Skip to main content

Harnessing Entomopathogenic Fungi for Enhanced Farm Productivity and Profitability

  • Chapter
  • First Online:
Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

Entomopathogenic fungi form an essential component of the integrated insect-pest management strategies. The insect-pests and their entomopathogenic fungi have co-evolved over centuries and thus established an equilibrium. Species of Metarhizium, Lecanicillium, Nomuraea, Isaria, etc. have been studied extensively, and the commercial products based on Nomuraea rileyi, Lecanicillium (Verticillium) leccanii, Beauveria bassiana and Metarhizium anisopliae are popular among farmers. Several modes of action of these fungi against target pests have been elucidated. Introduction of pesticides has not only undermined the value of these fungi but also disturbed the equilibrium. The entomopathogenic fungi are living organisms formulated and delivered to the farming community for the management of target insect-pests. Due to the lag in realizing the benefit of these biocontrol agents, the farmers started using the pesticides which show their effect immediately. While on one side, indiscriminate use of these pesticides in the last three decades has led to the loss of biodiversity of beneficial organisms, pollinators, other animal and bird species; on the other side, emphasis on organic agriculture has compounded the value of these products. Thus, the interest in these biocontrol agents has re-invigorated. Several commercial formulations are already used by the farming community for the management of insect-pests. In this review, an attempt was made to appraise the status of these entomopathogenic fungi, their commercial exploitation, research gaps and way forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agale SV, Gopalakrishnan S, Ambhure KG (2018) Mass production of entomopathogenic fungi (Metarhizium anisopliae) using different grains as a substrate. Int J Curr Microbiol App Sci 7(1):2227–2232

    Article  CAS  Google Scholar 

  • Ajay KP (2013) Field evaluation of Beauveria bassiana and Metarhizium anisopliae against the cutworm, Agrotis ipsilon (Hufnagel) damaging potato in Uttarakhand hills. J Biol Control 27(4):293–297

    Google Scholar 

  • Alter JA, Vandenberg JJD (2000) Factors that influencing the infectivity of isolates of Paecilomyces fumosoroseus against diamond Back Moth. J Invertebr Pathol 78:31–36

    Article  Google Scholar 

  • Alves SB (1998) Controle microbiano de insetos. FEALQ, Piracicaba. 1163p

    Google Scholar 

  • Anand R, Prasad B, Tiwary BN (2009) Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. BioControl 54:85–92

    Article  Google Scholar 

  • Antía OP, Posada FJ, Bustillo AE, Gonzáles MT (1992) Producción en finca del hongo Beauveria bassiana para el control de la broca del café Cenicafé (Colombia). Avancestécnicos 182:12

    Google Scholar 

  • Avery PB, Faulla J, Simmands MSJ (2004) Effect of different photoperiods on the infectivity and colonization of Paecilomyces fumosoroseus. J Insect Sci 4:38–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu TR, Azam KM (1989) Biological control of grape mealy bug, Maconellicoccus hirsutus (Green). J Pl Protec Sci 17:123–126

    Google Scholar 

  • Babu V, Murugan S, Thangaraja P (2001) Laboratory studies on the efficacy of neem and the entomopathogenic fungus Beauveria bassiana on Spodopteralitura. Entomology 56:56–63

    Google Scholar 

  • BaÅ‚azy S (1993) Flora of Poland Fungi (Mycota). Entomophthorales 24:1–356

    Google Scholar 

  • Bhadani DJ, Kabaria BB, Ghelani MK (2017) Bio-efficacy of entomopathogenic fungi against mealy bug, Maconellicoccus hirsutus (Green) infesting custard apple in Junagadh. J Entomol Zool Stud 5(5):285–289

    Google Scholar 

  • Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101(4):512–530

    Article  CAS  PubMed  Google Scholar 

  • Burges AD, Hussey NW (1981) Microbial control of insect pests and mites. Academic, London, pp 161–167

    Google Scholar 

  • Bustillo AE, Posada FJ (1996) El uso de entomopatógenos en el control de la broca del café en Colombia. Manejo integrado de Plagas (Costa Rica) 42:1–13

    Google Scholar 

  • Butt TM, Jackson CW, Murugan W (2001) Fungi as biocontrol agents, progress, problems and potentials. CBBS Publishing Co, London, pp 240–242

    Book  Google Scholar 

  • Chandler D, Davidson G, Pell JK, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Tech 10:357–384

    Article  Google Scholar 

  • Chandler D, Davidson G, Jacobson RJ (2005) Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato,Lycopersiconesculentum. Biocontrol Sci Tech 15:37–54

    Article  Google Scholar 

  • Cerda R, Avelino J, Gary C, Tixier P, Lechevallier E, Allinne C (2017) Primary and secondary yield losses caused by pests and diseases: assessment and modeling in Coffee. PLoS One 12(1):e0169133. https://doi.org/10.1371/journal.pone.0169133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran R, Revathi K, Jayanthi S (2015) Combined effect of Bacillus thuringiensis and Bacillus subtilis against Helicoverpa armigera. Int J Curr Microbiol App Sci 4(7):127–141

    CAS  Google Scholar 

  • Claydon N, Grove JF (1982) Insecticidal secondary metabolic products from the entomogenous fungus Verticillium lecanii. J Inverteb Pathol 40:413–418

    Article  CAS  Google Scholar 

  • Cortez-Madrigal H, Allatorre-Rosas R, Mora-Aguilera G, bravomojica H, Ortiz-Garcia CF, Aceves-Navarro LA (2003) Characterization of multisporic and monosporic isolates of Lecanicillium (=Verticillium) lecanii for the management of Toxoptera aurantii in cocoa. BioControl 48:321–334

    Article  CAS  Google Scholar 

  • Dara SK (2015) Reporting the occurrence of rice root aphid and honeysuckle aphid and their management in organic celery. UCANR eJournal Strawberries and Vegetables, 21 August 2015. http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=18740

  • Dhaliwal GS, Arora R (1994) Trends in agricultural insect pest management. Commonwealth Publishers, New Delhi

    Google Scholar 

  • Dhaliwal GS, Jindal V, Mohindru B (2015) Crop losses due to insect pests: global and Indian scenario. Indian J Entomol 77:165–168

    Article  Google Scholar 

  • Dick GL, Buschman LL (1995) Seasonal occurrence of a fungal pathogen, Neozygites adjarica (Entomophthorales: Neozygitaceae), infecting banks grass mites, Oligonychus pratensis, and two-spotted spider mites, Tetranychus urticae (Acari: Tetranychidae), in field corn. Journal of Kansas Entomological Society 68:425–436

    Google Scholar 

  • Dixit SS (2015) Seasonal incidence and evaluation of entomopathogenic fungi against the mealy bug on custard apple. Ph. D. thesis submitted to MPKV University, Rahuri, India

    Google Scholar 

  • Fargues J, Goettel MS, Smits M, Ouedraogo A, Vidal C, Lacey LA, Lomer CJ, Rougier M (1996) Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes. Mycopathologia 135:171–181

    Article  CAS  PubMed  Google Scholar 

  • Faria M, Wraight SP (2001) Biological control of Bremisia tabaci with fungi. Crop Prot 20:767–778

    Article  Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • Ferron P (1978) Biological control of insect pests by entomopathogenic fungi. Annu Rev Entomol 23:409–442

    Article  Google Scholar 

  • Ferron P (1981) Pest control by the fungi Beauveria and Metarhizium. In: Burges HD (ed) Microbial control of pests and diseases 1970–1980. Academic, London

    Google Scholar 

  • Fransen JJ (1990) Natural enemies of whiteflies: fungi. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept, Andover, pp 187–210

    Google Scholar 

  • Gatarayiha MC, Laing MD, Miller RM (2000) In vitro effects of flutriafol and azoxystrobin on Beauvaria bassiana and its efficacy against Tetranychus urticae. Pest Manag Sci 66:773–778

    Article  CAS  PubMed  Google Scholar 

  • Glare TR, Milner RJ (1991) Ecology of entomopathogenic fungi. In: Arora DK, Ajello L, Mukerji KG (eds) Handbook of applied mycology. Marcel Dekker, New York, pp 547–612

    Google Scholar 

  • Goettel MS, Leger RJ, Rizzo NW, Staples RC, Roberts DW (1989) Ultrastructural localization of a cuticle degrading protease produced by the entomopathogenic fungus Metarhizium anisopliae during penetration of host (Manduca sexta) cuticle. J Gen Microbiol 135:2233–2239

    CAS  Google Scholar 

  • Gopalakrishnan C, Anusuya D, Narayanan K (1999) In vitro production of conidia of entomopathogenic fungus Parcilomyces farinosus. Entomology 24:389–392

    Google Scholar 

  • Gustafsson M (1969) On species of the genus Entomophthora Fres. In Sweden III. Possibility of usage in biological control. Landbrukshogskolans Annaler 35:235–274

    Google Scholar 

  • Hadiya GD, Kalariya GB, Kalola NA (2016) Efficacy of different entomopathogenic fungus on chilli thrips. Adv Life Sci 5(5):1658–1660. ISSN:2278-3849

    Google Scholar 

  • Harischandra RP, Naik S (2009) Field evaluation of different entomopathogenic fungal formulations against sucking pests of okra. Karnataka J Agric Sci 22:575–578

    Google Scholar 

  • Hatting JL, Humber RA, Poprawski TJ, Miller RM (1999) A survey of fungal pathogens from South Africa with special reference to cereal aphids. Biol Control 16:1–12

    Article  Google Scholar 

  • Hoque AKMR, Aslam AFM, Ahmed M, Mamun MSA, Howlader AJ (2016) Laboratory and field evaluation of an entomopathogenic fungus formulation-Bioterminator (Metarhizium anisopliae Metchnikoff) against termite infesting tea. J Tea Sci Res 6(9):1–6

    Google Scholar 

  • Hussain A, Ahmed S, Shahid M (2011) Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites. Neotrop Entomol 40(2):244–250

    CAS  PubMed  Google Scholar 

  • Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI International/AAFC, Wallingford, pp 23–69

    Chapter  Google Scholar 

  • Jackson MA, Jaronski ST (2009) Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol Res 113:842–850

    Article  CAS  PubMed  Google Scholar 

  • Jenkins NE (1995) Studies on mass production and field efficacy of Metarhizium flavoviride for biological control of locusts and grasshoppers. Phd thesis submitted to Cranfield University, UK

    Google Scholar 

  • Kanaoka M (1978) Bassianolide, a New Insecticidal Cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Agric Biol Chem 42:629–640

    CAS  Google Scholar 

  • Kaur H, Kaur H, Rishi P (2015) In vitro evaluation of nematicidal action of neem and bt formulations on Meloidogyne incognita. Int J Microbiol Parasitol 1(1):1–10

    Google Scholar 

  • Keller S (1987) Arthropod-pathogenic Entomophthorales of Switzerland I. Conidiobolus, Entomophaga and Entomophthora. Sydowia 40:122–167

    Google Scholar 

  • Keller S (1991) Arthropod-pathogenic Entomophthorales of Switzerland II. Erynia, Eryniopsis, Neozygites, Zoophthora, and Tarichium. Sydowia 43:39–122

    Google Scholar 

  • Keller S (1997) The genus Neozygites (Zygomycetes, Entomophthorales) with special reference to species found in tropical regions. Sydowia 49:118–146

    Google Scholar 

  • Khachatourians GG, Sohail SQ (2008) Entomopathogenic Fungi. In: Brakhage AA, Zipfel PF (eds) Biochemistry and molecular biology, human and animal relationships, The Mycota VI, 2nd edn. Springer, Berlin/Heidelberg, pp 465–482

    Google Scholar 

  • Kim JJ, Lee MH, Yoon CS, Kim HS, Yoo JK, Kim KC (2002) Control of cotton aphid and greenhouse whitefly with a fungal pathogen. J Natl Inst Agric Sci Technol:7–14 http://dx.doi.org/10.1155/2012/126819

    Google Scholar 

  • Kiuchi M, Yasui H, Hayasaka S, Kamimura M (2003) Entomogenous fungus Nomuraea rileyi inhibits host insect molting by C22-oxidizing inactivation of hemolymph ecdysteroids. Archiv Insect Biochem Physiol 52:35–44

    Article  CAS  Google Scholar 

  • Kryukov VI, Khodyrev VP, Iaroslavtseva ON, Kamenova AS, Duisembekov BA, Glupov VV (2009) Synergistic action of entomopathogenic hypomycetes and the bacteria Bacillus thuringiensis spp. Morrisoni in the infection of Colorado potato beetle Leptinotarsa decemlineata. Prikl Biokhim Mikrobiol 45(5):571–576

    Google Scholar 

  • Kulkarni KA & Shekarappa (2001). Integrated management of chilli fruit borer Helicoverpa armigera Hub. In: Proceedings of II national symposium on Integrated Pest Management (IPM) in Horticulture Crops, New Molecules, Biopesticides and Environment, Bangalore, 17–19th October, pp 59–60

    Google Scholar 

  • Kumar RN, Mukerji KG (1996) Integrated disease management future perspectives. In: Mukerji KG, Mathur B, Chamala BP, Chitralekha C (eds) Advances in botany. APH Publishing Corporation, New Delhi, pp 335–347

    Google Scholar 

  • Kumari P, Mishra GC, Srivastava CP (2013) Forecasting of productivity and pod damage by Helicoverpa armigera using artificial neural network model in Pigeonpea (Cajanus cajan). IJAEB 6(2):335–340

    Google Scholar 

  • Lakshminarayana M, And Duraimurugan P (2014) Assessment of avoidable yield losses due to insect pests in castor (Ricinus communis L.). J Oilseeds Res 31(2):140–144

    Google Scholar 

  • Leger RJ, Cooper RM, Charnley AK (1986) Cuticle degrading enzymes of entomopathogenic fungi: Cuticle degradation in vitro by enzymes from entomopathogens. J Invertebr Pathol 47:167–177

    Article  Google Scholar 

  • Leger RJ, Cooper RM, Charnley AK (1987) Production of cuticle degrading enzymes by the entomopathogenic Metarhizium anisopliae during infection of cuticles from Calliphora vomitoria and Manduca sexta. J Gen Microbiol 133:1371–1382

    Google Scholar 

  • Liu M, Chaverri P, Hodge KT (2006) A taxonomic revision of the insect biocontrol fungus Aschersonia aleyrodis, its allies with white stromata and their Hypocrella sexual states. Mycol Res 110:537–554

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Xie Y, Xue J, Zhang Y, Zhang X (2011) Ultrastructural and cytochemical characterization of brown soft scale Coccus hesperidum (Hemiptera:Coccidae) infected by the Lecanicillium lecanii (Ascomycota: Hypoceales). Micron 42:71–79

    Article  CAS  PubMed  Google Scholar 

  • Lomer CJ, Prior C, Kooyman C (1997) Development of Metarhizium sp. for the control of grasshoppers and locusts. In: Goettel MS, Johnson DL (eds) Microbial control of Grasshoppers and Locust, vol 171. Memoirs of the Entomological Society of Canada, Ottawa, pp 265–286

    Google Scholar 

  • Long DW, GA Drummond, E Groden (2000) Horizontal transmission of Beauveria bassiana. Agriculture and Forest Entomology 2:11–17. NOP. 2000. USDA National Organic Program Regulations, 7CFR 205.206(e). http://www.ams.usda.gov/nop

  • Manisegaran S, Lakshmi SM, Srimohanapriya V (2011) Field Evaluation of Metarhizium anisopliae (Metschnikoff) Sorokin against Holotrichia serrata (Blanch) in sugarcane. J Biopest 4(2):190–193

    Google Scholar 

  • Mantzoukas S, Milonas P, Kontodimas D, Angelopoulos K (2013) Interaction between the entomopathogenic bacterium Bacillus thuringiensissubsp. kurstakiand two entomopathogenic fungi in bio-control of Sesamia nonagrioides(Lefebvre) (Lepidoptera: Noctuidae). Ann Microbiol 63(3):1083–1091. https://doi.org/10.1007/s13213-012-0565-x

    Article  Google Scholar 

  • Mietkiewski et al (1993) Observations on a mycosis of spider mites (Acari: Tetranychidae) caused by Neozygites floridana in Poland. J Invertebr Pathol 61:317–319

    Article  Google Scholar 

  • Muralidharan K, Pasalu IC (2006) Assessments of crop losses in rice ecosystems due to stem borer damage (Lepidoptera: Pyralidae). Crop Protec 25:409–417

    Article  Google Scholar 

  • Nath DK, Sen B, Pal SR (1977) Insect pests occurring in Sunflower, Helianthus annuus in West Bengal. Sci Cult 43:180–181

    Google Scholar 

  • Nunez E, Iannacone J, Gomez H (2008) Effect of two entomopathogenic fungi in controlling Aleurodicus cocois (Curtis, 1846) (Hemiptera: Aleyrodidae). Chil J Agric Res 68:21–30

    Google Scholar 

  • Padanad MS, Krishnaraj PU (2009) Pathogenicity of native entomopathogenic fungus Nomuraea rileyi against Spodoptera litura. Online Plant Health Prog. https://doi.org/10.1094/PHP-2009-0807-01-RS

    Article  Google Scholar 

  • Pandey AK (2013) Field evaluation of Beauveria bassiana and Metarhizium anisopliae against the cutworm, Agrotis ipsilon (Hufnagel) damaging potato in Uttarakhand hills. J Biol Control 27(4):293–297

    Google Scholar 

  • Pell JK, Eilenberg J, Hajek AE, Steinkraus DC (2001) Biology, ecology and pest management potential of Entomophthorales. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 71–153

    Chapter  Google Scholar 

  • Quinlan RJ (1988) Use of fungi to control insects in glasshouses. In: Burge MN (ed) Fungi in biological control systems. Manchester University Press, Manchester, pp 19–85

    Google Scholar 

  • Reddy PP (2012) Biointensive integrated pest management. In: Recent advances in crop protection. Springer, New Delhi. ISBN:978-81-322-0722-1. https://doi.org/10.1007/978-81-322-0723-8_14

    Chapter  Google Scholar 

  • Roberts DW (1989) World picture of biological control of insects by fungi. Mem Inst Oswaldo Cruz, Rio de Janeiro 84:89–100

    Article  Google Scholar 

  • Romback MC (1989) Production of Beauveria bassiana conidia in submerged culture. Entomophaga 5:45–52

    Article  Google Scholar 

  • Rousson S, Rainbautt M, Lonsane BK (1983) Zymotics a large scale fermenter design and evaluation. Appl Biochem Biotechnol 42:161–167

    Google Scholar 

  • Sahayaraj K, Karthick SRN (2008) Mass production of entomopathogenic fungi using agricultural products and by products. Afr J Biotechol 7(12):1907–1910

    Article  Google Scholar 

  • Sahayaraj K, Namachivayam SKR (2011) Field evaluation of three entomopathogenic fungi on Groundnut pests. Tropicultura 29(3):143–147

    Google Scholar 

  • Samson RA, Evans HC, Latg JP (1988) Atlas of entomopathogenic fungi. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Samuels KDZ, Pinnick DE, Bull RM (1990) Scarabeid larvae control in sugarcane using Metarhizium anisopliae. J Invertebr Pathol 55:135–137

    Article  Google Scholar 

  • Sandhu, SS & Mishra, M (1994). Larvicidal activity of fungal isolates Beaveria bassiana, Metarhizium anisopliae and Aspergillus flavus against mosquito sp. Culex pipiens. In: Proceedings of the national symposium on ‘Advances in Biological Control of Insect Pests’, Muzaffarnagar, India, pp 145–150

    Google Scholar 

  • Sandhu SS, Sharma AK, Beniwal V, Goel G, Batra P, Kumar A, Jaglan S, Sharma AK, Malhotra S (2012) Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. J Pathogens. (Article ID 126819, 10 pages) https://doi.org/10.1155/2012/126819

    Article  Google Scholar 

  • Sayed AMM, Behle RW (2017) Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Biocontrol Sci Tech 27:461. https://doi.org/10.1080/09583157.2017.1303662

    Article  Google Scholar 

  • Schuler T (1991) Verticillium lecanii (Zimmermann) Viegas (Hyphomycetales: Moniliaceae): Geschichte, Systematik, Verbreitung, Biologie und Anwendung im Pflanzenschutz. Mitteilungen aus der Biologischen Bundesanstalt für Land u. Forstwirtschaft, Berlin-Dahlem. Heft 269:154

    Google Scholar 

  • Shaalan EAS, Canyon DV, Younes MWF, Abdel-Wahab H, Mansour AH (2005) Synergistic efficacy of botanical blends with and without synergetic insecticides against Ades aegypti and Culex annulirostris mosquitoes. J Vector Ecol 30:284–288

    PubMed  Google Scholar 

  • Shanthakumar SP, Murali PD, Malarvannan S, Prabavathy VR, Nair S (2010) Laboratory evaluation on the potential of entomopathogenic fungi, Nomuraea rileyi against tobacco caterpillar, Spodoptera litura Fabricius (Noctuidae: Lepidoptera) and its safety to Trichogramma sp. J Biopest 3(1):132–137

    Google Scholar 

  • Sharma K (2004) Bionatural management of pests in organic farming. Agrobiosnews L 2:296–325

    Google Scholar 

  • Sharma JH, Anoorag RT (2017) Evaluation of bio-Rational pesticides, against brinjal fruit and shoot borer, Leucinodes orbonalis Guen. on brinjal at Allahabad agroclimatic region. Int J Curr Microbiol App Sci 6(6):2049–2054. ISSN: 2319-7706

    Article  CAS  Google Scholar 

  • Shinde SV, Purohit MS, Sabalpara AN, Patel MB (2010) First report of entomopathogenic fungus Lecanicillium lecanii (Zimm.) Zare and Games on sugarcane whitefly Aleurolobus barodensis (Maskell) from Gujarat. Trends Biosci 3(1):76–78

    Google Scholar 

  • Singh KB (1997) Chickpea (Cicer arietinum L.). Field Crop Res 53:161–170

    Article  Google Scholar 

  • Singh BK, Pandey JG, Gupta RP, Verghes A (2011) Efficacy of entomopathogenic fungi for the management of onion thrips, Thrips tabaci Lind. Pest Manag Hortic Ecosyst 17(2):92–98

    Google Scholar 

  • Singha D, Singha B, Dutta BK (2011) Potential of Metarhizium anisopliae and Beauveria bassiana in the control of tea termite Microtermes obesi Holmgren in vitro and under field conditions. J Pest Sci 48(1):69–75

    Article  Google Scholar 

  • Soman AG, Gloer JB, Angawi RF, Wicklow DT, Dowd PF (2001) Vertilecanins: New phenopicolinic acid analogues from Verticillium lecanii. J Nat Prod 64:189–192

    Article  CAS  PubMed  Google Scholar 

  • Srinivasa Rao M, Srinivas K, Vanaja M, Rao GGSN, Venkateswarlu B, Ramakrishna YS (2009) Host plant (Ricinus communis Linn) mediated effects of elevated CO2 on growth performance of two insect folivores. Curr Sci 97(7):1047–1054

    Google Scholar 

  • Srisukchayakul P, Wiwat C, Pantuwatana S (2005) Studies on the pathogenesis of the local isolates of Nomuraea rileyi against Spodoptera litura. Sci Asia 31:273–276

    Article  Google Scholar 

  • Suzuki A, Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Tamura S (1977) Bassianolide – new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett 18(25):2167–2170

    Article  Google Scholar 

  • Tanda Y, Kaya HK (1993) Insect Pathology. Academic, San Diego

    Google Scholar 

  • Thamaraichelvi C, Rhichard TW, Kandasamy R (2010) Laboratory culture & virulence of Beauveria brangniarti isolates on sugarcane white grub, Holotrichia serrata f. J Biopest 3(1):177–179

    Google Scholar 

  • Vargas LRB, Rossato M, Dasilva-ribeiro RT, De-barros NM (2003) Characterization of Nomuraea rileyi strains using polymorphic DNA, virulence, and enzyme activity. Brazil Arch Biol Technol 46:13–18

    Article  CAS  Google Scholar 

  • Vimala Devi PS (1994) Conidial production of entomopathogenic fungus Nomuraearileyi and its evaluation for control of Spodopteralitura (Fab.) on Ricinus communis. J Invertebr Pathol 63:145–150

    Article  Google Scholar 

  • Vinayaka J, Patil RR, Prabhu ST (2018) Field evaluation of EC formulations of Metarhizium anisopliae (Meschinikoff) Sorokin and few insecticides against arecanut white grub, Leucopholis lepidophora, Blanchard. J Entomol Zool Stud 6(2):1034–1037

    Google Scholar 

  • Visalakshi M, Bhavani B, Govindrao S (2015) Field evaluation of entomopathogenic fungi against white grub, Holotrichia consanguinea Blanch in sugarcane. J Biol Control 29(2):103–106

    Article  Google Scholar 

  • Wraight SP, Ramos ME (2017) Characterization of the synergistic interaction between Beauveria bassiana strain GHA and Bacillus thuringiensis morrisoni strain tenebrionis applied against Colorado potato beetle larvae. J Invertebr Pathol. https://doi.org/10.1016/j.jip.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  • Wraight SP, Jackson MA, de Kock SL (2001) Production, stabilization and formulation of fungal biological agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CABI International, Wallingford, pp 253–287

    Google Scholar 

  • Yeo H (2000) Mycoinsecticides for aphid management: a biorational approach. Phd thesis, University of Nottingham

    Google Scholar 

  • Zhu YP, Guan X, Pan JR, Qiu JZ (2008) Optimization of nutritional requirements for mycelial growth and sporulation of entomogenous fungus Aschersonia aleyrodis Webber. Braz J Microbiol 39(4):770–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermann G (1986) Insect pathogenic fungi as pest control agents. Progressive Zoology 32:217–231

    Google Scholar 

  • Zimmermann G (2008) The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Tech 18:865–901

    Article  Google Scholar 

  • Zare, Gams (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicilliumand Simplicilliumgen, nov. Nova Hedvigia 73:1–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desai, S., Prasad, T.V., Kumar, G.P., Peter, J., Amalraj, L.D. (2019). Harnessing Entomopathogenic Fungi for Enhanced Farm Productivity and Profitability. In: Satyanarayana, T., Das, S., Johri, B. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8487-5_9

Download citation

Publish with us

Policies and ethics