Skip to main content

Organic Molecules: Dipolar Solutes

  • Chapter
  • First Online:
Solvation Dynamics

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 121))

  • 383 Accesses

Abstract

The excessive number of H+ or “:” and their asymmetrical distribution determines the performance of their surrounding water molecules in a way different from that of ordinary water. The naked lone pairs and protons are equally capable of interacting with the solvent H2O molecules to form O:H vdW bond, O:⇔:O super–HB or H↔H anti-HB without charge sharing or new bond forming. Solvation examination of alcohols, aldehydes, formic acids, and sugars reveals that O:H–O formation enables the solubility and hydrophilicity of alcohol; the H↔H anti-HB formation and interface structure distortion disrupt the hydration network and surface stress. The O:H phonon redshift depresses the freezing point of sugar solution of anti-icing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Hu, D. Wu, K. Cross, S. Burikov, T. Dolenko, S. Patsaeva, D.W. Schaefer, Structurability: a collective measure of the structural differences in vodkas. J. Agric. Food Chem. 58, 7394–7401 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. A. Nose, T. Hamasaki, M. Hojo, R. Kato, K. Uehara, and T. Ueda, Hydrogen bonding in alcoholic beverages (distilled spirits) and water-ethanol mixtures. J Agric Food Chem. 53, 7074–7081 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. H.-Y. Hsu, Y.-C. Tsai, C.-C. Fu, J.S.-B. Wu, Degradation of ascorbic acid inethanolic solutions. J. Agri. Food Chem. 60(42), 10696–10701 (2012)

    Article  CAS  Google Scholar 

  4. R. Zhang, Q. Wu, Y. Xu, Lichenysin, a cyclooctapeptide occurring in Chinese liquor Jiannanchun reduced the headspace concentration of phenolic off-flavors via hydrogen-bond interactions. J. Agric. Food Chem. 62(33), 8302–8307 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. The 2015 Nobel Prize in Physiology or Medicine—Press Release. 2016; Available from: http://www.nobelprize.org/nobel_prizes/medicine/laureates/2015/press.html

  6. T.A. Dolenko, S.A. Burikov, S.A. Dolenko, A.O. Efitorov, I.V. Plastinin, V.I. Yuzhakov, S.V. Patsaeva, Raman spectroscopy of water-ethanol solutions: the estimation of hydrogen bonding energy and the appearance of clathrate-like structures in solutions. J. Phys. Chem. A 119(44), 10806–10815 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. M. Premont-Schwarz, S. Schreck, M. Iannuzzi, E.T.J. Nibbering, M. Odelius, P. Wernet, Correlating Infrared and x-ray absorption energies for molecular-level insight into hdyrogen bond makingand breaking in solution. J. Phys. Chem. B 119, 8115–8124 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. G. Ma, H.C. Allen, Surface studies of aqueous methanol solutions by vibrational broad bandwidth sum frequency generation spectroscopy. J. Phys. Chem. B 107, 6343–6349 (2003)

    Article  CAS  Google Scholar 

  9. L. Juurinen, T. Pylkkanen, C.J. Sahle, L. Simonelli, J. Hamalainen, S. Huotari, M. Hakala, Effect of the hydrophobic alcohol chain length on the hydrogen-bond network of water. J. Phys. Chem. B 118, 8750–8755 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. L. Xu, V. Molinero, Is there a liquid-liquid transition in confined water? J. Phys. Chem. B 115(48), 14210–14216 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. J.G. Davis, B.M. Rankin, K.P. Gierszal, D. Ben-Amotz, On the cooperative formation of non-hydrogen-bonded water at molecular hydrophobic interfaces. Nat. Chem. 5, 796–802 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. J.G. Davis, K.P. Gierszal, P. Wang, D. Ben-Amotz, Water strutural transformation at molecular hydrophobic interfaces. Nature 494, 582–585 (2012)

    Article  CAS  Google Scholar 

  13. M. Ahmed, A.K. Singh, J.A. Mondal, Hydrogen-bonidng and vibrational coupling of water in hydrophobic hydration shell as observed by Raman-MCR and isotopic dilution spectroscopy. Phys. Chem. Chem. Phys. 18, 2767–2775 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. L. Comez, L. Lupi, M. Paolantoni, F. Picchio, D. Fioretto, hydration properties of small hydrophobic molecules by brillouin light scattering. J. Chem. Phys. 137(11), 114509 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. D.T. Bowron, J.L. Finney, Anion bridges drive salting out of a simple amphiphile from aqueous solution. Phys. Rev. Lett. 89, 215508 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. K. NIshikawa, H. Hayashi, T. Iijima, Temperature-dependence of the concentration fluctuation, the kirkwood-buff parameters, and the correlation length of tert-butyl alcohol and water mixtures studied by small-angle X-Ray-scattering. J. Phys. Chem. B 93, 6559–6595 (1989)

    Article  CAS  Google Scholar 

  17. O. Gereben, L. Pusztai, Investigation of the structure of ethanol-water mixtures by molecular dynamics simulation I: analyses concerning the hydrogen-bonded pairs. J. Phys. Chem. B 119, 3070–3084 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. T. Ishihara, T. Ishiyama, A. Morita, Surface structure of methanol/water solutions via sum frequency orientational analysis and molecular dynamics simulation. J. Phys. Chem. C 119, 9879–9889 (2015)

    Article  CAS  Google Scholar 

  19. R.A. Livingstone, Y. Nagata, M. Bonn, E.H.G. Backus, Two types of water at the water-surfactant interface revealed by time-resolved vibrational spectroscopy. J. Am. Chem. Soc. 137, 14912–14919 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. S. Roy, S.M. Gruenbaum, J.L. Skinner, Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. J. Chem. Phys. 141, 18C502 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. H. Chen, W. Gan, B.-h. Wu, D. Wu, Y. Guo, H.-F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone+ water. J. Phys. Chem. B 109(16), 8053–8063 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. R. Li, C. D’Agostino, J. McGregor, M.D. Mantle, J.A. Zeitler, L.F. Gladden, Mesoscopic structuring and dyanmics of alcohol/water solutions probed by terahertz time-domain spectroscopy and pulsed field gradient nuclear magnetic resonance. J. Phys. Chem. B 118, 10156–10166 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. C. Totland, R.T. Lewis, W. Nerdal, Long-range surface-induced water structures and the effect of 1-butanol studied by 1H nuclear magnetic resonance. Langmuir 29, 11055–11061 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. O. Carrier, E.H.G. Backus, N. Shahidzadeh, J. Franz, M. Wagner, Y. Nagata, M. Bonn, D. Bonn, Oppositely charged ions at water-air and water-oil interfaces: contrasting the molecular picture with thermodynamics. J. Phys. Chem. Lett. 7, 825–830

    Article  CAS  PubMed  Google Scholar 

  25. C. Carmelo, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S.-H. Chen, H.E. Stanley, F. Mallamace, Clustering dynamics in water/methanol mixtures: a nuclear magnetic resonance study at 205 K < T < 295 K. J. Phys. Chem. B 112, 10449–10454 (2008)

    Article  CAS  Google Scholar 

  26. C.M. Phan, C.V. Nguyen, T.T. Pham, Molecular arrangement and surface tension of alcohol solutions. J. Phys. Chem. B 120, 3914–3919 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Nagata, S. Mukamel, Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J. Am. Chem. Soc. 132, 6434–6442 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. B.M. Rankin, D. Ben-Amotz, S.T.V.D. Post, H.J. Bakker, Contacts between alcohols in water are random rather than hydrophobic. J. Phys. Chem. Lett. 6, 688–692 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. D. Banik, A. Roy, N. Kundu, N. Sarkar, Picosecond solvation and rotational dynamics: an attempt to reinvestigate the mystery of alcohol-water binary mixtures. J. Phys. Chem. B 119, 9905–9919 (2016)

    Article  CAS  Google Scholar 

  30. D. Gonzalez-Salgado, I. Nezbeda, Excess properties of aqueous mixtures of methanol: simulation versus experiment. Fluid Phase Equilib. 240(2), 161–166 (2006)

    Article  CAS  Google Scholar 

  31. P. Petong, R. Pottel, U. Kaatze, Water-ethanol mixtures at different compositions and temperatures. A dielectric relaxation study. J. Phys. Chem. A 104(32), 7420–7428 (2000)

    Article  CAS  Google Scholar 

  32. X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)

    Article  CAS  Google Scholar 

  33. X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, and C.Q. Sun, HCl, KCl and koh solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)

    Article  CAS  Google Scholar 

  34. Y. Zhou, Y. Gong, Y. Huang, Z. Ma, X. Zhang, C.Q. Sun, Fraction and stiffness transition from the H-O vibrational mode of ordinary water to the HI, NaI, and NaOH hydration states. J. Mol. Liquids 244, 415–421 (2017)

    Article  CAS  Google Scholar 

  35. K.R. Wilson, R.D. Schaller, D.T. Co, R.J. Saykally, B.S. Rude, T. Catalano, J.D. Bozek, Surface relaxation in liquid water and methanol studied by X-ray absorption spectroscopy. J. Chem. Phys. 117(16), 7738–7744 (2002)

    Article  CAS  Google Scholar 

  36. Y. Huang, X. Zhang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, C.Q. Sun, Size, separation, structure order, and mass density of molecules packing in water and ice. Sci. Rep. 3, 3005 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Y.L. Huang, X. Zhang, Z.S. Ma, Y.C. Zhou, W.T. Zheng, J. Zhou, C.Q. Sun, Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev. 285, 109–165 (2015)

    Article  CAS  Google Scholar 

  38. Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X=F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)

    Article  CAS  Google Scholar 

  39. Y. Gong, Y. Xu, Y. Zhou, C. Li, X. Liu, L. Niu, Y. Huang, X. Zhang, C.Q. Sun, Hydrogen bond network relaxation resolved by alcohol hydration (methanol, ethanol, and glycerol). J. Raman Spectrosc. 48(3), 393–398 (2017)

    Article  CAS  Google Scholar 

  40. Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X= F, Cl, Br, I). Phys. Chem. Chem. Physics 18(20), 14046–14054 (2016)

    Article  CAS  Google Scholar 

  41. X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)

    Article  CAS  Google Scholar 

  43. N. Abe and M.I. to, Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water. J. Raman Spectrosc. 7(3), 161–167 (1978)

    Article  CAS  Google Scholar 

  44. L. Chen, W. Zhu, K. Lin, N. Hu, Y. Yu, X. Zhou, L.-F. Yuan, S.-M. Hu, Y. Luo, Identification of alcohol conformers by Raman spectra in the C-H stretching region. J. Phys. Chem. A 119(13), 3209–3217 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Y. Yu, Y. Wang, N. Hu, K. Lin, X. Zhou, S. Liu, Overlapping spectral features and new assignment of 2-propanol in the C-H stretching region. J. Raman Spectrosc. 45, 259–265 (2014)

    Article  CAS  Google Scholar 

  46. G.E. Walrafen, Raman spectral studies of water structure. J. Chem. Phys 40, 3249–3256 (1964)

    Article  CAS  Google Scholar 

  47. J. Chen, C. Yao, X. Liu, X. Zhang, C.Q. Sun, Y. Huang, H2O2 and HO- solvation dynamics: solute capabilities and solute-solvent molecular interactions. Chem. Select 2(27), 8517–8523 (2017)

    CAS  Google Scholar 

  48. B. Milorey, S. Farrell, S.T. Toal, R. Schweitzer-Stenner, Demixing of water and ethanol causes conformational redistribution and gelation of the cationic GAG tripeptide. Chem. Commun. 51, 16498–16501 (2015)

    Article  CAS  Google Scholar 

  49. S.K. Allison, J.P. Fox, R. Hargreaves, S. Bates, Clustering and microimmiscibility in alcohol-water mixtures: evidence from molecular-dynamics simulations. Phys. Rev. B 71, 024201 (2005)

    Article  CAS  Google Scholar 

  50. S. Banerjee, R. Ghosh, B. Bagchi, Structural transformations, compositioin anomalies and a dramatic collapse of linear polymer chains in dilute ethanol-water mixtures. J. Phys. Chem. B 116, 3713–3722 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. F. Franks, D.J.G. Ives, The structural properties of alcohol-water mixtures. Quart. Rev. Chem. Soc. 20, 1–44 (1966)

    Article  CAS  Google Scholar 

  52. J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D.K. Shuh, H. Agren, J. Nordgren, Molecular structure of alcohol-water mixtures. Phys. Rev. Lett. 91, 157401 (2003)

    Article  PubMed  CAS  Google Scholar 

  53. I. Lee, K. Park, J. Lee, Precision density and volume contraction measurements of ethanol-water binary mixtures using suspended microchannel resonators. Sens. Actuators A 194, 62–66 (2013)

    Article  CAS  Google Scholar 

  54. K. Mizuno, Y. Miyashita, Y. Shindo, H. Ogawa, NMR and FT-IR studies of hydrogen bonds in ethanol-water mixtures. J. Phys. Chem. 99, 3225–3228 (1995)

    Article  CAS  Google Scholar 

  55. M.J. Costigan, L.J. Hodges, K.N. Marsh, R.H. Stokes, C.W. Tuxford, The isothermal displacement calorimeter: design modifications for measuring exothermic enthalpies of mixing. Austr. J. Chem. 33(10), 2103–2119 (1980)

    Article  CAS  Google Scholar 

  56. J.E. Hallsworth, Y. Nomura, A simple method to determine the water activity of ethanol-containing samples. Biotechnol. Bioeng. 62, 242–245 (1999)

    Article  CAS  PubMed  Google Scholar 

  57. K. Koga, H. Yoshizumi, Differential scanning calorimetry (DSC) studies on the freezing processes of water-ethanol mixtures and distilled spirits. J. Food Sci. 44, 1386–1389 (1979)

    Article  CAS  Google Scholar 

  58. C.R. Lerici, M. Piva, M.D. Rosa, Water activity and freezing point depression of aqueous solutions and liquid foods. Food Sci. 48, 1667–1669 (2006)

    Article  Google Scholar 

  59. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem. Lett. 4, 3238–3244 (2013)

    Article  CAS  PubMed  Google Scholar 

  60. K. Dong, X. Rao, X. Yang, J. Lin, P. Zhang, Raman spectroscopy of aldehyde molecules. Opt. Spectrosc. Spectrosc. Anal. 31(12), 3277–3280 (2011). (Chinese)

    CAS  Google Scholar 

  61. X. Xi, S. Dai, Y. Sun, DNA-aldehyde molecular interaction. Envron. Sci. 22(1), 19–22 (2001)

    CAS  Google Scholar 

  62. Z. Xi, F. Tao, D. Yang, Y. Sun, G. Li, H. Zhang, W. Zhang, Y. Yang, H. Liu, DNA damaged by aldehyde. J. Environ. Sci. 24(4), 719–722 (2004). (Chinese)

    CAS  Google Scholar 

  63. R. Li, Z. Lu, Y. Qiao, H. Yao, F. Yu, X. Yang, DNA damage by aldehyde adsorption. Bull. Experim. Biol. 37(4), 262–268 (2004). (in Chinese)

    CAS  Google Scholar 

  64. Y.N. Jo, I.C. Um, Effects of solvent on the solution properties, structural characteristics and properties of silk sericin. Int. J. Biol. Macromol. 78, 287 (2015)

    Article  CAS  PubMed  Google Scholar 

  65. F. Greif, O. Kaplan, Acid ingestion: another cause of disseminated intravascular coagulopathy. Crit. Care Med. 14(11), 990–1 (1986)

    Article  CAS  PubMed  Google Scholar 

  66. K. Yoshitomi, Y. Matayoshi, H. Tamura, S. Shibasaki, M. Uchida, Y. Haranishi, K. Nakamura, H. Oka, A case of acetic acid poisoning. J. Jap. Soc. Intensive Care Med. 11, 217–221 (2009)

    Article  Google Scholar 

  67. G.M. Tong, S.K. Mak, P.N. Wong, L.O. Kin-Yee, S.O. Sheung-On, C.L. Watt, A.K. Wong, Successful treatment of oral acetic acid poisoning with plasmapheresis. Hong Kong J. Nephrol. 2(2), 110–112 (2000)

    Article  Google Scholar 

  68. S. Kumar, B. Babu. A brief review on propionic acid: a renewal energy source, in Proceedings of the National Conference on environmental conservation (NCEC-2006) (2006)

    Google Scholar 

  69. S. Suwannakham, S.T. Yang, Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnol. Bioeng. 91(3), 325 (2005)

    Article  CAS  PubMed  Google Scholar 

  70. J. Chen, C. Yao, X. Zhang, C.Q. Sun, Y. Huang, Hydrogen bond and surface stress relaxation by aldehydic and formic acidic molecular solvation. J. Mol. Liq. 249, 494–500 (2018)

    Article  CAS  Google Scholar 

  71. Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)

    Article  CAS  Google Scholar 

  72. P.H. Yancey, M.E. Clark, S.C. Hand, R.D. Bowlus, G.N. Somero, Living with water stress: evolution of osmolyte systems. Science 217(4566), 1214–22 (1982)

    Article  CAS  PubMed  Google Scholar 

  73. P.H. Yancey, Compatible and counteracting solutes: protecting cells from the Dead Sea to the deep sea. Sci. Prog. 87(1), 1–24 (2004)

    Article  CAS  PubMed  Google Scholar 

  74. B. Kempf, E. Bremer, Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170(5), 319 (1998)

    Article  CAS  PubMed  Google Scholar 

  75. G.N. Somero, Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol. 251(2), 197–213 (1986)

    Article  Google Scholar 

  76. J.A. Raymond, A.L. Devries, Elevated concentrations and synthetic pathways of trimethylamine oxide and urea in some teleost fishes of McMurdo Sound, Antarctica. Fish Physiol. Biochem. 18(4), 387–398 (1998)

    Article  CAS  Google Scholar 

  77. N.P. Davies, M. Wilson, K. Natarajan, Y. Sun, L. Macpherson, M.A. Brundler, T.N. Arvanitis, R.G. Grundy, A.C. Peet, non-invasive detection of glycine as a biomarker of malignancy in childhood brain tumours using in-vivo 1H MRS at 1.5 tesla confirmed by ex-vivo high-resolution magic-angle spinning NMR. NMR in Biomed. 23(1), 80–87 (2010)

    Google Scholar 

  78. T. Bessaire, A. Tarres, R.H. Stadler, T. Delatour, Role of choline and glycine betaine in the formation of N, N-dimethylpiperidinium (mepiquat) under Maillard reaction conditions. Food Additives Contam. Part A Chem. Anal. Control Exposure Risk Assess. 31(12), 1949–1958 (2014)

    Article  CAS  Google Scholar 

  79. S. Chaum, C. Kirdmanee, Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk. J. Agric. Forestry 34(6), 455–479 (2010)

    Google Scholar 

  80. R.D. Mountain, D. Thirumalai, Molecular dynamics simulations of end-to-end contact formation in hydrocarbon chains in water and aqueous urea solution. J. Am. Chem. Soc. 125(7), 1950–7 (2003)

    Article  CAS  PubMed  Google Scholar 

  81. S.N. Timasheff, The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22(22), 67–97 (1993)

    Article  CAS  PubMed  Google Scholar 

  82. A. Gómezzavaglia, R. Fausto, Low-temperature solid-state FTIR study of glycine, sarcosine and N, N-dimethylglycine: observation of neutral forms of simple α-amino acids in the solid state. Phys. Chem. Chem. Phys. 5(15), 268–270 (2003)

    Google Scholar 

  83. S. Kumar, A.K. Rai, V.B. Singh, S.B. Rai, Vibrational spectrum of glycine molecule. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61(11–12), 2741–2746 (2005)

    Article  CAS  Google Scholar 

  84. N. Derbel, B. Hernández, F. Pflüger, J. Liquier, F. Geinguenaud, N. Jaïdane, Z.B. Lakhdar, M. Ghomi, Vibrational Analysis of amino acids and short peptides in hydrated media. I.l-glycine and l-leucine. J. Phys. Chem. B 111(6), 1470–1477 (2007)

    Article  CAS  PubMed  Google Scholar 

  85. G. Zhu, X. Zhu, Q. Fan, X. Wan, Raman spectra of amino acids and their aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78(3), 1187 (2011)

    Article  CAS  Google Scholar 

  86. A. Oren, B.R. Elevi, N. Kandel, Z. Aizenshtat, J. Jehlička, Glycine betaine is the main organic osmotic solute in a stratified microbial community in a hypersaline evaporitic gypsum crust. Extremophiles 17(3), 445–451 (2013)

    Article  CAS  PubMed  Google Scholar 

  87. Y. Hayashi, Y. Katsumoto, I. Oshige, S. Omori, A. Yasuda, Comparative study of urea and betaine solutions by dielectric spectroscopy: liquid structures of a protein denaturant and stabilizer. J. Phys. Chem. B 111(40), 11858–63 (2007)

    Article  CAS  PubMed  Google Scholar 

  88. J.Y. Kim, S. Im, B. Kim, C. Desfrançois, S. Lee, Structures and energetics of Gly–(H2O) 5: thermodynamic and kinetic stabilities. Chem. Phys. Lett. 451(4–6), 198–203 (2008)

    Article  CAS  Google Scholar 

  89. A. Chaudhari, P.K. Sahu, S.L. Lee, Hydrogen bonding interaction in sarcosine–water complex using ab initio and DFT method. Int. J. Quantum Chem. 101(1), 97–103 (2005)

    Article  CAS  Google Scholar 

  90. M. Civera, A. Fornili, M. Sironi, S.L. Fornili, Molecular dynamics simulation of aqueous solutions of glycine betaine. Chem. Phys. Lett. 367(1–2), 238–244 (2003)

    Article  CAS  Google Scholar 

  91. T. Takayanagi, T. Yoshikawa, A. Kakizaki, M. Shiga, M. Tachikawa, Molecular dynamics simulations of small glycine–(H2O)n (n = 2–7) clusters on semiempirical PM6 potential energy surfaces. J. Mol. Struct. (Thoechem) 869(1), 29–36 (2008)

    Article  CAS  Google Scholar 

  92. A. Mukaiyama, Y. Koga, K. Takano, S. Kanaya, Osmolyte effect on the stability and folding of a hyperthermophilic protein. Proteins Structure Funct. Bioinform. 71(1), 110–118 (2008)

    Article  CAS  Google Scholar 

  93. A. Panuszko, P. Bruździak, E. Kaczkowska, J. Stangret, General mechanism of osmolytes’ influence on protein stability irrespective of the type of osmolyte cosolvent. J. Phys. Chem. B 120(43), 11159–11169 (2016)

    Article  CAS  PubMed  Google Scholar 

  94. Y.L. Rezus, H.J. Bakker, Destabilization of the hydrogen-bond structure of water by the osmolyte trimethylamine N-oxide. J. Phys. Chem. B 113(13), 4038–44 (2009)

    Article  CAS  PubMed  Google Scholar 

  95. P. Bruździak, A. Panuszko, J. Stangret, Influence of osmolytes on protein and water structure: a step to understanding the mechanism of protein stabilization. J. Phys. Chem. B 117(39), 11502–11508 (2013)

    Article  PubMed  CAS  Google Scholar 

  96. A. Panuszko, M. Śmiechowski, J. Stangret, Fourier transform infrared spectroscopic and theoretical study of water interactions with glycine and its N-methylated derivatives. J. Chem. Phys. 134(11), 115104 (2011)

    Article  PubMed  CAS  Google Scholar 

  97. A. Kuffel, J. Zielkiewicz, The hydrogen bond network structure within the hydration shell around simple osmolytes: urea, tetramethylurea, and trimethylamine-N-oxide, investigated using both a fixed charge and a polarizable water model. J. Chem. Phys. 133(3), 07B605 (2010)

    Article  CAS  Google Scholar 

  98. A. Di Michele, M. Freda, G. Onori, M. Paolantoni, A. Santucci, P. Sassi, Modulation of hydrophobic effect by cosolutes. J. Phys. Chem. B 110(42), 21077–21085 (2006)

    Article  PubMed  CAS  Google Scholar 

  99. K.J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, H.J. Bakker, Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea. J. Am. Chem. Soc. 132(44), 15671–8 (2010)

    Article  CAS  PubMed  Google Scholar 

  100. P. Chettiyankandy, Effects of co-solutes on the hydrogen bonding structure and dynamics in aqueous N-methylacetamide solution: a molecular dynamics simulations study. Mol. Phys. 112(22), 2906–2919 (2014)

    Article  CAS  Google Scholar 

  101. H. Lee, J.H. Choi, P.K. Verma, M. Cho, Spectral graph analyses of water hydrogen-bonding network and osmolyte aggregate structures in osmolyte-water solutions. J. Phys. Chem. B 119(45), 14402–14412 (2015)

    Article  CAS  PubMed  Google Scholar 

  102. K. Tielrooij, N. Garcia-Araez, M. Bonn, H. Bakker, Cooperativity in ion hydration. Science 328(5981), 1006–1009 (2010)

    Article  CAS  PubMed  Google Scholar 

  103. J. Hunger, K.J. Tielrooij, R. Buchner, M. Bonn, H.J. Bakker, Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions. J. Phys. Chem. B 116(16), 4783–95 (2012)

    Article  CAS  PubMed  Google Scholar 

  104. A.A. Bakulin, M.S. Pshenichnikov, H.J. Bakker, C. Petersen, Hydrophobic molecules slow down the hydrogen-bond dynamics of water. J. Phys. Chem. A 115(10), 1821–9 (2011)

    Article  CAS  PubMed  Google Scholar 

  105. H. Fang, X. Liu, C.Q. Sun, Y. Huang, Phonon spectrometric evaluation of the solute-solvent interface in solutions of glycine and its N-methylated derivatives. J. Phys. Chem. B 122(29), 7403–7408 (2018)

    Article  CAS  PubMed  Google Scholar 

  106. Y. Zhou, Y. Zhong, Y. Gong, X. Zhang, Z. Ma, Y. Huang, C.Q. Sun, Unprecedented thermal stability of water supersolid skin. J. Mol. Liq. 220, 865–869 (2016)

    Article  CAS  Google Scholar 

  107. X.J. Liu, M.L. Bo, X. Zhang, L. Li, Y.G. Nie, H. TIan, Y. Sun, S. Xu, Y. Wang, W. Zheng, C.Q. Sun, Coordination-resolved electron spectrometrics. Chem. Rev. 115(14), 6746–6810 (2015)

    Article  CAS  PubMed  Google Scholar 

  108. C.Q. Sun, J. Chen, Y. Gong, X. Zhang, Y. Huang, (H, Li)Br and LiOH solvation bonding dynamics: molecular nonbond interactions and solute extraordinary capabilities. J. Phys. Chem. B 122(3), 1228–1238 (2018)

    Article  CAS  PubMed  Google Scholar 

  109. E. Agabiti-Rosei, From macro- to microcirculation: Benefits in hypertension and diabetes. J. Hypertens. Suppl. Off. J. Int. Soc. Hypertens. 26(3), 15–9 (2008)

    Google Scholar 

  110. B.P. Murphy, T. Stanton, F.G. Dunn, Hypertension and myocardial ischemia. Med. Clin. North Am. 93(3), 681–695 (2009)

    Article  PubMed  Google Scholar 

  111. K.K. Gaddam, A. Verma, M. Thompson, R. Amin, H. Ventura, Hypertension and cardiac failure in its various forms. Med. Clin. North Am. 93(3), 665–680 (2009)

    Article  PubMed  Google Scholar 

  112. E. Reisin, A.V. Jack, Obesity and hypertension: mechanisms, cardio-renal consequences, and therapeutic approaches. Med. Clin. North Am. 93(3), 733–51 (2009)

    Article  CAS  PubMed  Google Scholar 

  113. W.B. White, Defining the problem of treating the patient with hypertension and arthritis pain. Am. J. Med. 122(5 Suppl), 3–9 (2009)

    Article  Google Scholar 

  114. L.D. Truong, S.S. Shen, M.H. Park, B. Krishnan, Diagnosing nonneoplastic lesions in nephrectomy specimens. Arch. Pathol. Lab. Med. 133(2), 189–200 (2009)

    PubMed  Google Scholar 

  115. R.E. Tracy, S. White, A method for quantifying adrenocortical nodular hyperplasia at autopsy: some use of the method in illuminating hypertension and atherosclerosis. Ann. Diagnostic Pathol. 6(1), 20–9 (2002)

    Article  Google Scholar 

  116. S. Mendis, P. Puska, B. Norrving, S. Mendis, P. Puska, B. Norrving, Global atlas on cardiovascular disease prevention and control (Geneva World Health Organization, Geneva, 2011)

    Google Scholar 

  117. A. Chockalingam, Impact of World Hypertension Day. Can. J. Cardiol. 23(7), 517 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  118. W.H. Organization, A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013 (2013)

    Google Scholar 

  119. W.G. Members, E.J. Benjamin, M.J. Blaha, S.E. Chiuve, M. Cushman, S.R. Das, R. Deo, S.D.D. Ferranti, J. Floyd, M. Fornage, Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 121(7), e46 (2010)

    Google Scholar 

  120. B. Williams, N.R. Poulter, M.J. Brown, M. Davis, G.T. Mcinnes, J.F. Potter, P.S. Sever, T.S. Mcg, Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004-BHS IV. J. Hum. Hypertens. 18(3), 139 (2004)

    Article  CAS  PubMed  Google Scholar 

  121. P.K. Whelton, J. He, L.J. Appel, J.A. Cutler, S. Havas, T.A. Kotchen, E.J. Roccella, R. Stout, C. Vallbona, M.C. Winston, Primary prevention of hypertension: clinical and public health advisory from the national high blood pressure education program. JAMA 288(15), 1882–1888 (2002)

    Article  PubMed  Google Scholar 

  122. K. Kurihara, Glutamate: from discovery as a food flavor to role as a basic taste (umami). Am. J. Clin. Nutr. 90(3), 719S–722S (2009)

    Article  CAS  PubMed  Google Scholar 

  123. L. Baad-Hansen, B.E. Cairns, M. Ernberg, P. Svensson, Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity. Cephalalgia 30(1), 68–76 (2010)

    Article  CAS  PubMed  Google Scholar 

  124. Z. Shi, B. Yuan, A.W. Taylor, Y. Dai, X. Pan, T.K. Gill, G.A. Wittert, Monosodium glutamate is related to a higher increase in blood pressure over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults. J. Hypertens. 29(5), 846–853 (2011)

    Article  CAS  PubMed  Google Scholar 

  125. S. Mascoli, R. Grimm, C. Launer, Sodium chloride raises blood pressure in normotensive subjects. Hypertension, 17(Suppl I) (1991)

    Google Scholar 

  126. S.N. Orlov, A.A. Mongin, Salt-sensing mechanisms in blood pressure regulation and hypertension. Am. J. Physiol. Heart Circ. Physiol. 293(4), H2039–H2053 (2007)

    Article  CAS  PubMed  Google Scholar 

  127. G.R. Meneely, L.K. Dahl, Electrolytes in hypertension: the effects of sodium chloride. The evidence from animal and human studies. Med. Clinics North Am. 45(2), 271 (1961)

    Article  CAS  Google Scholar 

  128. R. Kwok, Chinese-restaurant syndrome. New England J. Med. 278(14), 796 (1968)

    CAS  Google Scholar 

  129. T.R. Du, Y. Volsteedt, Z. Apostolides, Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology 166(1–2), 63–69 (2001)

    Google Scholar 

  130. S. Duffy, N. Gokce, M. Holbrook, A. Huang, B. Frei, J.F. Keaney, J.A. Vita, Treatment of hypertension with ascorbic acid. The Lancet 354(9195), 2048–2049 (1999)

    Article  CAS  Google Scholar 

  131. B.A. Mullan, I.S. Young, H. Fee, D.R. McCance, Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension 40(6), 804–809 (2002)

    Article  CAS  PubMed  Google Scholar 

  132. J.P. Moran, L. Cohen, J.M. Greene, G. Xu, E.B. Feldman, C.G. Hames, D.S. Feldman, Plasma ascorbic acid concentrations relate inversely to blood pressure in human subjects. Am. J. Clin. Nutr. 57(2), 213–217 (1993)

    Article  CAS  PubMed  Google Scholar 

  133. S.P. Juraschek, E. Guallar, L.J. Appel, M.E. Rd, Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 95(5), 1079–1088 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. S. Kondo, K. Tayama, Y. Tsukamoto, K. Ikeda, Y. Yamori, Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 65(12), 2690–2694 (2001)

    Article  CAS  PubMed  Google Scholar 

  135. Y. Zhou, Y. Huang, Z. Ma, Y. Gong, X. Zhang, Y. Sun, C.Q. Sun, Water molecular structure-order in the NaX hydration shells (X = F, Cl, Br, I). J. Mol. Liq. 221, 788–797 (2016)

    Article  CAS  Google Scholar 

  136. C.Q. Sun, Y. Sun, The Attribute of Water: Single Notion, Multiple Myths. Springer Series in Chemical Physics, vol. 113 (SpringerVerlag, Heidelberg, 2016), 494pp

    Google Scholar 

  137. N. Peica, C. Lehene, N. Leopold, S. Schlücker, W. Kiefer, Monosodium glutamate in its anhydrous and monohydrate form: differentiation by Raman spectroscopies and density functional calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 66(3), 604–15 (2007)

    Article  CAS  Google Scholar 

  138. T. Nakabayashi, K. Kosugi, N. Nishi, Liquid structure of acetic acid studied by Raman spectroscopy and Ab initio molecular orbital calculations. J. Phys. Chem. A 103(43), 8595–8603 (1999)

    Article  CAS  Google Scholar 

  139. P.C. Yohannan, V.H. Tresa, D. Philip, FT-IR, FT-Raman and SERS spectra of vitamin C. Spectrochim Acta A Mol. Biomol. Spectrosc. 65(3–4), 802–804 (2006)

    Article  CAS  Google Scholar 

  140. C. Ni, C. Sun, Z. Zhou, Y. Huang, X. Liu, Surface tension mediation by Na-based ionic polarization and acidic fragmentation: inference of hypertension. J. Mol. Liq. 259, 1–6 (2018)

    Article  CAS  Google Scholar 

  141. L.M. Burke, R.S. Read, Dietary supplements in sport. Sports Med. 15(1), 43–65 (1993)

    Article  CAS  PubMed  Google Scholar 

  142. M. Baghbanbashi, G. Pazuki, A new hydrogen bonding local composition based model in obtaining phase behavior of aqueous solutions of sugars. J. Mol. Liq. 195(4), 47–53 (2014)

    Article  CAS  Google Scholar 

  143. B.L. Cantarel, P.M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, B. Henrissat, The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37(1), D233–D238 (2009)

    Article  CAS  PubMed  Google Scholar 

  144. F. Franks, M. Jones, Biophysics and biochemistry at low temperatures. FEBS Lett. 220(2), 391–391 (1986)

    Article  Google Scholar 

  145. C.A. Oksanen, G. Zografi, The relationship between the glass transition temperature and water vapor absorption by poly (vinylpyrrolidone). Pharm. Res. Dordr 7(6), 654–657 (1990)

    Article  CAS  Google Scholar 

  146. A. Magno, P. Gallo, Understanding the mechanisms of bioprotection: a comparative study of aqueous solutions of trehalose and maltose upon supercooling. J. Phys. Chem. Lett. 2(9), 977–982 (2011)

    Article  CAS  Google Scholar 

  147. B.J. Sinclair, J.R. Stinziano, C.M. Williams, H.A. Macmillan, K.E. Marshall, K.B. Storey, Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use. J. Exp. Biol. 216(Pt 2), 292–302 (2013)

    Article  CAS  Google Scholar 

  148. R.E.L. Jr, Insect cold-hardiness: to freeze or not to freeze. Bioscience 39(5), 308–313 (1989)

    Article  Google Scholar 

  149. S.N. Thompson, Trehalose-the insect ‘blood’ sugar. Adv. Insect Physiol. 31(3), 205–285 (2003)

    Article  CAS  Google Scholar 

  150. J.P. Costanzo, R.E. Lee, P.H. Lortz, Glucose concentration regulates freeze tolerance in the wood frog Rana sylvatica. J. Exp. Biol. 181(1), 245–255 (1993)

    CAS  PubMed  Google Scholar 

  151. J. Costanzo, R. Lee, M.F. Wright, Glucose loading prevents freezing injury in rapidly cooled wood frogs. Am. J. Physiol. 261(6), R1549–R1553 (1991)

    CAS  PubMed  Google Scholar 

  152. J.P. Costanzo, R.E. Lee Jr., M.F. Wright, Effect of cooling rate on the survival of frozen wood frogs, Rana sylvatica. J. Comp. Physiol. B 161(3), 225–229 (1991)

    Article  CAS  PubMed  Google Scholar 

  153. J.P. Costanzo, R.E. Lee, M.F. Wright, Cooling rate influences cryoprotectant distribution and organ dehydration in freezing wood frogs. J. Exp. Zool. 261(4), 373–378 (1992)

    Article  CAS  PubMed  Google Scholar 

  154. H. Kanno, M. Soga, K. Kajiwara, Linear relation between TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for aqueous solutions of sucrose, trehalose, and maltose. Chem. Phys. Lett. 443(4–6), 280–283 (2007)

    Article  CAS  Google Scholar 

  155. M.E. Gallina, P. Sassi, M. Paolantoni, A. Morresi, and R.S. Cataliotti, Vibrational analysis of molecular interactions in aqueous glucose solutions. Temperature and concentration effects. J. Phys. Chem. B, 110(17), 8856–8864 (2006)

    Article  CAS  PubMed  Google Scholar 

  156. C. Branca, S. Magazù, G. Maisano, S. Bennington, B. Fåk, Vibrational studies on disaccharide/H2O systems by inelastic neutron scattering, Raman, and IR spectroscopy. J. Phys. Chem. B 107(6), 1444–1451 (2003)

    Article  CAS  Google Scholar 

  157. C. Branca, S. Magazu, G. Maisanoa, A. Mangionea, S.M. Benningtonb, J. Taylorb, INS investigation of disaccharide/H2O mixtures. J. Mol. Struct. 700(1), 229–231 (2004)

    Article  CAS  Google Scholar 

  158. M. Paolantoni, P. Sassi, A. Morresi, S. Santini, Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy. J. Chem. Phys. 127(2), 024504 (2007)

    Article  PubMed  CAS  Google Scholar 

  159. S. Di Fonzo, C. Masciovecchio, A. Gessini, F. Bencivenga, A. Cesàro, Water dynamics and structural relaxation in concentrated sugar solutions. Food Biophys. 8(3), 183–191 (2013)

    Article  Google Scholar 

  160. M. Heyden, E. Bründermann, U. Heugen, G. Niehues, D.M. Leitner, M. Havenith, Long-range influence of carbohydrates on the solvation dynamics of water-answers from terahertz absorption measurements and molecular modeling simulations. J. Am. Chem. Soc. 130(17), 5773–5779 (2008)

    Article  CAS  PubMed  Google Scholar 

  161. C. Branca, S. Magazu, G. Maisano, P. Migliardo, E. Tettamanti, Anomalous translational diffusive processes in hydrogen-bonded systems investigated by ultrasonic technique. Raman scattering and NMR. Physica B 291(1), 180–189 (2000)

    CAS  Google Scholar 

  162. M.E. Elias, A.M. Elias, Trehalose + water fragile system: properties and glass transition. J. Mol. Liq. 83(1), 303–310 (1999)

    Article  CAS  Google Scholar 

  163. W. Yamamoto, K. Sasaki, R. Kita, S. Yagihara, N. Shinyashiki, Dielectric study on temperature-concentration superposition of liquid to glass in fructose-water mixtures. J. Mol. Liq. 206(1), 39–46 (2015)

    Article  CAS  Google Scholar 

  164. A. Lerbret, F. Affouard, P. Bordat, A. Hédoux, Y. Guinet, M. Descamps, Slowing down of water dynamics in disaccharide aqueous solutions. J. Non-Cryst. Solids 357(2), 695–699 (2010)

    Article  CAS  Google Scholar 

  165. K.N. Kirschner, R.J. Woods, Solvent interactions determine carbohydrate conformation. Proc. Natl. Acad. Sci. USA 98(19), 10541 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. T. Steiner, W. Saenger, Geometry of carbon-hydrogen.cntdot..cntdot..cntdot.oxygen hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data. J. Am. Chem. Soc. 114(26): 10146–10154, (1992)

    Article  CAS  Google Scholar 

  167. Y.L. Huang, X. Zhang, Z.S. Ma, G.H. Zhou, Y.Y. Gong, C.Q. Sun, Potential paths for the hydrogen-bond relaxing with (H2O)(N) Cluster Size. J. Phys. Chem. C 119(29), 16962–16971 (2015)

    Article  CAS  Google Scholar 

  168. C. Ni, Y. Gong, X. Liu, C.Q. Sun, Z. Zhou, The anti-frozen attribute of sugar solutions. J. Mol. Liq. 247, 337–344 (2017)

    Article  CAS  Google Scholar 

  169. X. Zhang, P. Sun, Y. Huang, Z. Ma, X. Liu, J. Zhou, W. Zheng, C.Q. Sun, Water nanodroplet thermodynamics: quasi-solid phase-boundary dispersivity. J. Phys. Chem. B 119(16), 5265–5269 (2015)

    Article  CAS  PubMed  Google Scholar 

  170. M. Mathlouthi, C. Luu, A.M. Meffroy-Biget, V.L. Dang, Laser-Raman study of solute-solvent interactions in aqueous solutions of d-fructose, d-glucose, and sucrose. Carbohyd. Res. 81(2), 213–223 (1980)

    Article  CAS  Google Scholar 

  171. A.M. Gil, P.S. Belton, V. Felix, Spectroscopic studies of solid α-α trehalose. Spectrochim Acta A 52(12), 1649–1659 (1996)

    Article  Google Scholar 

  172. S. Söderholm, Y.H. Roos, N. Meinander, M. Hotokka, Raman spectra of fructose and glucose in the amorphous and crystalline states. J. Raman Spectrosc. 30(11), 1009–1018 (1999)

    Article  Google Scholar 

  173. S.N. Wren, D.J. Donaldson, Glancing-angle Raman study of nitrate and nitric acid at the air–aqueous interface. Chem. Phys. Lett. 522, 1–10 (2012)

    Article  CAS  Google Scholar 

  174. C.Q. Sun, X. Zhang, X. Fu, W. Zheng, J.-L. Kuo, Y. Zhou, Z. Shen, J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range. J. Phys. Chem Lett. 4, 3238–3244 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, C.Q. (2019). Organic Molecules: Dipolar Solutes. In: Solvation Dynamics. Springer Series in Chemical Physics, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-13-8441-7_7

Download citation

Publish with us

Policies and ethics