatula is highly expressed in nodule meristematic cells. Plant Cell, 6(9), 1265–1275. https://doi.org/10.1105/tpc.6.9.1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wipf, D., Mongelard, G., van Tuinen, D., Gutierrez, L., & Casieri, L. (2014). Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 5, 680. https://doi.org/10.3389/fpls.2014.00680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Young, N. D., & Udvardi, M. (2009). Translating Medicago truncatula genomics to crop legumes. Current Opinion in Plant Biology, 12(2), 193–201. https://doi.org/10.1016/j.pbi.2008.11.005.

    Article  CAS  PubMed  Google Scholar 

  • Young, N. D., Cannon, S. B., Sato, S., Kim, D., Cook, D. R., Town, C. D., Roe, B. A., & Tabata, S. (2005). Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiology, 137(4), 1174–1181. https://doi.org/10.1104/pp.104.057034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, N. D., Debelle, F., Oldroyd, G. E., Geurts, R., Cannon, S. B., Udvardi, M. K., Benedito, V. A., Mayer, K. F., Gouzy, J., Schoof, H., Van de Peer, Y., Proost, S., Cook, D. R., Meyers, B. C., Spannagl, M., Cheung, F., De Mita, S., Krishnakumar, V., Gundlach, H., Zhou, S., Mudge, J., Bharti, A. K., Murray, J. D., Naoumkina, M. A., Rosen, B., Silverstein, K. A., Tang, H., Rombauts, S., Zhao, P. X., Zhou, P., Barbe, V., Bardou, P., Bechner, M., Bellec, A., Berger, A., Berges, H., Bidwell, S., Bisseling, T., Choisne, N., Couloux, A., Denny, R., Deshpande, S., Dai, X., Doyle, J. J., Dudez, A. M., Farmer, A. D., Fouteau, S., Franken, C., Gibelin, C., Gish, J., Goldstein, S., Gonzalez, A. J., Green, P. J., Hallab, A., Hartog, M., Hua, A., Humphray, S. J., Jeong, D. H., Jing, Y., Jocker, A., Kenton, S. M., Kim, D. J., Klee, K., Lai, H., Lang, C., Lin, S., Macmil, S. L., Magdelenat, G., Matthews, L., McCorrison, J., Monaghan, E. L., Mun, J. H., Najar, F. Z., Nicholson, C., Noirot, C., O’Bleness, M., Paule, C. R., Poulain, J., Prion, F., Qin, B., Qu, C., Retzel, E. F., Riddle, C., Sallet, E., Samain, S., Samson, N., Sanders, I., Saurat, O., Scarpelli, C., Schiex, T., Segurens, B., Severin, A. J., Sherrier, D. J., Shi, R., Sims, S., Singer, S. R., Sinharoy, S., Sterck, L., Viollet, A., Wang, B. B., Wang, K., Wang, M., Wang, X., Warfsmann, J., Weissenbach, J., White, D. D., White, J. D., Wiley, G. B., Wincker, P., Xing, Y., Yang, L., Yao, Z., Ying, F., Zhai, J., Zhou, L., Zuber, A., Denarie, J., Dixon, R. A., May, G. D., Schwartz, D. C., Rogers, J., Quetier, F., Town, C. D., & Roe, B. A. (2011). The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 480(7378), 520–524. https://doi.org/10.1038/nature10625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, T., Holmer, R., Hontelez, J., Te Lintel-Hekkert, B., Marufu, L., de Zeeuw, T., Wu, F., Schijlen, E., Bisseling, T., & Limpens, E. (2018). Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. The Plant Journal, 94(3), 411–425. https://doi.org/10.1111/tpj.13908.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustav Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandyopadhyay, K., Verdier, J., Kang, Y. (2019). The Model Legume Medicago truncatula: Past, Present, and Future. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_5

Download citation

Publish with us

Policies and ethics