Skip to main content

Application of Genomics to Understand the Pathogenic Microbial Diversity

  • Chapter
  • First Online:
  • 1050 Accesses

Abstract

Conventional bacteriological, biochemical, and molecular methods used in diagnostic laboratories for identification of pathogens are laborious, time-consuming, and expensive. Moreover, it provides limited information which is not sufficient to evaluate the disease outbreak and epidemiological investigations. Due to drastic reduction in sequencing cost concomitant with an increase in the sequence quality, whole genome sequencing of prokaryotes based on NGS is economically feasible as a routine tool for clinical diagnostics and surveillance of pathogens. Availability of comprehensive biological information databases and advanced bioinformatics tools for analysis of pan-genomes, single nucleotide polymorphisms, virulence factors, antibiotic resistance, recombination, and lateral or horizontal gene transfer events have greatly facilitated the identification of emerging pathogenic strains, understanding their population dynamics, genomic plasticity, virulence and pathogenicity, and epidemiology. Genomics studies have greatly enriched our knowledge of various genetic events that have shaped pathogenic bacterial genomes and guided their evolution, such as mutations, insertions, deletions, duplications, inversions, transpositions, and recombination. Whole genome analyses of the classical mammalian Bordetella spp., Vibrio cholerae, and Salmonella enterica have revealed important features of their virulence and pathogenicity, as well as their evolution as successful human pathogens. Gene inactivation, polymorphism, accumulation of IS elements, and genome decay have guided the evolution of the classical Bordetella spp. as separate host-restricted pathogens, while the acquisition of pathogenicity islands by HGT mechanisms has the greatest impact on the evolution, virulence, and pathogenicity of Vibrio cholerae and Salmonella enterica.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe A, Nagamatsu K, Watanabe M (2008) The Bordetella type III secretion system: Its application to vaccine development. Microbiol Immunol 52:128–133

    Article  CAS  PubMed  Google Scholar 

  • Akerley BJ, Monack DM, Falkow S, Miller JF (1992) The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. J Bacteriol 174:980–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genomics 12:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul AF, Madden TL, Schaffer AA, Zhang J, Zhang Z et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aujoulat F, Roger F, Bourdier A, Lotthé A, Lamy B et al (2012) From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens. Genes 3:191–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausiello CM, Cassone A (2014) Acellular pertussis vaccines and pertussis resurgence: revise or replace? mBio 5:e01339–e01314

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz RK, Bartels D, Best A, DeJongh M, Disz T et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:1–15

    Article  CAS  Google Scholar 

  • Badhai J, Das SK (2016) Characterization of three novel SXT/R391 integrating conjugative elements ICEMfuInd1a and ICEMfuInd1b, and ICEMprChn1 identified in the genomes of Marinomonas fungiae JCM 18476T and Marinomonas profundimaris strain D104. Front Microbiol 7:1896

    PubMed  PubMed Central  Google Scholar 

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK et al (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Bi D, Xu Z, Harrison E, Tai C, Wei Y et al (2012) ICEberg: a web- based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res 40:D621–D626

    Article  CAS  PubMed  Google Scholar 

  • Blanc-Potard AB, Solomon F, Kayser J, Groisman EA (1999) The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol 181:998–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchez V, Guiso N (2015) Bordetella pertussis, B. parapertussis, vaccines and cycles of whooping cough. Pathog Dis 73:1–6

    Article  CAS  Google Scholar 

  • Brinig MM, Register KB, Ackermann MR, Relman DA (2006) Genomic features of Bordetella parapertussis clades with distinct host species specificity. Genome Biol 7:R81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryant J, Chewapreecha C, Bentley SD (2012) Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol 7:1283–1296

    Article  CAS  PubMed  Google Scholar 

  • Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carraro N, Burrus V (2014) Biology of three ICE families: SXT/R391, ICEBs1, and ICESt1/ICESt3. Microbiol Spectr 2:1–20

    CAS  Google Scholar 

  • Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG et al (2005) ACT: the artemis comparison tool. Bioinformatics 21:3422–3423

    Article  CAS  PubMed  Google Scholar 

  • Carver TJ, Berriman M, Tivey A, Patel C, Böhme U et al (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champion GA, Neely MN, Brennan MA, DiRita VJ (1997) A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains. Mol Microbiol 23:323–331

    Article  CAS  PubMed  Google Scholar 

  • Chawley P, Samal HB, Prava J, Suar M, Mahapatra RK (2014) Comparative genomics study for identification of drug and vaccine targets in Vibrio cholerae: MurA ligase as a case study. Genomics 103:83–93

    Article  CAS  PubMed  Google Scholar 

  • Che D, Hasan MS, Chen B (2014a) Identifying pathogenicity islands in bacterial pathogenomics using computational approaches. Pathogens 3:36–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Che D, Wang H, Fazekas J, Chen B (2014b) An accurate genomic island prediction method for sequenced bacterial and archaeal genomes. J Proteomics Bioinformatics 7:214–221

    CAS  Google Scholar 

  • Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for bigdata analysis-10 years on. Nucleic Acids Res 44:D694–D697

    Article  CAS  PubMed  Google Scholar 

  • Cherry JD, Heininger U (2014) Pertussis and other bordetella infections. In: Feigin RD, Cherry JD, Harrison GJ et al (eds) Textbook of pediatric infectious diseases, 7th edn. WB Saunders, Philadelphia, pp 1616–1639

    Google Scholar 

  • Chiapello H, Gendrault A, Caron C, Blum J, Petit MA et al (2008) MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level. BMC Bioinf 9:498

    Article  CAS  Google Scholar 

  • Chiu CH, Tang P, Chu C, Hu S, Bao Q et al (2005) The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 33:1690–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY et al (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 106:15442–15447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter PA, Jones AM (2003) Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol 11:367–373

    Article  CAS  PubMed  Google Scholar 

  • Crofts TS, Gasparrini AJ, Dantas G (2017) Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 15:422–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings CA, Brinig MM, Lepp PW, van de Pas S, Relman DA (2004) Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J Bacteriol 186:1484–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings CA, Bootsma HJ, Relman DA, Miller JF (2006) Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J Bacteriol 188:1775–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WWL et al (2011) Antibiotic resistance is ancient. Nature 477:457–461

    Article  PubMed  CAS  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deiwick J, Nikolaus T, Erdogan S, Hensel M (1999) Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol Microbiol 31:1759–1773

    Article  CAS  PubMed  Google Scholar 

  • Deneke C, Rentzsch R, Renard BY (2017) PaPrBaG: A machine learning approach for the detection of novel pathogens from NGS data. Sci Rep 7:39194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA et al (2005) Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog e45:1

    Google Scholar 

  • Donkor ES (2013) Sequencing of bacterial genomes: principles and insights into pathogenesis and development of antibiotics. Genes 4:556–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF et al (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA 99:1556–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Entrez Sequences Help [Internet] (2010). National Center for Biotechnology Information (US), Bethesda. Available at: https://www.ncbi.nlm.nih.gov/books/NBK44864/

  • Faruque SM, Mekalanos JJ (2003) Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol 11:505–510

    Article  CAS  PubMed  Google Scholar 

  • Faruque SM, Alber MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:1301–1314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque SM, Sack DA, Sack RB, Colwell RR, Takeda Y et al (2003) Emergence and evolution of Vibrio cholerae O139. Proc Natl Acad Sci USA 100:1304–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque SM, Nair GB, Mekalanos JJ (2004) Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol 23:723–741

    Article  CAS  PubMed  Google Scholar 

  • Fasano A, Baudry B, Pumplin DW, Wasserman SS, Tall BD et al (1991) Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci USA 88:5242–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY et al (2014) Pfam: The protein families’ database. Nucleic Acids Res 42:222–230

    Article  CAS  Google Scholar 

  • Folkesson A, Lofdahl S, Normark S (2002) The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol 153:537–545

    Article  CAS  PubMed  Google Scholar 

  • Forde BM, O’Toole PW (2013) Next-generation sequencing technologies and their impact on microbial genomics. Brief Funct Genomics 12:440–453

    Article  CAS  PubMed  Google Scholar 

  • Fookes M, Schroeder GN, Langridge GC, Blondel CJ et al (2011) Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog e1002191:7

    Google Scholar 

  • Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA et al (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouts DE, Brinkac L, Beck E, Inman J, Sutton G (2012) PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Res 40:e172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes JA, Villagra N, Castillo-Ruiz M, Mora GC (2008) The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. typhimurium promotes deep organ infection in mice. Res Microbiol 159:279–287

    Article  CAS  PubMed  Google Scholar 

  • Fullner KJ, Mekalanos JJ (1999) Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infect Immun 67:1393–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner SN, Hall BG (2013) When whole-genome alignments just won’t work: Ksnp V2 Software for alignment–free Snp discovery and phylogenetics of hundreds of microbial genomes. PLoS One 8:e81760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gardner SN, Slezak T, Hall BG (2015) kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics 31:2877–2878

    Article  CAS  PubMed  Google Scholar 

  • Garg A, Gupta D (2008) VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinf 9:62

    Article  CAS  Google Scholar 

  • Garmendia J, Beuzon CR, Ruiz-Albert J, Holden DW (2003) The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology 149:2385–2396

    Article  CAS  PubMed  Google Scholar 

  • Georgiades K, Raoult D (2011) Comparative genomics evidence that only protein toxins are tagging bad bugs. Front Cell Infect Microbiol 1:7

    PubMed  PubMed Central  Google Scholar 

  • Gilchrist CA, Turner SD, Riley MF, Petri WA, Hewlett EL (2015) Whole-genome sequencing in outbreak analysis. Clin Microbiol Rev 28:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg MB, Boyko SA, Calderwood SB (1991) Positive transcriptional regulation of an iron-regulated virulence gene in Vibrio cholerae. Proc Natl Acad Sci USA 88:1125–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu J, Wang Y, Lilburn T (2009) A comparative genomics, network-based approach to understanding virulence in Vibrio cholerae. J Bacteriol 191:6262–6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunn JS, Alpuche-Aranda CM, Loomis WP, Belden WJ et al (1995) Characterization of the Salmonella typhimurium pagC/pagD chromosomal region. J Bacteriol 177:5040–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al (2014) ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:212e20

    Google Scholar 

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  CAS  PubMed  Google Scholar 

  • Hacker J, Blum-Oehler G, Muhldorfer I, Tschape H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Haneda T, Ishii Y, Danbara H, Okada N (2009) Genome-wide identification of novel genomic islands that contribute to Salmonella virulence in mouse systemic infection. FEMS Microbiol Lett 297:241–249

    Article  CAS  PubMed  Google Scholar 

  • Hansen-Wester I, Hensel M (2002) Genome-based identification of chromosomal regions specific for Salmonella spp. Infect Immun 70:2351–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison E, Brockhurst MA (2012) Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 20:262–267

    Article  CAS  PubMed  Google Scholar 

  • Hegerle N, Rayat L, Dore G, Zidane N, Bedouelle H et al (2013) In vitro and in vivo analysis of the expression of the Bordetella type three secretion system effector A in Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis. Microbes Infect 15:399–408

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML et al (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508

    Article  CAS  PubMed  Google Scholar 

  • Hensel M (2004) Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 294:95–102

    Article  CAS  PubMed  Google Scholar 

  • Herrou J, Debrie AS, Willery E, Renaud-Mongénie G, Locht C et al (2009) Molecular evolution of the two-component system BvgAS involved in virulence regulation in Bordetella. PLoS One 4:10

    Article  PubMed Central  Google Scholar 

  • Hibberd ML (2013) Microbial genomics: an increasingly revealing interface in human health and disease. Genome Med 5:10–12

    Article  Google Scholar 

  • Hsiao WW, Ung K, Aeschliman D, Bryan J, Finlay BB et al (2005) Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genetics 1:e62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacob-Dubuisson F, Locht C (2007) The Bordetella adhesins. Bordetella: molecular microbiology. Horizon Biosci:69–96

    Google Scholar 

  • Johnson CM, Grossman AD (2015) Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet 49:577–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB et al (1998) A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA 95:3134–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilgore PE, Salim AM, Zervos MJ, Schmitt H (2016) Pertussis: microbiology, disease, treatment, and prevention. Clin Microbiol Rev 29:449–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein NP, Bartlett J, Fireman B, Aukes L, Buck PO et al (2017) Waning protection following 5 doses of a 3-component diphtheria, tetanus, and acellular pertussis vaccine. Vaccine 35:3395–3400

    Article  PubMed  Google Scholar 

  • Korves T, Colosimo ME (2009) Controlled vocabularies for microbial virulence factors. Trends Microbiol 17:279–285

    Article  CAS  PubMed  Google Scholar 

  • Kurushima J, Kuwae A, Abe A (2012) Btc22 chaperone is required for secretion and stability of the type III secreted protein Bsp22 in Bordetella bronchiseptica. FEMS Microbiol Lett 331:144–151

    Article  CAS  PubMed  Google Scholar 

  • Laing C, Buchanan C, Taboada EN, Zhang Y, Kropinski A et al (2010) Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinf 11:461

    Article  CAS  Google Scholar 

  • Land M, Hauser L, Jun SR, Nookaew I, Leuze MR et al (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15:141–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langille MG, Hsiao WW, Brinkman FS (2010) Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol 8:373–382

    Article  CAS  PubMed  Google Scholar 

  • Lasken RS, McLean JS (2014) Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genetics 15:577–584

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG, Hendrickson H (2005) Genome evolution in bacteria: order beneath chaos. Curr Opin Microbiol 8:572–578

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Fullner KJ, Clayton R, Sexton JA, Rogers MB et al (1999) Identification of a vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci USA 96:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linz B, Ivanov YV, Preston A, Brinkac L, Parkhill J et al (2016) Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics 17:767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Pop M (2009) ARDB – Antibiotic Resistance Genes Database. Nucleic Acids Res 37:D443–D447

    Article  CAS  PubMed  Google Scholar 

  • Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcus SL, Brumell JH, Pfeifer CG, Finlay BB (2000) Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2:145–156

    Article  CAS  PubMed  Google Scholar 

  • Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E et al (2012) IMG: The integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:115–122

    Article  CAS  Google Scholar 

  • Mattoo S, Cherry JD (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280:605–608

    Article  CAS  PubMed  Google Scholar 

  • Mazumder R, Natale DA, Murthy S, Thiagarajan R, Wu CH (2005) Computational identification of strain-, species- and genus-specific proteins. BMC Bioinf 6:1–9

    Article  CAS  Google Scholar 

  • McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al (2013) The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 57:3348e57

    Article  CAS  Google Scholar 

  • McClelland M, Sanderson KE, Spieth J, Clifton SW et al (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    Article  CAS  Google Scholar 

  • McGann P, Bunin JL, Snesrud E, Singh S, Maybank R et al (2016) Real time application of whole genome sequencing for outbreak investigation – What is an achievable turnaround time? Diagn Microbiol Infect Dis 85:277–282

    Article  CAS  PubMed  Google Scholar 

  • Melvin JA, Scheller EV, Miller JF, Cotter PA (2014) Bordetella pertussis pathogenesis: Current and future challenges. Nat Rev Microbiol 12:274–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D (2009) Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol Direct 4:1–25

    Article  CAS  Google Scholar 

  • Merhej V, Georgiades K, Raoult D (2013) Postgenomic analysis of bacterial pathogens repertoire reveals genome reduction rather than virulence factors. Brief Funct Genomics 12:291–304

    Article  CAS  PubMed  Google Scholar 

  • Miller SI, Kukral AM, Mekalanos JJ (1989) A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 86:5054–5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon K, Bonocora RP, Kim DD, Chen Q, Wade JT et al (2017) The BvgAS regulon of Bordetella pertussis. mBio 8:1–15

    Article  CAS  Google Scholar 

  • Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586

    Article  CAS  PubMed  Google Scholar 

  • Morris CE, Bardin M, Berge O, Frey-Klett P, Fromin N et al (2002) Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microbiol Mol Biol Rev 66:592–616

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36:760–766

    Article  CAS  PubMed  Google Scholar 

  • Narihiro T, Kamagata Y (2017) Genomics and Metagenomics in microbial ecology: recent advances and challenges. Microbes Environ 32:1–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesme J, Ce’cillon S, Delmont TO, Monier JM, Vogel TM et al (2014) Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol 24:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Nicholson TL (2007) Construction and validation of a first-generation Bordetella bronchiseptica long-oligonucleotide microarray by transcriptional profiling the Bvg regulon. BMC Genomics 8:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ochman H, Davalos LM (2006) The nature and dynamics of bacterial genomes. Science 311:1730–1733

    Article  CAS  PubMed  Google Scholar 

  • Olaitan AO, Rolain JM (2016) Ancient resistome. MicrobiologySpectrum 4: PoH-0008-2015

    Google Scholar 

  • Ou HY, He X, Harrison EM, Kulasekara BR, Thani AB et al (2007) MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands. Nucleic Acids Res 35:W97–W104

    Article  PubMed  PubMed Central  Google Scholar 

  • Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY et al (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:206–214

    Article  CAS  Google Scholar 

  • Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449:835–842

    Article  CAS  PubMed  Google Scholar 

  • Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC et al (2012) Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 13:545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J et al (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852

    Article  CAS  PubMed  Google Scholar 

  • Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N et al (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40

    Article  PubMed  Google Scholar 

  • Perron GG, Lee AEG, Wang Y, Huang WE, Barraclough TG (2012) Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations. Philos Trans R Soc B 279:1477–1484

    Google Scholar 

  • Peterson JW (1996) Bacterial pathogenesis. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch, Galveston

    Google Scholar 

  • Pickard D, Wain J, Baker S, Line A, Chohan S, Fookes M et al (2003) Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J Bacteriol 185:5055–5065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollitzer R (1959) History of the disease. In: Pollitzer R (ed) Cholera. World Health Organization, Geneva, pp 11–50

    Google Scholar 

  • Raskin DM, Seshadri R, Pukatzki SU, Mekalanos JJ (2006) Bacterial genomics and pathogen evolution. Cell 124:703–714

    Article  CAS  PubMed  Google Scholar 

  • Reen FJ, Boyd EF (2005) Molecular typing of epidemic and nonepidemic Vibrio cholerae isolates and differentiation of V. cholerae and V. mimicus isolates by PCR-single-strand conformation polymorphism analysis. J Appl Microbiol 98:544–555

    Article  CAS  PubMed  Google Scholar 

  • Rouli L, Merhej V, Fournier PE, Raoult D (2015) The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect 7:72–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabbagh SC, Forest CG, Lepage C, Leclerc JM, Daigle F (2010) So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett 305:1–13

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Raghava GP (2006) VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics Proteomics Bioinformatics 4:42–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah DH, Lee MJ, Park JH, Lee JH, Eo SK, Kwon JT, Chae JS (2005) Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology 151:3957–3968

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Arakawa E, Itoh K, Okitsu T, Matsushima A, Asai Y, Yamai S, Nakazato T, Nair GB, Albert MJ, Takeda Y (1994) Extended serotyping scheme for Vibrio cholerae. Curr Microbiol 28:175–178

    Article  Google Scholar 

  • Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36

    Article  CAS  PubMed  Google Scholar 

  • Socolovschi C, Audoly G, Raoult D (2013) Connection of toxin-antitoxin modules to inoculation eschar and arthropod vertical transmission in Rickettsiales. Comp Immunol Microbiol Infect Dis 36:199–209

    Article  PubMed  Google Scholar 

  • Soumana IH, Linz B, Harvill ET (2017) Environmental origin of the genus Bordetella. Front Microbiol 8:1–10

    Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT et al (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial ‘pan-genome’. Proc Natl Acad Sci USA 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tindall BJ, Grimont PA, Garrity GM, Euzeby JP (2005) Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 55:521–524

    Article  CAS  PubMed  Google Scholar 

  • Townsend SM, Kramer NE, Edwards R, Baker S, Hamlin N et al (2001) Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69:2894–2901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CT, Huang WL, Ho SJ, Shu LS, Ho SY (2009) Virulent-GO: prediction of virulent proteins in bacterial pathogens utilizing gene ontology terms. Development 1:3

    Google Scholar 

  • UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75

    Article  CAS  Google Scholar 

  • van Baarlen P, van Belkum A, Summerbell RC, Crous PW, Thomma BPHJ (2007) Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev 31:239–277

    Article  PubMed  CAS  Google Scholar 

  • van der Zee A, Mooi F, Van Embden J, Musser J (1997) Molecular evolution and host adaptation of Bordetella spp.: phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. J Bacteriol 179:6609–6617

    Article  PubMed  PubMed Central  Google Scholar 

  • Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22:2196–2203

    Article  CAS  PubMed  Google Scholar 

  • Vernikos G, Medini D, Riley DR, Tettelin H (2015) Ten years of pan-genome analyses. Curr Opin Microbiol 23:148–154

    Article  CAS  PubMed  Google Scholar 

  • Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al (2017) Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 45:D535–D542

    Article  CAS  PubMed  Google Scholar 

  • Weyrich LS, Rolin OY, Muse SJ, Park J, Spidale N et al (2012) A type VI secretion system encoding locus is required for Bordetella bronchiseptica immunomodulation and persistence in vivo. PLoS One 7:e45892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976

    Article  CAS  PubMed  Google Scholar 

  • Williams MM, Sen KA, Weigand MR, Skoff TH, Cunningham VA et al (2016) Bordetella pertussis strain lacking pertactin and pertussis toxin. Emerg Infect Dis 22:319–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirsing von Koenig CH, Guiso N (2017) Global burden of pertussis: signs of hope but need for accurate data. Lancet Infect Dis 17:889–890

    Article  Google Scholar 

  • Wong KK, McClelland M, Stillwell LC, Sisk EC, Thurston SJ et al (1998) Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar typhimurium LT2. Infect Immun 66:3365–3371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood MW, Jones MA, Watson PR, Hedges S, Wallis TS et al (1998) Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 29:883–891

    Article  CAS  PubMed  Google Scholar 

  • Wright GD (2010) The antibiotic resistome. Expert Opin Drug Discovery 5:779–788

    Article  CAS  Google Scholar 

  • Wu HJ, Wang AHJ, Jennings MP (2008) Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol 12:93–101

    Article  CAS  PubMed  Google Scholar 

  • Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW (2017) An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect Dis 17:974–980

    Article  PubMed  Google Scholar 

  • Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640e4

    Article  CAS  Google Scholar 

  • Zheng LL, Li YX, Ding J, Guo XK, Feng KY et al (2012) A comparison of computational methods for identifying virulence factors. PLoS ONE 7:e42517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou CE, Smith J, Lam M, Zemla A, Dyer MD et al (2007) MvirDB- a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defense applications. Nucleic Acids Res 35:D391–D394

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badhai, J., Deb, S., Das, S.K. (2019). Application of Genomics to Understand the Pathogenic Microbial Diversity. In: Satyanarayana, T., Johri, B., Das, S. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_3

Download citation

Publish with us

Policies and ethics