Skip to main content

Diversity of Chitinase-Producing Bacteria and Their Possible Role in Plant Pest Control

  • Chapter
  • First Online:
Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

In nature, chitin is the second most plentiful and renewable polysaccharide and is present among versatile group of organisms from fungi and nematodes to arthropods and crustaceans. Enzymatic degradation is the preferable environmentally safe mode of bioprocessing of this inert biopolymer. Chitin-scavenging enzyme-producing sources are covering the living groups from prokaryotes to plants, viruses, vertebrates, and even human. Current-day biotechnologies have raised the development of bioprocesses by using microbes especially bacteria. Bacteria that produce chitinases are with varieties of habitats ranging from Antarctic soil to hot spring, crustacean waste site, animal gut, and endophytic ecosystems. Chitin metabolism is a necessary life-supporting goings-on in agronomic plant pests like fungi, insects, and parasitic nematodes which are negatively proportionate to the agricultural production systems. Placement of such potent chitinolytic bacteria for plant fortification against attacking pests is a well-practiced, biotechnologically equipped biocontrol strategy. By-products of chitin by enzymatic hydrolysis, like oligomers or monomers, have several applications in persuading the plant defense systems. Carrying the host-defensive activity to biocontrol potentiality against plant pests, bacteria with chitinolytic property also behaved as a plant growth-promoting biofertilizing employee in modern-day sustainable agricultural practices. In this context, the distribution of chitinase-producing bacteria according to their diversity of habitats is studied, and the less explored habitats can be an arsenal for biocontrolling agents against plant pests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah RAB, Stedel C, Garagounis C, Nefzi A, Jabnoun-Khiareddine H, Jabnoun-Khiareddine KK, Daami-Remadi M (2017) Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of Fusarium wilt by endophytic Bacillus spp. in tomato. Crop Prot 99:45–58

    Article  CAS  Google Scholar 

  • Adhikari M, Yadav DR, Kim SW, Um YH, Kim HS, Lee SC, Song JY, Kim HG, Lee YS (2017) Biological control of bacterial fruit blotch of watermelon pathogen (Acidovorax citrulli) with rhizosphere associated bacteria. Plant Pathol J 33:170–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal C, Paul S, Tripathi V, Paul B, Khan MA (2015) Chitinase producing Serratia marcescens for biocontrol of Spodoptera litura (Fab) and studies on its chitinolytic activities. Ann Agric Res (New Series) 36:132–137

    CAS  Google Scholar 

  • Agrios GN (2005) Plant diseases caused by fungi. In: Plant pathology, 5th edn. Elsevier Academic Press, London, pp 386–593

    Google Scholar 

  • Ahmadi KJA, Yazdi T, Najafi MF, Shahverdi AR, Faramarzi MA, Zarrini G, Behravn J (2008) Optimization of medium and cultivation condition for chitinase production by the newly isolated: Aeromonas sp. Biotechnology 7:266–272

    Article  Google Scholar 

  • Ajayi AA, Onibokun EA, George FOA, Atolagbe OM (2016) Isolation and characterization of chitinolytic bacteria for chitinase production from the African Catfish, Clarias gariepinus (Burchell, 1822). Res J Microbiol 11:119–125

    Article  CAS  Google Scholar 

  • Alhasawi A, Appanna VD (2017) Enhanced extracellular chitinase production in Pseudomonas fluorescens: biotechnological implications. AIMS Bioeng 4:366–375

    Article  CAS  Google Scholar 

  • Amin A, Ali SW, Arshad R, Nadeem S, Ali S (2011) Characterization of chitinolytic bacterial strains isolated from local habitat. Mycopathologia 9:51–55

    Google Scholar 

  • Anuradha V, Revathi K (2013) Purification and characterization of bacterial chitinase isolated from crustacean shells. Int J Pure Appl Biosci 4:78–82

    Google Scholar 

  • Aounallah MA, Slimene-Debez IB, Djebali K, Gharbi D, Hammami M, Azaiez S, Limam F, Tabbene O (2017) Enhancement of exochitinase production by Bacillus licheniformis AT6 strain and improvement of N-acetylglucosamine production. Appl Biochem Biotechnol 181:650–666

    Article  CAS  PubMed  Google Scholar 

  • Askarian F, Zhou Z, Olsen RE, Sperstad S, Ringo E (2012) Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326–329:1–8

    Article  CAS  Google Scholar 

  • Banerjee S, Mukherjee A, Dutta D, Ghosh K (2015) Evaluation of chitinolytic gut microbiota in some carps and optimization of culture conditions for chitinase production by the selected bacteria. J Microbiol Biotechnol Food Sci 5:12–19

    Article  CAS  Google Scholar 

  • Banerjee S, Maiti TK, Roy RN (2016) Identification and product optimization of amylolytic Rhodococcus opacus GAA 31.1 isolated from gut of Gryllotalpa africana. J Genet Eng Biotechnol 14:133–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Maiti TK, Roy RN (2017) Protease production by thermo-alkaliphilic novel gut isolate Kitasatospora cheerisanensis GAP 12.4 from Gryllotalpa africana. Biocatal Biotransform 35:168–176

    Article  CAS  Google Scholar 

  • Bansode VB, Bajekal SS (2006) Characterization of chitinase from microorganisms isolated from lonar lake. Indian J Biotechnol 5:357–363

    CAS  Google Scholar 

  • Bao-Qin H, Chang-Ying YU, Wan-Shun LIU, Ji-xun DAI (2004) Purification and inhibition fungal growth of chitinases from Vibrio pacini. Wuhan Univ J Natl Sci 9:973–978

    Article  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N (1996) Elicitor-induced plant defense pathways. Trends Plant Sci 1:233–240

    Article  Google Scholar 

  • Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin/Heidelberg, pp 53–69

    Chapter  Google Scholar 

  • Bhushan B (1998) Isolation, purification, characterization and scaleup production of a thermostable chitinase from an alkalophilic microorganism. Ph.D. thesis, Department of Microbiology, Punjab University, Chandigarh

    Google Scholar 

  • Broadway RM, Gongora C, Kain WC, Sanderson JP, Monroy JA, Bennett KC, Warner JB, Hoffmann MP (1998) Novel chitinolytic enzymes with biological activity against herbivorous insects. J Chem Ecol 24:985–998

    Article  CAS  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressrnan R, Biddle P, Knowlton S, Mauvais C, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Walczak M (2013) Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus. Int Biodeterior Biodegradation 84:104–107

    Article  CAS  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M (2014) Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 68:71–81

    Article  CAS  Google Scholar 

  • Chakrabarti R (2002) Carotenoprotein from tropical brown shrimp shell waste by enzymatic process. Food Biotechnol 16:81–90

    Article  CAS  Google Scholar 

  • Chandra S, Chakraborty N, Dasgupta A, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic Biochem Physiol 104:65–71

    Article  CAS  Google Scholar 

  • Chang WT, Chen YC, Jao CL (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour Technol 98:1224–1230

    Article  CAS  PubMed  Google Scholar 

  • Chrisnasari R, Yasaputera S, Christianto P, Santoso VI, Pantjajani T (2016) Production and characterization of chitinases from thermophilic bacteria isolated from prataan hot spring, East Java. J Math Fund Sci 48:149–163

    Article  CAS  Google Scholar 

  • Clarke AJ, Hennessy J (1976) The distribution of carbohydrates in cysts of Heterodera rostochiensis. Nematologica 22:190–195

    Article  CAS  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Dunne C, O’Gara F (1997) Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur J Plant Pathol 103:433–440

    Article  Google Scholar 

  • Dahiya N, Tewari R, Tiwari RP, Hoondal GS (2005) Chitinase from Enterobacter sp. NRG4: its purification, characterization and reaction pattern. Electron J Biotechnol 8:134–145

    Article  CAS  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 25:1–10

    Google Scholar 

  • Danismazoglu M, Demir I, Sezen K, Muratoglu H, Nalçacioglu R (2015) Cloning and expression of chitinase A, B, and C (chiA, chiB, chiC) genes from Serratia marcescens originating from Helicoverpa armigera and determining their activities. Turk J Biol 39:78–87

    Article  CAS  Google Scholar 

  • Das P, Kumar P, Kumar M, Solanki R, Kapur MK (2017) Purification and molecular characterization of chitinases from soil actinomycetes. Afr J Microbiol Res 11:1086–1102

    Article  CAS  Google Scholar 

  • Desouza MM, Murray MK (1995) An estrogen-dependent sheep oviductal glycoprotein has glycan linkages typical of sialomucins and does not contain chitinase activity. Biol Reprod 53:1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Dey A, Ghosh K, Hazra N (2016) Evaluation of extracellular enzyme-producing autochthonous gut bacteria in walking catfish, Clarias batrachus (L.). J Fish 4:345–352

    Article  CAS  Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  CAS  PubMed  Google Scholar 

  • Dixon B (1995) Using fungal dressings to heal wounds. Biotechnology 13:120–121

    CAS  PubMed  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 163:345–360

    Article  CAS  Google Scholar 

  • Eckardt NA (2008) Chitin signaling in plants: insights into the perception of fungal pathogens and rhizobacterial symbionts. Plant Cell 20:241–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8:968–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flach J, Pilet PE, Jolles P (1992) What’s new in chitinases research? Experientia (Basel) 48:701–716

    Article  CAS  Google Scholar 

  • Frankowski J, Lorito M, F Scala F (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Gaurav R, Tang J, Jadhav J (2017) Novel chitinase producer Bacillus pumilus RST25 isolated from the shellfish processing industry revealed antifungal potential against phyto-pathogens. Int Biodeterior Biodegradation 125:228–234

    Article  CAS  Google Scholar 

  • Genta FA, Dillon RJ, Terra WR, Ferreira C (2006) Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J Insect Physiol 52:593–601

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi S, Ahmadian G, Jelodar NB, Rahimian H, Ghandili S, Dehestani A, Shariati P (2010) Antifungal chitinases from Bacillus pumilus SG2: preliminary report. World J Microbiol Biotechnol 26:1437–1443

    Article  CAS  Google Scholar 

  • Ghorbel-Bellaaj O, Manni L, Jellouli K, Hmidet N, Nasri M (2012) Optimization of protease and chitinase production by Bacillus cereus SV1 on shrimp shell waste using statistical experimental design. Biochemical and molecular characterization of the chitinase. Ann Microbiol 62:1255–1268

    Article  CAS  Google Scholar 

  • Ghosh R, Barman S, Mukhopadhyay A, Mandal NC (2015) Biological control of fruit-rot of jackfruit by rhizobacteria and food grade lactic acid bacteria. Biol Control 83:29–36

    Article  Google Scholar 

  • Gohel V, Chaudhary T, Vyas P, Chhatpar HS (2004) Isolation and identification of marine chitinolytic bacteria and their potential in antifungal biocontrol. Indian J Exp Biol 42:715–720

    PubMed  Google Scholar 

  • Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 5:54–72

    Google Scholar 

  • Gongora CE, Wang S, Barbehenn RV, Broadway RM (2001) Chitinolytic enzymes from Streptomyces albidoflavus expressed in tomato plants: effects on Trichoplusia ni. Entomol Expe Appl 99:193–204

    Article  CAS  Google Scholar 

  • Gooday GW (1999) Aggressive and defensive roles for chitinases. EXS 87:157–169

    CAS  PubMed  Google Scholar 

  • Grison R, Besset BG, Schneider M, Lucante N, Olsen L, Leguay JJ, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 14:643–646

    Article  CAS  PubMed  Google Scholar 

  • Halder SK, Maity C, Jana A, Pati BR, Mondal KC (2012) Chitinolytic enzymes from the newly isolated Aeromonas hydrophila SBK1: study of the mosquitocidal activity. BioControl 57:441–449

    Article  CAS  Google Scholar 

  • Halder SK, Maity C, Jana A, Das A, Paul T, Das Mohapatra PK, Pati B, Mondal KC (2013) Proficient biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the concomitant production of antifungal chitinase and antioxidant chitosaccharides. Int Biodeterior Biodegradation 79:88–97

    Article  CAS  Google Scholar 

  • Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–29

    PubMed  PubMed Central  Google Scholar 

  • Hammami I, Siala R, Jridi M, Ktari N, Nasri M, Triki MA (2013) Partial purification and characterization of chiIO8, a novel antifungal chitinase produced by Bacillus cereus IO8. J Appl Microbiol 115:358–366

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Yang B, Zhang F, Miao X, Li Z (2009) Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China sea sponge Craniella Australiensis. Mar Biotechnol 11:132–140

    Article  CAS  PubMed  Google Scholar 

  • Han JH, Park GC, Kim KS (2018) Antagonistic evaluation of Chromobacterium sp. JH7 for biological control of Ginseng root rot caused by Cylindrocarpon destructans. Mycobiology 45:370–378

    Article  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. J Biochem 280:309–316

    Article  CAS  Google Scholar 

  • Henrissat B (1999) Classification of chitinases modules. EXS 87:137–156

    CAS  PubMed  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Honda K, Kimura K, Ninh PH, Taniguchi H, Okano K, Ohtake H (2017) In vitro bioconversion of chitin to pyruvate with thermophilic enzymes. J Biosci Bioeng 124:294–301

    Article  CAS  Google Scholar 

  • Huang L, Garbulewska E, Sato K, Kato Y, Nogawa M, Taguchi G, Shimosaka M (2012) Isolation of genes coding for chitin-degrading enzymes in the novel chitinolytic bacterium, Chitiniphilus shinanonensis, and characterization of a gene coding for a family 19 chitinase. J Biosci Bioeng 113:293–299

    Article  CAS  PubMed  Google Scholar 

  • Ilangumaran G, Stratton G, Ravichandran S, Potin P, Asiedu S, Prithiviraj B (2017) Microbial degradation of lobster shells to extract chitin derivatives for plant disease management. Front Microbiol 8:1–14, 781

    Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS, Tongmin S (2007) Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. J Appl Microbiol 103:2664–2675

    Article  CAS  PubMed  Google Scholar 

  • Itoi S, Okamura T, Koyama Y, Sugita H (2006) Chitinolytic bacteria in the intestinal tract of Japanese coastal fishes. Can J Microbiol 52:1158–1163

    Article  CAS  PubMed  Google Scholar 

  • Jafari S, Aghaei SS, Afifi-Sabet H, Shams-Ghahfarokhi M, Jahanshiri Z, Gholami-Shabani M, Shafiei-Darabi S, Razzaghi-Abhyaneh M (2018) Exploration, antifungal and antiaflatoxigenic activity of halophilic bacteria communities from saline soils of Howze-Soltan playa in Iran. Extremophiles 22:87–98

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Tuteja N, Vaishnav A, Kumari S, Choudhary SD, Varma A (2017) Chitinolytic Bacillus-mediated induction of jasmonic acid and defense-related proteins in soybean (Glycine max l. merrill) plant against Rhizoctonia solani and Fusarium oxysporum. J Plant Growth Regul 36:200–214

    Article  CAS  Google Scholar 

  • Jang MK, Kong BG, Jeong YI, Lee CH, Nah JW (2004) Physicochemical characterization of α-chitin, β-chitin and γ-chitin separated from natural resources. J Polym Sci Part A Polym Chem 42:3423–3432

    Article  CAS  Google Scholar 

  • Jankiewicz U, Brzezinska MS, Saks E (2012) Identification and characterization of a chitinase of Stenotrophomonas maltophilia, a bacterium that is antagonistic towards fungal phytopathogens. J Biosci Bioeng 113:30–35

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Chen D, Hong SH, Wang W, Chen SH, Zou SH (2012) Identification, characterization and functional analysis of a GH18 chitinase from Streptomyces roseolus. Carbohydr Polym 87:2409–2415

    Article  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  Google Scholar 

  • Joo GJ (2005) Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnol Lett 27:1483–1486

    Article  CAS  PubMed  Google Scholar 

  • Joo WC, Yun UJ, Park HD (1996) Isolation of chitin-utilizing bacterium and production of its extracellular chitinase. J Microbiol Biotechnol 6:439–444

    Google Scholar 

  • Jung WJ, Jung SJ, An KN, Jin YL, Park RD, Kim FY, Shon BK, Kim TH (2002) Effect of chitinase-producing Paenibacillus illinoisis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J Microbiol Biotechnol 12:865–871

    CAS  Google Scholar 

  • Kalaiarasan P, Lakshmanan PL, Rajendran G, Samiyappan R (2006) Chitin and chitinolytic biocontrol agents for the management of root knot nematode, Meloidogyne arenaria in groundnut (Arachis hypogaea L.) cv. Co3. Indian J Nematol 36:181–186

    Google Scholar 

  • Kamil Z, Rizk M, Saleh M, Moustafa S (2007) Isolation and identification of rhizosphere soil chitinolytic bacteria and their potential in antifungal biocontrol. Glob J Mol Sci 2:57–66

    Google Scholar 

  • Kamil FH, Saeed EE, El-Terabily KA, AbuQamar SF (2018) Biological control of mango dieback disease caused by Lasiodiplodia theobromae using streptomycete and non streptomycete actinobacteria in the United Arab Emirates. Front Microbiol 9:829–848

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandra P, Challa MM, Padma Jyothi HK (2012) Efficient use of shrimp waste: present and future trends. Appl Microbiol Biotechnol 93:17–29

    Article  CAS  PubMed  Google Scholar 

  • Kavitha A, Vijayalakshmi M (2011) Partial purification and antifungal profile of chitinase produced by Streptomyces tendae TK-VL_333. Ann Microbiol 61:597–603

    Article  CAS  Google Scholar 

  • Kejela T, Thakkar VR, Patel RR (2017) A novel strain of Pseudomonas inhibits Colletotrichum gloeosporioides and Fusarium oxysporum infections and promotes germination of Coffee. Rhizosphere 4:9–15

    Article  Google Scholar 

  • Keshavarz-Tohid V, Taheri P, Muller D, Prigent-Combaret C, Vacheron J, Taghavi SM, Tarighi S, Moenne-Loccoz Y (2017) Phylogenetic diversity and antagonistic traits of root and rhizosphere pseudomonads of bean from Iran for controlling Rhizoctonia solani. Res Microbiol 168:760–772

    Article  PubMed  Google Scholar 

  • Kim PI, Chung KC (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET 0908. FEMS Microbiol Lett 234:177–183

    Article  CAS  PubMed  Google Scholar 

  • Kong Q (2018) Marine microorganisms as biocontrol agents against fungal phytopathogens and mycotoxins. Biocontrol Sci Tech 28:77–93

    Article  Google Scholar 

  • Kramer KJ, Koga D (1986) Insect chitin, Physical state synthesis, degradation and metabolic regulation. Insect Biochem 16:851–877

    Article  CAS  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887–900

    Article  CAS  PubMed  Google Scholar 

  • Kuddus SM, Ahmed RIZ (2013) Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. J Genet Eng Biotechnol 11:39–46

    Article  Google Scholar 

  • Kumar A, Kumar D, George N, Sharma P, Gupta N (2018) A process for complete biodegradation of shrimp waste by a novel marine isolate Paenibacillus sp. AD with simultaneous production of chitinase and chitin oligosaccharides. Int J Biol Macromol 1:263–272

    Article  CAS  Google Scholar 

  • Lazado CC, Caipang CMA, Kiron V (2012) Enzymes from the gut bacteria of Atlantic cod, Gadus morhua and their influence on intestinal enzyme activity. Aquac Nutr 10:23–31

    Google Scholar 

  • Lee YS, Kim KY (2015) Statistical optimization of medium components for chitinase production by Pseudomonas fluorescens strain HN1205: role of chitinase on egg hatching inhibition of root-knot nematode. Biotechnol Equip 29:470–478

    Article  CAS  Google Scholar 

  • Leiva J, Opazo R, Remond C, Uribe E, Velez A, Romero J (2017) Characterization of the intestinal microbiota of wild-caught and farmed fine flounder (Paralichthys adspersus). Lat Am J Aquat Res 45:370–378

    Article  Google Scholar 

  • Lenardon MD, Munro CA, Gow NAR (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Ye X, Peilin C, Kai J, Jie Z, Fei W, Weiliang D, Yan H, Zhengguang Z, Zhongli C (2017) Antifungal potential of Corallococcus sp. strain EGB against plant pathogenic fungi. Biol Control 110:10–17

    Article  CAS  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Cai J, Xie C-C, Liu CH, Chen YH (2010) Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis spp. colmeri, and its biocontrol potential. Enzym Microb Technol 46:252–256

    Article  CAS  Google Scholar 

  • Mao X, Guo N, Sun J, Xue C (2017) Comprehensive utilization of shrimp waste based on biotechnological methods: a review. J Clean Prod 143:814–823

    Article  CAS  Google Scholar 

  • Martínez CP, Echeverri C, Florez JC, Gaitan AL, Gongora CE (2012) In vitro production of two chitinolytic proteins with an inhibiting effect on the insect coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae) and the fungus Hemileia vastatrix the most limiting pests of coffee crops. AMB Express 2:22–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melent’ev AI, Aktuganov GE, Galimzyanova NF (2001) The role of chitinase in the antifungal activity of Bacillus sp. 739. Microbiology 70:548–552

    Article  Google Scholar 

  • Mercer CF, Greenwood DR, Grant JL (1992) Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood. Nematologica 38:227–236

    Article  Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412

    Article  CAS  PubMed  Google Scholar 

  • Mubarik NR, Mahagiani I, Anindyaputri A, Santoso S, Rusmana I (2010) Chitinolytic bacteria isolated from chili rhizosphere: chitinase characterization and its application as biocontrol for whitefly (Bemisia tabaci genn.). Am J Agric Biol Sci 5:430–435

    Article  CAS  Google Scholar 

  • Muzzarelli RA, Mattioli-Balmonte M, Pugnaloni A, Biagini G (1999) Biochemistry, histology and clinical uses of chitins and chitosans in wound healing. EXS 87:251–264

    CAS  PubMed  Google Scholar 

  • Nguyen VN, Kim YJ, Oh KT, Jung WJ, Park RD (2007) The role of chitinase from Lecanicillium antillanum B-3 in parasitism to root-knot nematode Meloidogyne incognita eggs. Biocontrol Sci Tech 17:1047–1058

    Article  Google Scholar 

  • O’Herlihy EA, Duffy EM, Cassells AC (2003) The effects of arbuscular mycorrhizal fungi and chitosan sprays on yield and late blight resistance in potato crops from microplants. Folia Geobot 38:201–207

    Article  Google Scholar 

  • Ong LGA, Lam HK, Lim MY, Tan TX (2017) Process optimization on chitinase production by locally isolated Enterobacter sp. and Zymomonas sp. Int J Chem Eng Appl 8:286–289

    CAS  Google Scholar 

  • Oostendorp M, Sikora RA (1990) In vitro interrelationships between rhizosphere bacteria and Heterodera schachtii. Rev Nematol 13:269–274

    Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) Rhizosphere colonization by Serratia marcescens for the control of Sclerotium rolfsii. Soil Biol Biochem 19:747–751

    Article  Google Scholar 

  • Otsu Y, Matsuda Y, Shimizu H, Ueki H, Mori H, Fujiwara K, Nakajima T, Miwa A, Nonomura T, Sakuratani Y, Tosa Y, Mayama S, Toyoda H (2003) Biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Col., Coccinellidae) by chitinolytic phylloplane bacteria Alcaligenes paradoxus entrapped in alginate beads. J Appl Entomol 127:441–446

    Article  Google Scholar 

  • Padder SA, Bhat ZA, Dar GH, Mohiddin FA (2017) Impact of plant growth promoting bacterial root endophytes on growth and nutrient status of brown sarson (Brassica rapa L.). Int J Pure App Biosci 5:638–651

    Article  Google Scholar 

  • Patel JK, Arcahna G (2017) Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417:99–116

    Article  CAS  Google Scholar 

  • Patil RS, Ghomade V, Deshpande MV (2000) Chitinolytic enzymes: an exploration. Enzym Microb Technol 26:473–483

    Article  CAS  Google Scholar 

  • Paulsen SS, Andersen B, Gram L, Machado H (2016) Biological potential of chitinolytic marine bacteria. Mar Drug 14:1–17

    Article  CAS  Google Scholar 

  • Perrakis A, Tews I, Dauter Z, Oppenheim A, Chet I, Wilson K, Vorgias C (1994) Crystal structure of a bacterial chitinase at 2.3 A° resolution. Structure 15:1169–1180

    Article  Google Scholar 

  • Poulose AJ (1992) Biotechnology and fungal control. In: Koller W (ed) Target sites of fungicide action. CRC Press, Boca Raton, pp 311–318

    Google Scholar 

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4:330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna L, Eijsink VG, Meadow R, Gåseidnes S (2013) A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl Microbiol Biotechnol 97:1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Prasanna ND, Vijayalakshmi K, Seshagirirao K, Shaheen SK (2014) Characterization of antifungal compounds produced by Pseudomonas stutzeri EGB3 isolated from gut of earthworm gut (Eisenia foetida). J Microbiol Antimicrobiol 6:57–65

    Article  CAS  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Rahbe Y, Febvay G (1993) Protein toxicity to aphids: an in vitro test on Acyrthosiphon pisum. Entomol Exp Appl 67:149–160

    Article  CAS  Google Scholar 

  • Ramírez MÁ, Rodríguez AT, Alfonso L, Peniche C (2010) Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnol Apl 27:270–276

    Google Scholar 

  • Ravikumar M, Perinbam K (2016) Production, optimization and characterization of chitin deacetylase from marine bacteria Bacillus cereus TK19. J Acad Indus Res 5:72–76

    CAS  Google Scholar 

  • Rishad KS, Jisha MS (2016) Screening of halophilic bacteria producing extracellular hydrolytic enzymes from valanthakad mangroves, Kochi, Kerala. J Microbiol Biotechnol Res 6:1–15

    CAS  Google Scholar 

  • Salama EM, Ismail IA, Khattab AA (2016) Combined effect of a chitinase producing bacteria and Bacillus thuringiensis against Musca domestica (Diptera: Muscidae) larvae. Int J ChemTech Res 9:131–141

    CAS  Google Scholar 

  • Sarbadhikary SB, Mandal NC (2017) Field application of two plant growth promoting rhizobacteria with potent antifungal properties. Rhizosphere 3:170–175

    Article  Google Scholar 

  • Seo DJ, Lee YS, Kim KY, Jung WJ (2016) Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Colletotrichum gloeosporioides in vitro. Microb Pathog 96:10–14

    Article  CAS  PubMed  Google Scholar 

  • Setia NI, Suharjono (2015) Chitinolytic assay identification of bacteria isolated from shrimp waste based on 16S rDNA sequences. Adv Microbiol 5:541–548

    Article  CAS  Google Scholar 

  • Shaikh SS, Wani SJ, Sayyed RJ, Thakur R, Gukati A (2018) Production, purification and kinetics of chitinase of Stenotrophomonas maltophilia isolated from rhizospheric soil. Indian J Exp Biol 56:274–278

    CAS  Google Scholar 

  • Sharp RG (2013) A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3:757–793

    Article  CAS  Google Scholar 

  • Shivaji S, Reddy GSN, Chattopadhyay (2017) Bacterial biodiversity, cold adaptation and biotechnological importance of bacteria occurring in Antarctica. Proc Indian Natl Sci Acad 83:327–352

    Google Scholar 

  • Sikora RA (1991) The concept of using plant health promoting rhizobacteria for the biological control of plant parasitic nematodes. In: Keel C, Koller B, Defago G (eds) Plant growth promoting rhizobacteria: progress and prospects. IOBC/WPRS Bulletin, Switzerland, pp 3–10

    Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of fusarium Wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Singh A, Joshi P (2016) Combined application of chitinolytic bacterium Paenibacillus sp. D1 with low doses of chemical pesticides for better control of Helicoverpa armigera. Int J Pest Manag 62:222–227

    Article  CAS  Google Scholar 

  • Someya N, Nakajima M, Hirayae K, Hibi T, Akutsu K (2001) Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by the biocontrol bacterium Serratia marcescens strain B2 against the gray mold pathogen, Botrytis cinerea. J Gen Plant Pathol 67:312–317

    Article  CAS  Google Scholar 

  • Someya N, Ikeda S, Morohoshi T, Noguchi Tsujimoto M, Yoshida T, Sawada H, Ikeda T, Tsuchiya K (2011) Diversity of culturable chitinolytic bacteria from rhizospheres of agronomic plants in Japan. Microbes Environ 26:7–14

    Article  PubMed  Google Scholar 

  • Song YS, Seo DJ, Jung WJ (2017) Identification, purification, and expression patterns of chitinase from psychrotolerant Pedobacter sp. PR-M6 and antifungal activity in vitro. Microb Pathog 107:62–68

    Article  CAS  PubMed  Google Scholar 

  • Spiegel Y, Cohn E, Galper S, Sharon E, Chet I (1991) Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot nematode Meloidogyne javanica. Biocontrol Sci Tech 1:115–125

    Article  Google Scholar 

  • Sridevi M, Mallaiah KV (2008) Factors effecting chitinase activity of Rhizobium sp. from Sesbania sesban. Biologia 63:307–312

    Article  CAS  Google Scholar 

  • Stinizi A, Heitz T, Prasad V, Wiedermann-Merdinoglu S, Geoffroy P, Legrand M, Fritig B (1993) Plant pathogenesis-related proteins and their role in defence against pathogens. Biochimie 75:687–706

    Article  Google Scholar 

  • Stirling G (1984) Biological control of Meloidogyne javanica with Bacillus penetrans. Phytopathology 74:55–60

    Article  Google Scholar 

  • Subbanna ARNS, Rajasekhara H, Mishra KK, Pattanayak A (2018) Pesticidal prospectives of chitinolytic bacteria in agricultural pest management. Soil Biol Biochem 116:52–66

    Article  CAS  Google Scholar 

  • Sugita H, Ito Y (2006) Identification of intestinal bacteria from Japanese flounder (Paralichthys olivaceus) and their ability to digest chitin. Lett Appl Microbiol 43:336–342

    Article  CAS  PubMed  Google Scholar 

  • Suma K, Podile AR (2013) Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and antifungal activities. Bioresour Technol 133:213–220

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Li J, Du J, Xiao H, Ni J (2018) Cellulomonas macrotermitis sp. nov., a chitinolytic and cellulolytic bacterium isolated from the hindgut of a fungus-growing termite. Antonie Van Leeuwenhoek 111:471–478

    Article  CAS  PubMed  Google Scholar 

  • Tabli N, Rai A, Bensidhoum L, Palmieri G, Gogliettino M, Cocca E, Consiglio C, Cillo F, Bubici G, Nabti E (2018) Plant growth promoting and inducible antifungal activities of irrigation well water-bacteria. Biol Control 117:78–86

    Article  Google Scholar 

  • Tarabily KA, Soliman MH, Nassar AH, Hassani HA, Sivasithamparam K, McKenna F, Hardy GE (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583

    Article  Google Scholar 

  • Tariq AL, Chandran SR, Reyaz AL (2017) Molecular characterization and antifungal activity of extracellular chitinolytic enzyme producing Paenibacillus elgii TS33 isolated from shrimp shell waste. Int J Pharma Res Health Sci 5:2064–2069

    CAS  Google Scholar 

  • Tasharrofi N, Adrangi S, Fazeli M, Rastegar H, Khoshayand MR, Faramarzi MA (2011) Optimization of chitinase production by Bacillus pumilus using Plackett-Burman design and response surface methodology. Iran J Pharm Res 10:759–768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terra WR, Ferreira C (2005) Biochemistry of digestion. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science biochemistry and molecular biology. Elsevier, London, pp 171–224

    Chapter  Google Scholar 

  • Terwisscha Van Scheltinga AC, Henning M, Dijkstra BW (1996) The 1.8 A° resolution structure of hevamine, a plant chitinase/lysozyme and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18. J Mol Biol 262:243–257

    Article  CAS  PubMed  Google Scholar 

  • Thakkar A, Patel R, Thakkar J (2016) Partial purification and optimization of chitinase form Bacillus spp. J Microbiol Biotech Res 6:26–33

    CAS  Google Scholar 

  • Thiagarajan V, Revathia R, Aparanjinib K, Sivamanic P, Girilala M, Priyad CS, Kalaichelvan PT (2011) Extra cellular chitinase production by Streptomyces sp. PTK19 in submerged fermentation and its lytic activity on Fusarium oxysporum PTK2 cell wall. Int J Curr Sci 1:30–44

    Google Scholar 

  • Thomas JP, Prithiga P, Vijayalakshmi P (2018) Studies on chitinolytic bacteria in intestinal tract of marine fishes and shrimps. Int J Recent Sci Res 9:26277–26282

    Google Scholar 

  • Tran DM, Sugimoto H, Nguyen DA, Watanabe T, Suzuki K (2018) Identification and characterization of chitinolytic bacteria isolated from a freshwater lake. Biosci Biotechnol Biochem 82:343–355

    Article  CAS  PubMed  Google Scholar 

  • Vaidya RJ, Shah IM, Vyas PR, Chhatpar HS (2001) Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential antifungal biocontrol. World J Microbiol Biotechnol 17:62–69

    Article  Google Scholar 

  • Vandana UK, Chopra A, Choudhury A, Adapa D, Mazumder PB (2018) Genetic diversity and antagonistic activity of plant growth promoting bacteria, isolated from tea-rhizosphere: a culture dependent study. Biomed Res 29:853–864

    Article  CAS  Google Scholar 

  • Vida C, Cazorla FM, de Vicente A (2017) Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Res Microbiol 168:583–593

    Article  CAS  PubMed  Google Scholar 

  • Vincy V, Shoba VM, Viveka S, Vijaya TM, Rani GJB (2014) Isolation and characterization of chitinase from bacteria of shrimp pond. Eur J Exp Biol 4:78–82

    CAS  Google Scholar 

  • Wang SL, Liang TW (2017) Microbial reclamation of squid pens and shrimp shells. Res Chem Intermed 43:3445–3462

    Article  CAS  Google Scholar 

  • Wang SL, Lin TY, Yen YH, Liao HF, Chen YJ (2006) Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr Res 341:2507–2515

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Duan B, Yang R, Zhao Y, Zhang L (2015) Screening and identification of chitinolytic actinomycetes and study on the inhibitory activity against turfgrass root rot disease fungi. J Biosci Med 3:56–65

    CAS  Google Scholar 

  • Wharton D (1980) Nematode eggshells. Parasitology 81:447–463

    Article  CAS  PubMed  Google Scholar 

  • Whitaker JO, Dannelly HK, Prentice DA (2004) Chitinase in insectivorous bats. J Mammal 85:15–18

    Article  Google Scholar 

  • Wiseman A (1995) Introduction to principles. In: Wiseman A (ed) Handbook of enzyme biotechnology. Ellis Horwood Ltd./T.J. Press Ltd., Padstow/Cornwall, pp 3–8

    Google Scholar 

  • Wiwat C, Thaithanun S, Pantuwatana S, Bhumiratana A (2000) Toxicity of chitinase-producing Bacillus thuringiensis sp. kurstaki HD-1 toward Plutella xylostella. J Invertebr Pathol 76:270–277

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25:170–179

    Article  CAS  Google Scholar 

  • Yan Q, Fong SS (2015) Bacterial chitinase: nature and perspectives for sustainable bioproduction. Bioresour Bioprocess 2:31–39

    Article  Google Scholar 

  • Yandigeri MS, Malviya N, Solanki MK, Shrivastava P, Sivakumar G (2015) Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World J Microbiol Biotechnol 31:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Zarei M, Aminzadeh S, Zolgharnein H, Safahieh A, Daliri M, Noghabi KA, Ghoroghi A, Motallebi A (2011) Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz J Microbiol 42:1017–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S., Mandal, N.C. (2019). Diversity of Chitinase-Producing Bacteria and Their Possible Role in Plant Pest Control. In: Satyanarayana, T., Das, S., Johri, B. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8487-5_18

Download citation

Publish with us

Policies and ethics