Skip to main content

Bottlenecks in Commercialization and Future Prospects of Beneficial Halotolerant Microorganisms for Saline Soils

  • Chapter
  • First Online:
Book cover Saline Soil-based Agriculture by Halotolerant Microorganisms

Abstract

Salinity stress is a major abiotic stress that limits crop productivity. One way to alleviate the effect of salinity stress on plants is to use salt-tolerant microorganisms. Mechanisms employed by these salt-tolerant microbes not only drive the plant to grow well in saline environment but also boost its growth by producing various hormones, solubilizing phosphate, and fixing nitrogen. Inconsistent field efficacy of salt-tolerant microbial formulations, versatility for various crops, and economic aspects to develop such product by industry are the bottlenecks in commercialization of these bioproducts. There is no commercial formulation of salt-tolerant microbes currently available. For sustained agriculture, formulations based on compatible halotolerant microbes must be developed and marketed. This chapter focuses on the current status and prospects of commercialization of microbial products based on halotolerant microbes for increased crop production in saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Apte SK, Thomas J (1984) Effect of sodium on nitrogen fixation in Anabaena torulosaand Plectonema boryanum. J Gen Microbiol 130:1161–1168

    CAS  Google Scholar 

  • Argandona M, Nieto JJ, Iglesias-Guerra F, Calderon MI, Garcia-Estepa R, Vargas C (2010) Interplay between iron homeostasis and the osmotic stress response in the halophilic bacterium Chromohalobacter salexigens. Appl Environ Microbiol 76:3575–3589. https://doi.org/10.1128/aem.03136-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora N, Singhal V, Maheshwari D (2006) Salinity-induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22:603–606

    Article  CAS  Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Bacteria in agrobiology: stress management. Springer, Heidelberg, pp 239–258

    Chapter  Google Scholar 

  • Asim M, Aslam M, Bano A, Munir M, Majeed A, Abbas SH (2013) Role of phytohormones in root nodulation and yield of soybean under salt stress. Am J Res Commun 1:191–208

    Google Scholar 

  • Bailey KL, Falk S (2011) Turning research on microbial bioherbicides into commercial products–a Phoma story. Pest Technol 5:73–79

    Google Scholar 

  • Barea J (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15:261–282

    CAS  Google Scholar 

  • Becker EA et al (2014) Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet 10:e1004784. https://doi.org/10.1371/journal.pgen.1004784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ (2013) Trichodesmium–a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol Rev 37:286–302

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. https://doi.org/10.1038/srep34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burr T, Matteson M, Smith C, Corral-Garcia M, Huang T-C (1996) Effectiveness of bacteria and yeasts from apple orchards as biological control agents of apple scab. Biol Control 6:151–157

    Article  Google Scholar 

  • Chakraborty U, Roy S, Chakraborty AP, Dey P, Chakraborty B (2011) Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Recent Res Sci Technol 3:11

    Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158(1):34–44

    Article  CAS  PubMed  Google Scholar 

  • Chutia M, Mahanta J, Bhattacheryya N, Bhuyan M, Boruah P, Sarma T (2007) Microbial herbicides for weed management: prospects, progress and constraints. Plant Pathol J 6:210–218

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Dalpé Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Online. In, 2004

    Google Scholar 

  • Davies PJ (2004) The plant hormones: their nature, occurrence, and functions. In: Davis PJ (ed) Plant hormones biosynthesis, signal transduction, action, vol 1. Kluwer Academic/Springer, Dordrecht, pp 1–15

    Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57:122–127

    Article  Google Scholar 

  • El-Fattah DAA, Eweda WE, Zayed MS, Hassanein MK (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Ann Agric Sci 58:111–118

    Article  Google Scholar 

  • Enya J, Shinohara H, Yoshida S, Tsukiboshi T, Negishi H, Suyama K, Tsushima S (2007) Culturable leaf-associated bacteria on tomato plants and their potential as biological control agents. Microb Ecol 53:524–536

    Article  CAS  PubMed  Google Scholar 

  • Etesami H (2018) Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112. https://doi.org/10.1016/j.agee.2017.11.007

    Article  CAS  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health. Springer, pp 163–200

    Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Fravel D (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Gelernter WD, Lomer CJ (2000) Success in biological control of above-ground insects by pathogens. In: Gurr G, Wratten S (eds) Biological control: measures of success. Springer, Dordrecht, pp 297–322

    Chapter  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54(4):753–760

    Article  CAS  PubMed  Google Scholar 

  • Glare T et al (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75

    Article  CAS  PubMed  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Ribbe MW (2015) Nitrogenase and homologs. J Biol Inorg Chem 20(2):435–445

    Article  CAS  PubMed  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80:23–36

    Article  CAS  Google Scholar 

  • Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2018) Molecular interaction of 1-aminocyclopropane-1-carboxylate deaminase (ACCD)-producing endophytic Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv. KDML105. Sci Rep 8:1950

    Article  PubMed  PubMed Central  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947. https://doi.org/10.1093/jxb/err003

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    Article  CAS  PubMed  Google Scholar 

  • Jha Y, Subramanian R (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition. Chilean J Agric Res 73:213–219

    Article  Google Scholar 

  • Jha B, Singh VK, Weiss A, Hartmann A, Schmid M (2015) Zhihengliuella somnathii sp. nov., a halotolerant actinobacterium from the rhizosphere of a halophyte Salicornia brachiata. Int J Syst Evol Microbiol 65:3137–3142

    Article  CAS  PubMed  Google Scholar 

  • Kang SR, Srinivasan S, Lee S-S (2015) Vibrio oceanisediminis sp. nov., a nitrogen-fixing bacterium isolated from an artificial oil-spill marine sediment. Int J Syst Evol Microbiol 65:3552–3557

    Article  CAS  PubMed  Google Scholar 

  • Khalid M, Bilal M, Hassani D, Iqbal HMN, Wang H, Huang D (2017) Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot Stud 58(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304

    CAS  Google Scholar 

  • Kodama T, Taniguchi S (1976) Sodium-dependent growth and respiration of a nonhalophilic bacterium, Pseudomonas stutzeri. J Gen Microbiol 96(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Taniguchi S (1977) Sodium-controlled coupling of respiration to energy-linked functions in Pseudomonas stutzeri. Microbiology 98(2):503–510

    CAS  Google Scholar 

  • Köhl J, Postma J, Nicot P, Ruocco M, Blum B (2011) Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control 57:1–12

    Article  Google Scholar 

  • Läuchli A, Epstein E (1990) Plant responses to saline and sodic conditions. Agric Salinity Assess Manag 71:113–137

    Google Scholar 

  • Leggett M, Newlands N, Greenshields D, West L, Inman S, Koivunen M (2015) Maize yield response to a phosphorus-solubilizing microbial inoculant in field trials. J Agric Sci 153:1464–1478

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem: PPB 42(6):565–572. https://doi.org/10.1016/j.plaphy.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  • Mengele R, Sumper M (1992) Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles. J Biol Chem 267:8182–8185

    CAS  PubMed  Google Scholar 

  • Milus E, Rothrock C (1997) Efficacy of bacterial seed treatments for controlling Pythium root rot of winter wheat. Plant Dis 81:180–184

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Murtaza G (2013) Economic aspects of growing rice and wheat crops on salt-affected soils in the Indus Basin of Pakistan (unpublished data). Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198:379–387. https://doi.org/10.1007/s00203-016-1197-5

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Torre S et al (2017) Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biol (Stuttg) 19:249–256. https://doi.org/10.1111/plb.12521

    Article  CAS  Google Scholar 

  • Nicot P, Blum B, Köhl J, Ruocco M (2011) Perspectives for future research-and-development projects on biological control of plant pests and diseases. Class Augmentative Biol Control Against Dis Pests: Crit Status Anal Rev Factors Influencing Success 2011:68–70

    Google Scholar 

  • Nunkaew T, Kantachote D, Nitoda T, Kanzaki H, Ritchie RJ (2015) Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions. Carbohydr Polym 115:334–341

    Article  CAS  PubMed  Google Scholar 

  • Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbiol 47:621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S, Bag SK, Das S, Harvill ET, Dutta C (2008) Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes. Genome Biol 9:R70. https://doi.org/10.1186/gb-2008-9-4-r70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34:1245–1259

    Article  CAS  PubMed  Google Scholar 

  • Raheem A, Ali B (2015) Halotolerant rhizobacteria: beneficial plant metabolites and growth enhancement of Triticum aestivum L. in salt-amended soils. Arch Agron Soil Sci 61:1691–1705

    Article  CAS  Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263

    Article  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2:6. https://doi.org/10.1186/2193-1801-2-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravensberg WJ (2011) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods, vol 10. Springer Science & Business Media, Dordrecht

    Book  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32. https://doi.org/10.1016/j.micres.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. https://doi.org/10.1186/2193-1801-2-587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kulkarni J, Jha B (2016) Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Front Microbiol 7:1600. https://doi.org/10.3389/fmicb.2016.01600

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla PS, Agarwal PK, Jha B (2012) Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. J Plant Growth Regul 31:195–206

    Article  CAS  Google Scholar 

  • Siebner-Freibach H, Hadar Y, Chen Y (2004) Interaction of iron chelating agents with clay minerals. Soil Sci Soc Am J 68:470–480

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2015) Plant growth promoting potential of ACC deaminase rhizospheric bacteria isolated from Aerva javanica: a plant adapted to saline environments. Int J Curr Microbiol App Sci 4(7):142–152

    CAS  Google Scholar 

  • Singh RP, Jha PN (2016) A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci 7:1890

    PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19:427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staal M, Rabouille S, Stal LJ (2007) On the role of oxygen for nitrogen fixation in the marine cyanobacterium Trichodesmium sp. Environ Microbiol 9:727–736

    Article  CAS  PubMed  Google Scholar 

  • Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AMZ, Geissler-Plaum R, Schnell S (2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley (Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30. https://doi.org/10.1016/j.apsoil.2015.04.017

    Article  Google Scholar 

  • Tabassum T, Farooq M, Ahmad R, Zohaib A, Wahid A (2017) Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physiol Biochem 118:362–369

    Article  CAS  PubMed  Google Scholar 

  • Takors R (2012) Scale-up of microbial processes: impacts, tools and open questions. J Biotechnol 160:3–9

    Article  CAS  PubMed  Google Scholar 

  • Tenchov B, Vescio EM, Sprott GD, ZeidelJo ML, Mathai JC (2006) Salt tolerance of Archaeal extremely Halophilic lipid membranes. J Biol Chem 281:10016–10023. https://doi.org/10.1074/jbc.M600369200

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086. https://doi.org/10.1371/journal.pone.0096086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trung N, Hieu H, Thuan N (2016) Screening of strong 1-aminocyclopropane-1-carboxylate deaminase producing bacteria for improving the salinity tolerance of cowpea. Appli Micro Open Access 2:2

    Google Scholar 

  • Ul-Hassan T, Bano A (2014) Role of plant growth promoting rhizobacteria and L-tryptophan on improvement of growth, nutrient availability and yield of wheat (Triticum aestivum) under salt stress. Int J Appl Agric Res 4:30–39

    Google Scholar 

  • Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313

    Article  CAS  PubMed  Google Scholar 

  • van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20. https://doi.org/10.1007/s10526-011-9395-1

    Article  Google Scholar 

  • Warrior P, Konduru K, Vasudevan P (2002) Formulation of biological control agents for pest and disease management. In: Biological control of crop diseases. Marcel Dekker, New York, pp 421–442

    Google Scholar 

  • Watanabe M, Kawahara K, Sasaki K, Noparatnaraporn N (2003) Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp. and their biosorption kinetics. J Biosci Bioeng 95:374–378. https://doi.org/10.1016/S1389-1723(03)80070-1

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Crop Manag 3. https://doi.org/10.1094/cm-2004-0301-06-rv

    Article  Google Scholar 

  • Yang H, Hu J, Long X, Liu Z, Rengel Z (2016) Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci Rep 6:20687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Ohba A, Liang YM, Koitabashi M, Tsushima S (2012) Specificity of Pseudomonas isolates on healthy and Fusarium head blight-infected spikelets of wheat heads. Microb Ecol 64:214–225. https://doi.org/10.1007/s00248-012-0009-y

    Article  PubMed  Google Scholar 

  • Zahran H, Ahmad M, Afkar E (1995) Isolation and characterization of nitrogen-fixing moderate halophilic bacteria from saline soils of Egypt. J Basic Microbiol 35:269–275

    Article  Google Scholar 

  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Müller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768. https://doi.org/10.1038/90824

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98:12832–12836. https://doi.org/10.1073/pnas.231476498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Zhou N, Zhao Z-Y, Zhang K, Wu G-H, Tian C-Y (2016) Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr Microbiol 73:574–581

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Zhao S, Tian CY (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 364. https://doi.org/10.1093/femsle/fnx091

  • Zuccarini P, Okurowska P (2008) Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31(3):497–513

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabassum, B., Samuel, A.O., Bhatti, M.U., Fatima, N., Shahid, N., Nasir, I.A. (2019). Bottlenecks in Commercialization and Future Prospects of Beneficial Halotolerant Microorganisms for Saline Soils. In: Kumar, M., Etesami, H., Kumar, V. (eds) Saline Soil-based Agriculture by Halotolerant Microorganisms. Springer, Singapore. https://doi.org/10.1007/978-981-13-8335-9_9

Download citation

Publish with us

Policies and ethics