Skip to main content

Importance of Cyanobacterial Taxonomy in Biotechnological Applications

  • Chapter
  • First Online:
Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications

Abstract

Cyanobacteria possess a host of proteases which unlike heterotrophs do not take part in protein nutrition. Instead, they maintain homeostasis of several vital functions, namely photosynthesis, nitrogen fixation, cellular assembly and disintegration, stress acclimation, and defense against predators. Herein, we review the Clp, FtsH, Deg/HtrA, Ctp, and SppA proteases, which under regular and photooxidative stress conditions maintain the integrity of photosynthetic and cytoplasmic membranes, periplasmic proteins, and photosystem particles, including the core complex protein, D1. The HetR protease by coordinating with the Alr3815 protease enables heterocyte differentiation and protection of nitrogenase from oxygen stress. The cell aggregation PteB proteases and caspases regulate the biomass density of cyanobacterial assemblages, and cyanophycinase mobilizes the reserve N, cyanophycin . Macrocyclization proteases mature up the ribosomally synthesized cyclic peptides of cyanobactin class with varied bioactivities. Numerous cyano-proteases listed in the UniProt database are homologues of eubacteria and higher plants with mostly unknown functions but with immense evolutionary significance in understanding the gene flow across bacteria and chloroplasts. Proteases are exclusive and therefore can be tailor-made to customize peptide drug synthesis and to formulate food additives and antimalarial, antivirulence, and antithrombotic agents. Notwithstanding these opportunities, taxonomic inadequacy and lack of proper nomenclature have adversely affected different biotechnological application processes. As a remedy, we propose that polyphasic approach of classification and reassessment of old taxonomic status may be necessary before patenting/commercialization of biotechnological processes/products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera A, Berrendero E, Kaštovský J, Echenique RO, Salerno GL (2018) The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 57:130–146

    Article  Google Scholar 

  • Anagnostidis K, Komárek J (1985) Modern approach to the classification system of the cyanophytes 1. Introduction. Algol Stud 38/39:291–302

    Google Scholar 

  • Anagnostidis K & Komárek J (1988). Modern approach to the classification system of the cyanophytes 3. Oscillatoriales Algol Stud 50/53: 327–472

    Google Scholar 

  • Anagnostidis K, Komárek J (1990) Modern approach to the classification system of the cyanophytes 5. Stigonematales Algol Stud 86:1–74

    Google Scholar 

  • Andersson FI, Tryggvesson A, Sharon M, Diemand AV, Classen M, Best C, Schmidt R, Schelin J, Stanne TM, Bukau B, Robinson CV, Witt S, Mogk A, Clarke AK (2009) Structure and function of a novel type of ATP-dependent Clp protease. J Biol Chem 284:13519–13532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argueta C, Yuksek K, Patel R, Summers ML (2006) Identification of Nostoc punctiforme akinete-expressed genes using differential display. Mol Microbiol 61:748–757

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanisms. J Exp Bot 57:249–265

    Article  CAS  PubMed  Google Scholar 

  • Bagchi SN, Dubey N, Singh P (2017) Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. Int J Syst Evol Microbiol 67:3329–3338

    Article  PubMed  Google Scholar 

  • Baier K, Nicklisch S, Lockau W (1996) Evidence for propeptide assisted folding of the calcium-dependent protease of the cyanobacterium Anabaena. Eur J Biochem 241:750–755

    Article  CAS  PubMed  Google Scholar 

  • Baier A, Winkler W, Korte T, Lockau W, Karradt A (2014) Degradation of phycobilisomes in Synechocystis sp. PCC6803: evidence for essential formation of an NblA1/NblA2 heterodimer and its codegradation by a Clp protease complex. J Biol Chem 289:11755–11766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Prasanna R, Bagchi SN (2013) Purification and characterization of a fibrino(geno)lytic protease from cultured natural isolate of a cyanobacterium, Anabaena fertilissima. J Appl Phycol 25:1111–1122

    Article  CAS  Google Scholar 

  • Bečková M, Yu J, Krynická V, Kojlo A, Shao S, Konik P, Komenda J, Murray JW, Nixon PJ (2017) Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Phil Trans R Soc B 372:20160394. https://doi.org/10.1098/rstb.2016.0394

    Article  CAS  PubMed Central  Google Scholar 

  • Berrendero E, Perona E, Mateo P (2008) Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water. Int J Syst Evol Microbiol 58:447–460

    Article  CAS  PubMed  Google Scholar 

  • Berrendero E, Johansen JR, Kaštovský J, Bohunická M, Čapková K (2016) Macrochaete gen. nov. (Nostocales, Cyanobacteria), a taxon morphologically and molecularly distinct from Calothrix. J Phycol 52:638–655

    Article  Google Scholar 

  • Bhaya D, Schwarz R, Grossman AR (2000) Molecular responses to environmental stress. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic, Dordrecht, pp 397–442

    Google Scholar 

  • Boehm M, Yu J, Krynicka Y, Barker M, Tichy M, Komenda J, Nixon PJ, Nield J (2012) Subunit organization of a Synechocystis hetero-oligomeric thylakoid FtsH complex involved in photosystem II repair. Plant Cell 24:3669–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohunická M, Pietrasiak N, Johansen JR, Berrendero Gómez E, Hauer T, Gaysina LA, Lukešová A (2015) Roholtiella, gen. nov. (Nostocales, Cyanobacteria)- a tapering and branching cyanobacteria of the family Nostocaceae. Phytotaxa 197:84–103

    Article  Google Scholar 

  • Bornet E, Flahault C (1886) Revision des Nostocacées hétérocystées contenues dans les principaux herbiers de France. Ann des Sci Nat Bot 1886; Ser 3:323–81; 4:343-373; 5:51-129; 7:177-262

    Google Scholar 

  • Bourrelly P (1970) Les alguesd’eaudouce III. Boubée & Cie, Paris

    Google Scholar 

  • Büdel B, Kauff F (2012) Blue-green algae. In: Frey W (ed) Syllabus of plant families, Engler’s syllabus der Pflanzenfamilien, part VI. Borntraeger, Stuttgart, pp 5–39

    Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J Phycol 41:421–438

    Article  CAS  Google Scholar 

  • Castenholz RW (1992) Species usage, concept, and evolution in the cyanobacteria (blue-green algae). J Phycol 28:737–745

    Article  Google Scholar 

  • Castenholz RW (2001) Phylum BX. Cyanobacteria, oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer-Verlag, New York/Berlin/Heidelberg, pp 473–597

    Chapter  Google Scholar 

  • Cheregi O, Wagner R, Funk C (2016) Insights into the cyanobacterial Deg/HtrA proteases. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00694

  • Dong Y, Huang X, Wu XY, Zhao J (2000) Identification of the active site of HetR protease and its requirement for heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 182:1575–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll CB, Meyer KA, Šulčius S, Brown NM, Dick GJ, Cao H, Gasiūnas G, Timinskas A, Yin Y, Landry ZC, Otten TG, Davis TW, Watson SB, Dreher TW (2018) A closely-related clade of globally distributed bloom-forming cyanobacteria within the Nostocales. Harm Algae 77:93–107

    Article  Google Scholar 

  • Drouet F (1981) Revision of the Stigonemataceae with a summary of the classification of the blue-green algae. Beih Nova Hedwigia 66:1–221

    Google Scholar 

  • Dubey N, Singh P, Bagchi SN (2018) A calcium-stimulated serine peptidase from a true-branching cyanobacterium, Westiellopsis ramosa sp. nov. Physiol Mol Biol Plants 24:261–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvořák P, Casamatta DA, Hašler P, Jahodářová E, AR & N, Poulíčková A (2017) Diversity of the cyanobacteria. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes. Springer International Publishing, Cham, pp 3–46

    Chapter  Google Scholar 

  • Elenkin AA (1938) Monographia algarum cyanophycearum aquidulcium et terrestrium in finibus URSS inventarum. (Sinezelenye vodorosli SSSR). Pars spec. (1-2). pp. 1-1908. Moskva-Leningrad: Izd. AN SSSR

    Google Scholar 

  • Fernández-Martínez MA, Ríos ADL, Sancho LG, Pérez-Ortega S (2013) Diversity of endosymbiotic Nostoc in Gunnera magellanica (L) from Tierra del Fuego, Chile. Microb Ecol 66:335–350

    Article  PubMed  CAS  Google Scholar 

  • Flores E, Picossi S, Valladares A, Herrero A (2018) Transcriptional regulation of development in heterocyst-forming cyanobacteria. Biochim Biophys Acta (In press) doi: https://doi.org/10.1016/j.bbagrm.2018.04.006

    Article  CAS  Google Scholar 

  • Frémy P (1929) Les Nostocacées de la Normandie. Not Mem Doc Soc Agric Archéol Hist nat Manche 41:197–228

    Google Scholar 

  • Frias JE, Flores E, Herrero A (1994) Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. J Molec Microbiol 14:823–832

    Article  CAS  Google Scholar 

  • Funk C, Hauβühl K, Adamska I (2001) Family of Deg/Htr proteases in the cyanobacterium Synechocystis sp. PCC6803: Investigations toward their expression and function. In Larkum T, Critchley C (eds.) CSIRO Publishing, Brisbane, Australia

    Google Scholar 

  • Garcia-Pichel F, Cortes AL, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Appl Environ Microbiol 67:1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geitler L (1925) Cyanophyceae. In: Pascher A (ed.) Süswasserflora Gustav Fischer Verl., Jena, 12: 481

    Google Scholar 

  • Geitler L (1932) Cyanophyceae. – In: Rabenhorst L (ed.) Kryptogamen–Flora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig, Germany, pp. 673–1056

    Google Scholar 

  • Geitler L (1942) Schizophyta (Klasse Schizophyceae). In: Engler A, Prantl K (eds.) Natürliche Pflanzenfamilien Duncker & Humblot, Berlin 1942;1b:1–232

    Google Scholar 

  • Genuário DB, Vaz GMV, Hentschke GS, Anna CLS, Fiore MF (2015) Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 65:663–675

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halinen K, Fewer DP, Sivonen LM, Lyra C, Eronen E, Sivonen K (2008) Genetic diversity in strains of the genus Anabaena isolated from planktonic and benthic habitats of the Gulf of Finland (Baltic Sea). FEMS Microbiol Ecol 64:199–208

    Article  CAS  PubMed  Google Scholar 

  • Hall M, Wagner R, Lam XT, Funk C, Persson K (2017) The HhoA protease from Synechocystis sp. PCC 6803 – novel insights into structure and activity regulation. J Str Biol 198:147–153

    Article  CAS  Google Scholar 

  • Halperin T, Ostersetzer O, Adam Z (2001) ATP – dependent association between subunits of Clp protease in pea chloroplasts. Planta 213:614–619

    Article  CAS  PubMed  Google Scholar 

  • Hauer T, Bohunická M, Johansen JR, Mareš J, Berrendero-Gomez E (2014) Reassessment of the cyanobacterial family Microchaetaceae and establishment of new families Tolypothrichaceae and Godleyaceae. J Phycol 50:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Henson BJ, Hesselbrock SM, Watson LE, Barnum SR (2004) Molecular phylogeny of the heterocystous cyanobacteria (subsections IV and V) based on nifD. Int J Syst Evol Microbiol 54:493–497

    Article  CAS  PubMed  Google Scholar 

  • Hrouzek P, Ventura S, Lukešová A, Mugnai MA, Turicchia S, Komárek J (2005) Diversity of soil Nostoc strains: phylogenetic and phenotypic variability. Algol Stud 117:16–122

    Article  Google Scholar 

  • Hrouzek P, Lukešová A, Mareš J, Ventura S (2013) Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea 13:201–213

    Article  Google Scholar 

  • Imai K, Kitayama Y, Kondo T (2013) Elucidation of the role of Clp protease components in circadian rhythm by genetic deletion and overexpression in cyanobacteria. J Bactriol 195:4517–4526

    Article  CAS  Google Scholar 

  • Kabirnataj S, Nematzadeh GA, Talebi AF, Tabatabaei M, Singh P (2018) Neowestiellopsis gen. nov, a new genus of true branched cyanobacteria with the description of Neowestiellopsis persica sp. nov. and Neowestiellopsis bilateralis sp. nov., isolated from Iran. Plant Syst Evol 304:501–510

    Article  CAS  Google Scholar 

  • Karnauchov I, Herrmann RG, Pakrasi HB, Klösgen RB (1997) Transport of CtpA protein from the cyanobacterium Synechocystis 6803 across the thylakoid membrane in chloroplasts. Eur J Biochem 249:497–504

    Article  CAS  PubMed  Google Scholar 

  • Klemenčič M, Funk C (2018) Structural and functional diversity of caspase homologues in non-metazoan organisms. Protoplasma 255:387–397

    Article  PubMed  CAS  Google Scholar 

  • Klemenčič M, Novinec M, Dolinar M (2015) Orthocaspases are proteolytically active prokaryotic caspase homologues: the case of Microcystis aeruginosa. Molec Microbiol 98:142–150

    Article  CAS  Google Scholar 

  • Knappe TA, Manzenrieder F, Mas-Moruno C, Linne U, Sasse F, Kessler H, Xie X, Marahiel MA (2011) Introducing lasso peptides as molecular scaffolds for drug design: engineering of an integrin antagonist. Angew Chem Int Ed 50:8714–8717

    Article  CAS  Google Scholar 

  • Komárek J (2005) Studies on the cyanophytes (Cyanobacteria, cyanoprokaryota) of Cuba 11. Freshwater Anabaena species. Preslia 77:211–234

    Google Scholar 

  • Komárek J (2008) The cyanobacterial genus Macrospermum. Fottea 8:79–86

    Article  Google Scholar 

  • Komárek J (2010) Modern taxonomic revision of planktic-nostocacean cyanobacteria: a short review of genera. Hydrobiology 639:231–243

    Article  CAS  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota. 3. Heterocytous genera. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Süswasserflora von Mitteleuropa/Freshwater flora of Central Europe. Springer Spektrum Berlin, Heidelberg, p 1130

    Google Scholar 

  • Komárek J (2016) A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur J Phycol 51:346–353

    Article  CAS  Google Scholar 

  • Komárek J (2018) Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 811:7–17

    Article  CAS  Google Scholar 

  • Komárek J, Anagnostidis K (1986) Modern approach to the classification system of the cyanophytes 2. Chroococcales Algol Stud 43:157–226

    Google Scholar 

  • Komárek J, Anagnostidis K (1989) Modern approach to the classification system of the cyanophytes 4. Nostocales Algol Stud 56:247–345

    Google Scholar 

  • Komarek J, Komárková J (2004) Taxonomic review of the cyanoprokaryotic genera Planktothrixand Planktothricoides. Czech Phycol 4:1–18

    Google Scholar 

  • Komárek J, Zapomělová E (2007) Plankticmorphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum– 1. Part: coiled types. Fottea 7:1–31

    Article  Google Scholar 

  • Komárek J, Zapomělová E (2008) Plankticmorphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum– 2. Part: straight types. Fottea 8:1–14

    Article  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J, Johansen J (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Krynická V, Tichý M, Krafl J, Yu J, Kaňa R, Boehm M, Nixon PJ, Komenda J (2014) Two essential FtsH proteases control the level of the Fur repressor during iron deficiency in the cyanobacterium Synechocystis sp.PCC6803. Molec Microbiol 94:609–624

    Article  CAS  Google Scholar 

  • Kust A, Kozlíková–Zapomělová E, Mareš J, Řeháková K (2015) A detailed morphological, phylogenetic and ecophysiological analysis of four benthic Anabaena (Nostocales, Cyanobacteria) strains confirms deep heterogeneity within the genus. Fottea 15:191–202

    Article  Google Scholar 

  • Lam XT, Aigner H, Timmerman E, Gevaert K, Funk C (2015) Proteomic approaches to identify substrates of the three Deg/HtrA proteases of the cyanobacterium Synechocystis sp. PCC 6803. Biochem J 468:373–384

    Article  CAS  Google Scholar 

  • Law AM, Lai SWS, Tavares J, Kimber MS (2009) The structural basis of beta-peptide-specific cleavage by the serine protease cyanophycinase. J Mol Biol 392:393–404

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Zo YG, Kim SJ (1996) Non-radioactive method to study genetic profiles of bacterial communities by PCR-single- strand conformation polymorphism. Appl Environ Microbiol 62:3112–3120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, McIntosh J, Hathaway BJ, Schmidt EW (2009) Using marine natural products to discover a protease that catalyzes peptide macrocyclization of diverse substrates. J Am Chem Soc 131:2122–2124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehtimäki J, Lyra C, Suomalainen S, Sundman P, Rouhiainen L, Paulin L, Salkinoja-Salonen M, Sivonen K (2000) Characterization of Nodulariastrains, cyanobacteria from brackish waters, by genotypic and phenotypic methods. Int J Syst Evol Microbiol 50:1043–1053

    Article  PubMed  Google Scholar 

  • Leikoski N, Fewer DP, Jokela J, Wahlsten M (2010) Highly diverse cyanobactins in strains of the genus Anabaena. Appl Environ Microbiol 76:701–709

    Article  CAS  PubMed  Google Scholar 

  • León-Tejera H, González-Resendiz L, Johansen JR, Segal-kischinevsky C, Escobar V, Lois LA (2016) Phylogenetic position reevaluation of Kyrtuthrix and description of K. huatulcensis from Mexico’s Pacific coast. Phytotaxa 278(1):18

    Article  Google Scholar 

  • Li X, Dreher TW, Li R (2016) An overview of diversity, occurrence, genetics and toxin production of bloom forming Dolichospermum (Anabaena) species. Harm Algae 54:54–68

    Article  CAS  Google Scholar 

  • Lockau VL, Massalsky B, Dirmair A (1998) Purification and partial characterization of a calcium stimulated protease from the cyanobacterium, Anabaena variabilis. Eur J Biochem 172:433–438

    Article  Google Scholar 

  • Lu Z, Sha Z, Tian Y, Zhang X, Liu B, Wu Z (2017) Polyphenolic allelochemical pyrogallic acid induces caspase-3(like)-dependent programmed cell death in the cyanobacterium Microcystis aeruginosa. Algal Res 21:148–155

    Article  Google Scholar 

  • Lyra C, Hantula J, Vanio E, Rapal J, Rouhiainen L, Sivonen K (1997) Characterization of cyanobacteria by SDS-PAGE of whole cell proteins and PCR/RFLP of 16S rRNA gene. Arch Microbiol 168:176–184

    Article  CAS  PubMed  Google Scholar 

  • Lyra C, Laamanen M, Lehtimäki JM, Surakka A, Sivonen K (2005) Benthic cyanobacteria of the genus Nodularia are non toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia. Int J Syst Evol Microbiol 55:555–568

    Article  CAS  PubMed  Google Scholar 

  • Maldener I, Lockau W, Cai Y, Wolk CP (1991) Calcium-dependent protease of the cyanobacterium Anabaena: molecular cloning and expression of the gene in Escherichia coli, sequencing and site-directed mutagenesis. Mol Gen Genet 225:113–120

    Article  CAS  PubMed  Google Scholar 

  • Mareš J (2010) Anabaena fuscovaginata (Nostocales), a new cyanobacterial species from periphyton of the freshwater alkaline marsh of Everglades, South Florida, USA. Fottea 10:235–243

    Article  Google Scholar 

  • Mareš J (2018) Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. Hydrobiologia 811:19–34

    Article  CAS  Google Scholar 

  • Masuda T, Bernát G, Bečková M, Kotabová E, Lawrenz E, Lukeš M, Komenda J, Prášil O (2018) Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ Microbiol 20:546–556

    Article  CAS  PubMed  Google Scholar 

  • McGregor GB, Sendall BC (2017a) Iningainema pulvinus gen nov., sp nov. (Cyanobacteria, Scytonemataceae) a new nodularin producer from Edgbaston reserve, North-Eastern Australia. Harm Algae 62:10–19

    Article  CAS  Google Scholar 

  • McGregor GB, Sendall BC (2017b) Ewamianiathermalis gen. et sp. nov. (Cyanobacteria, Scytonemataceae), a new cyanobacterium from Talaroo thermal springs, North-Eastern Australia. Aust Syst Bot 30:38–47

    Article  Google Scholar 

  • Mikhailov VA, Ståhlberg F, Clarke AK, Robinson CV (2015) Dual stoichiometry and subunit organization in the ClpP1/P2 protease from the cyanobacterium Synechococcus elongatus. J Str Biol. 192:519–527

    Article  CAS  Google Scholar 

  • Moten D, Batsalova T, Basheva D, Mladenov R, Dzhambazov B, Teneva I (2018) Outer membrane efflux protein (OMEP) is a suitable molecular marker for resolving the phylogeny and taxonomic status of closely related cyanobacteria. Phycol Res 66:31–36

    Article  CAS  Google Scholar 

  • Nabout JC, Rocha BS, Carneiro FM, Sant’Anna CL (2013) How many species of Cyanobacteria are there? Using a discovery curve to predict the species number. Biodivers Conserv 22:2907–2918

    Article  Google Scholar 

  • Neilan BA, Jacobs D, Goodman AE (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61:3875–3883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neilan BA, Burns BP, Relman DA, Lowe DR (2002) Molecular identification of cyanobacteria associated with stromatolites from distinct geographical locations. Astrobiology 2:271–280

    Article  CAS  PubMed  Google Scholar 

  • Nelissen B, De Baere R, Wilmotte A, DeWatcher R (1996) Phylogenetic relationships of Non axenic filamentous cyanobacterial strains based on 16S rRNA sequence analysis. J Mol Evol 42:194–200

    Article  CAS  PubMed  Google Scholar 

  • Ng CL, Fidock DA, Bogyo M (2017) Protein degradation systems as Antimalarial therapeutic targets. Trends Parasitol 33:731–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura K, Kato Y, Sakamoto W (2016) Chloroplast proteases: updates on proteolysis within and across suborganellar compartments. Plant Physiol 171:2280–2293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira P, Martins NM, Santos M, Couto NAS (2015) The Anabaena sp. PCC 7120 exoproteome: taking a peek outside the box. Life 5:130–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ongpipattanakul C, Nair SK (2018) Biosynthetic proteases that catalyze the macrocyclization of ribosomally synthesized linear peptides. Biochemistry (In press). https://doi.org/10.1021/acs.biochem.8b00114

    Article  CAS  PubMed  Google Scholar 

  • Oren A, Ventura S (2017) The current status of cyanobacterial nomenclature under the “prokaryotic” and the “botanical” code. Antonie Leeuwenhoek 110:157–169

    Google Scholar 

  • Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM (2001) A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the Bacteriological Code. Int J Syst Evol Microbiol 51:873–879

    Article  CAS  PubMed  Google Scholar 

  • Oueis E, Nardone B, Jaspars M, Westwood NJ, Naismith NJ (2017a) Synthesis of hybrid cyclopeptides through enzymatic macrocyclization. ChemistryOpen 6:11–14

    Article  CAS  PubMed  Google Scholar 

  • Oueis E, Stevenson H, Jaspars M, Westwood NJ, Naismith JH (2017b) Bypassing the proline/thiazoline requirement of the macrocyclase PatG. Chem Commun 53:12274–12277

    Article  CAS  Google Scholar 

  • Papaefthimiou D, Hrouzek P, Mugnai MA, Lukesova A, Turicchia S, Rasmussen U, Ventura S (2008) Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. Int J Syst Evol Microbiol 58:553–564

    Article  PubMed  CAS  Google Scholar 

  • Parnasa R, Nagar E, Sendersky E, Reich Z, Simkovsky R, Golden S, Schwarz R (2016) Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus. Sci Rep 6:32209. https://doi.org/10.1038/srep32209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkerson RB, Johansen JR, Kováčik L, Brand J, Kaštovský J, Casamatta DA (2011) A unique pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. J Phycol 47:1397–1412

    Article  CAS  Google Scholar 

  • Pojidaeva ES, Sokolenko AV (2017) In cyanobacteria Synechocystis sp. PCC6803 the light-dependent level of SppA2 protein is regulated by SppA1 peptidase. Russ J Plant Physiol 64:319–324

    Article  CAS  Google Scholar 

  • Pojidaeva E, Zinchenko V, Shestakov SV, Sokolenko A (2004) Involvement of the SppA1 peptidase in acclimation to saturating light intensities in Synechocystis sp. strain PCC 6803. J Bacteriol 186:3991–3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponndorf D, Ehmke S, Walliser B, Thoss K, Unger C, Görs S, Das G, Metges CC, Broer I, Nausch H (2017) Stable production of cyanophycinase in Nicotiana benthamiana and its functionality to hydrolyse cyanophycin in the murine intestine. Plant Biotechnol J 15:605–613

    Article  CAS  PubMed  Google Scholar 

  • Rajaniemi P, Hrouzek P, Kastovska K, Willame R, Rantala A, Hoffmann L, Komárek J, Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormusand Nostoc (Nostocales, cyanobacteria). Int J Syst Evol Microbiol 55:11–26

    Article  CAS  PubMed  Google Scholar 

  • Ramos V, Morais J, Castelo-Brancol R, Pinheiro Â, Martins J, Regueiras A, Pereira AL, Lopes VR, Frazão B, Gomes D, Moreira C, Costa MS, Brûle S, Faustino S, Martins R, Saker M, Osswald J, Leão PN, Vasconcelos VM (2018) Cyanobacterial diversity held in microbial biological resource centers as a biotechnological asset: the case study of the newly established LEGE culture collection. J Appl Phycol 30:1437–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen U, Svenning MM (1998) Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl Environ Microbiol 64:265–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rathore S, Sinha D, Asad M, Böttcher T, Afrin F, Chauhan VS, Gupta D, Sieber SA, Mohmmed A (2010) A cyanobacterial serine protease of Plasmodium falciparum is targeted to the apicoplast and plays an important role in its growth and development. Mol Microbiol 77:873–890

    CAS  PubMed  Google Scholar 

  • Řeháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J (2007) Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46:481–502

    Article  Google Scholar 

  • Ribeiro KF, Duarte L, Crossetti LO (2018) Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia 820:23–48

    Article  CAS  Google Scholar 

  • Richter R, Hejazi M, Kraft R, Ziegler K, Lockau W (1999) Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin) – molecular cloning of the gene of Synechocystis sp PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme. Eur J Biochem 263:163–169

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury J, Herdman M & Stanier RY (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111:1–61

    Google Scholar 

  • Rott E, Pentecost A, Mareš A (2018) Introduction: recent developments in cyanobacterial research with special reference to aquatic habitats, molecular ecology and phylogenetic taxonomy. Hydrobiologia 811:1–6

    Article  Google Scholar 

  • Rudi K, Skulberg OM, Skulberg R, Jakobsen KS (2000) Application of sequence specific labelled 16S rRNA gene oligo nucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization. Appl Environ Microbiol 66:4004–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seckbach J, Oren A (2007) Oxygenic photosynthetic microorganisms in extreme environment: possibilities and limitations. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht

    Chapter  Google Scholar 

  • Selão T, Zhang L, Knoppová J, Komenda J, Norling B (2016) Photosystem II assembly steps take place in the thylakoid membrane of the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 57:95–104

    Article  PubMed  CAS  Google Scholar 

  • Shalygin S, Shalygina R, Johansen JR, Pietrasiak N, Berrendero Gómez E, Bohunická M, Mareš J, Sheil CA (2017) Cyanomargarita gen. nov. (Nostocales, Cyanobacteria): convergent evolution resulting in a cryptic genus. J Phycol 53:762–777

    Article  CAS  PubMed  Google Scholar 

  • Shao S, Cardona T, Nixon PJ (2018) Early emergence of the FtsH proteases involved in photosystem II repair. Photosynthetica 56:163–177

    Article  CAS  Google Scholar 

  • Shestakov SV, Anbudurai PR, Stanbekova GE, Gadzhiev A, Lind LK, Pakrasi HB (1994) Molecular cloning and characterization of the ctpA gene encoding a carboxyl-terminal processing peptidase. Analysis of a spontaneous photosystem II-deficient mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 269:19354–19359

    CAS  PubMed  Google Scholar 

  • Shi Y, Zhao W, Zhang W, Zhao J (2006) Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 103:11334–11339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A 110:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Sihvonen LM, Lyra C, Fewer DP, Rajaniemi-Wacklin P, Lehtimäki JM, Wahlsten M, Sivonen K (2007) Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS Microbiol Ecol 61:74–84

    Google Scholar 

  • Silber KR, Keiler KC, Sauer RT (1992) Sp: a tail-specific peptidase that selectively degrades proteins with nonpolar C termini. Proc Natl Acad Sci (USA) 89:295–299

    Article  CAS  PubMed Central  Google Scholar 

  • Sivonen K, Leikoski N, Fewer DP, Jokela J (2010) Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 86:1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skácelová O, Zapomělová E (2010) Remarks on the occurrence and ecology of several interesting cyanobacterial morphospecies found in South Moravian wetlands. Acta Musei Moraviae, Scientiae Iologicae 95:201–221

    Google Scholar 

  • Stanier RY, van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42:17–35

    Article  CAS  PubMed  Google Scholar 

  • Stanne TM, Pojidaeva E, Andersson FI, Clarke AK (2007) Distinctive types of ATP-dependent Clp proteases in cyanobacteria. J Biol Chem 282:14394–14402

    Article  CAS  PubMed  Google Scholar 

  • Starmach K (1966) Cyanophyta-Sinice. In Flora slodkowodna Polski. 2. (eds) Warszawa: PAN, Panstwowe Wydawnictwo Naukowe, pp. 753

    Google Scholar 

  • Strohmeier U, Gerdes C, Lockau W (1994) Proteolysis in heterocyst forming cyanobacteria: characterization of a further enzyme with trypsin-like specificity, and of a prolyl endopeptidase from Anabaena variabilis. Z Naturforsch 49:70–78

    Article  CAS  Google Scholar 

  • Stuart RK, Mayali X, Lee JZ, Everroad RC, Hwang M, Bebout BM, Weber PK, Pett-Ridge J, Thelen MP (2016) Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J 10:1240–1251

    Article  CAS  PubMed  Google Scholar 

  • Suda S, Watanabe MM, Otsuka S, Mahakahant A, Yongmanitchai W, Nopartnaraporn N, Liu Y, Day JG (2002) Taxonomic revision of water bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52:1577–1595

    CAS  PubMed  Google Scholar 

  • Suradkar A, Villanueva C, Gaysina LA, Casamatta DA, Saraf A, Dighe G, Mergu R, Singh P (2017) Nostoc thermotolerans sp. nov., a soil-dwelling species of Nostoc (Cyanobacteria). Int J Syst Evol Microbiol 67:1296–1305

    Article  CAS  PubMed  Google Scholar 

  • Thomazeau S, Houdan-Fourmont A, Couté A, Duval C, Couloux A, Rousseau F, Bernard C (2010) The contribution of Sub-Saharan African strains to the phylogeny of cyanobacteria: focusing on the Nostocaceae (Nostocales). J Phycol 46:564–579

    Article  CAS  Google Scholar 

  • Turner S (1997) Molecular systematic of oxygenic photosynthetic bacteria. Plant Syst Evol 11:13–52

    Article  CAS  Google Scholar 

  • Urbach E, Robertson DL, Chisholm SW (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature (London) 355:267–270

    Article  CAS  Google Scholar 

  • Vaccarino MA, Johansen JR (2011) Scytonema topsiscontorta sp. nov. (Nostocales), a new species from the Hawaiian Islands. Fottea 11:149–161

    Article  Google Scholar 

  • Valladares A, Flores E, Herrero A (2016) The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacterium Anabaena forms tetramers and can be regulated by phosphorylation. Molec Microbiol 99:808–819

    Article  CAS  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Cell Biol 5:25–40

    CAS  Google Scholar 

  • Vilhauer L, Jervis J, Ray WK, Helm RF (2014) The exo-proteome and exo-metabolome of Nostoc punctiforme (cyanobacteria) in the presence and absence of nitrate. Arch Microbiol 196:357–367

    Article  CAS  PubMed  Google Scholar 

  • Wacklin P, Hoffmann L, Komárek J (2009) Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornetet Flahault) comb. Nova. Fottea 9:59–64

    Article  Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant A (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 1–25

    Google Scholar 

  • Yada E, Nagata H, Noguchi Y, Kodera Y, Nishimura H, Inada Y, Matsushima A (2005) An arginine specific protease from Spirulina platensis. Mar Biotechnol 7:474–480

    Article  CAS  Google Scholar 

  • Yang GH, Hu B, Zhao JD (2011) Specific degradation of photosystem II D1 protein by a protease (Alr3815) in heterocysts of the cyanobacterium Anabaena sp. PCC7120. Chin Sci Bull 56:1068. https://doi.org/10.1007/s11434-010-4329-3

    Article  CAS  Google Scholar 

  • Yu AY, Houry WA (2007) ClpP: a distinctive family of cylindrical energy- dependent serine proteases. FEBS Lett 581:3749–3757

    Article  CAS  PubMed  Google Scholar 

  • Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci U S A 98:13443–13448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapomělová E, Jezberová J, Hrouzek P, Hisem D, Řeháková K, Komárková J (2009) Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (cyanobacteria) and their re–classification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana). J Phycol 45:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Zapomělová E, Hrouzek P, Řezanka T, Jezberová J, Řeháková K, Hisem D, Komárková J (2011) Polyphasic characterization of Dolichospermum spp. and Sphaerospermopsis spp. (Nostocales, Cyanobacteria): morphology, 16S rRNA gene sequences and fatty acid and secondary metabolite profiles. J Phycol 47:1152–1163

    Article  PubMed  CAS  Google Scholar 

  • Zapomělová E, Skácelová O, Pumann P, Kopp R, Janeček E (2012) Biogeographically interesting planktonic Nostocales (Cyanobacteria) in the Czech Republic and their polyphasic evaluation resulting in taxonomic revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporumgen. nov.) and A. tenericaulis Nygaard 1949 (Dolichospermum tenericaulecomb. nova). Hydrobiologia 698:353–365

    Article  CAS  Google Scholar 

  • Zapomělová EK, Ferrari G, Pérez MDC (2016) Dolichospermum uruguayense sp. nov., a planktic nostocacean cyanobacterium from the Lower Uruguay River, South America. Fottea 16:189–200

    Article  Google Scholar 

  • Zehr JP, Mellon MT, Hiorns WD (1997) Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages. Microbiology 143:1443–1450

    Article  CAS  PubMed  Google Scholar 

  • Zienkiewicz M, Ferenc A, Wasilewska W, Romanowska E (2012) High light stimulates Deg1-dependent cleavage of the minor LHCII antenna proteins CP26 and CP29 and the PsbS protein in Arabidopsis thaliana. Planta 235:279–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PS thanks the Head, Department of Botany, Banaras Hindu University, Varanasi, for his encouragement and support. PS is grateful to the Department of Science and Technology, Govt. of India, New Delhi, for the sanction of project (No. YSS/2014/000879).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagchi, S.N., Singh, P. (2019). Importance of Cyanobacterial Taxonomy in Biotechnological Applications. In: Satyanarayana, T., Johri, B., Das, S. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_13

Download citation

Publish with us

Policies and ethics