Skip to main content

Gut Microbiomes and Their Impact on Human Health

  • Chapter
  • First Online:

Abstract

The gut microbiome encompasses the large repertoire of microbes in the gastrointestinal system and their collective symbiotic functions for the host, viz., protection against opportunistic pathogens, body’s immune system, extraction of nutrients and energy from diet, fermentation of non-digestible carbohydrates, homeostasis, etc. Further, dysbiosis of the gut microbiome is associated with diverse human diseases including inflammatory bowel disease (IBD), cancer, type 2 diabetes (T2D), obesity, etc. Composition of the gut microbiome has been characterized through a combination of microbial culture techniques and metagenomic approach that helped in understanding the impact of gut microbiome on human health and disease. Moreover, divergences in dietary habits and varied geographical niches have a role in streamlining the diversity among gut microbiomes of different populations. Further, relative increase in Firmicutes and decrease in Bacteroidetes in the gut of people living in colder climates of higher latitudes are endowed with more storage of energy and fat from a given diet. In the case of neonates, the gut microbiota undergoes transformations and has a major role in nutrition and the development of immune system. Furthermore, the gut microbiota has been used as potential probiotics for improving the intestinal microbial balance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    Article  PubMed  PubMed Central  Google Scholar 

  • Aronsson L, Huang Y, Parini P, Korach-Andre M, Hakansson J et al (2010) Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 5(9):e13087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asahara T, Nomoto K, Shimizu K, Watanuki M, Tanaka R (2001) Increased resistance of mice to Salmonella enterica serovar Typhimurium infection by synbiotic administration of Bifidobacteria and transgalactosylated oligosaccharides. J Appl Microbiol 91:985–996

    Article  CAS  PubMed  Google Scholar 

  • Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T et al (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303:G1288–G1295

    Article  CAS  PubMed  Google Scholar 

  • Backhed F, Ding H, Wang T, Hooper LV, Koh GY et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  CAS  Google Scholar 

  • Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly J, Fraissinet-Tachet L, Verner MC, Debaud JC, Lemaire M et al (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632–642

    Article  CAS  PubMed  Google Scholar 

  • Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB et al (2014) Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 60:940–947

    Article  CAS  PubMed  Google Scholar 

  • Benassi B, Leleu R, Bird T, Clifton P, Fenech M (2007) Cytokinesis-block micronucleus cytome assays for the determination of genotoxicity and cytotoxicity of cecal water in rats and fecal water in humans. Cancer Epidemiol Biomark Prev 16:2676–2680

    Article  CAS  Google Scholar 

  • Beninati C, Oggioni MR, Boccanera M, Spinosa MR, Maggi T et al (2000) Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat Biotechnol 18:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Bergmann C (1847) Ueber die Verhaeltnisse der Waermeoekonomie der Thiere zu ihrer Groesse. Goettinger Studien 1:595–708

    Google Scholar 

  • Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G (2008) Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 138:1796S–1800S

    Article  CAS  PubMed  Google Scholar 

  • Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 103:732–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjorksten B (2004) Effects of intestinal microflora and the environment on the development of asthma and allergy. Springer Semin Immunopathol 25:257–270

    Article  PubMed  Google Scholar 

  • Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C et al (2010) Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids 39:335–347

    Article  CAS  PubMed  Google Scholar 

  • Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM et al (2011) Bioinformatics tools for cancer metabolomics. Metabolomics 7:329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blottiere HM, de Vos WM, Ehrlich SD, Dore J (2013) Human intestinal metagenomics: state of the art and future. Curr Opin Microbiol 16:232–239

    Article  CAS  PubMed  Google Scholar 

  • Booijink CC, El-Aidy S, Rajilic-Stojanovic M, Heilig HG, Troost FJ et al (2010) High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 12:3213–3227

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  CAS  PubMed  Google Scholar 

  • Bruel L, Sulzenbacher G, Cervera Tison M, Pujol A, Nicoletti C et al (2011) Alpha-Galactosidase/sucrose kinase (AgaSK), a novel bifunctional enzyme from the human microbiome coupling galactosidase and kinase activities. J Biol Chem 286:40814–40823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buddington KK, Donahoo JB, Buddington RK (2002) Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr 132:472–477

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Delzenne NM (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9:737–743

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Delzenne NM (2010) Involvement of the gut microbiota in the development of low grade inflammation associated with obesity: focus on this neglected partner. Acta Gastro-Enterol Belg 73:267–269

    CAS  Google Scholar 

  • Carrola J, Rocha CM, Barros AS, Gil AM, Goodfellow BJ et al (2011) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 10:221–230

    Article  CAS  PubMed  Google Scholar 

  • Carvalho BM, Guadagnini D, Tsukumo DML, Schenka AA, Latuf-Filho P et al (2012) Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55:2823–2834

    Article  CAS  PubMed  Google Scholar 

  • Chapman CM, Gibson GR, Rowland I (2011) Health benefits of probiotics: are mixtures more effective than single strains? Eur J Nutr 50:1–17

    Article  CAS  PubMed  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christl SU, Eisner HD, Dusel G, Kasper H, Scheppach W (1996) Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: a potential role for these agents in the pathogenesis of ulcerative colitis. Dig Dis Sci 41:2477–2481

    Article  CAS  PubMed  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    Article  CAS  PubMed  Google Scholar 

  • Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasu MR, Devaraj S, Park S, Jialal I (2010) Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33:861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  CAS  PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  • De Montijo-Prieto S, Moreno E, Bergillos-Meca T, Lasserrot A, Ruiz-Lopez MD et al (2015) A Lactobacillus plantarum strain isolated from kefir protects against intestinal infection with Yersinia enterocolitica O9 and modulates immunity in mice. Res Microbiol 166:626–632

    Article  PubMed  CAS  Google Scholar 

  • Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, Gonzalez A, Knight R (2014) Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol 23:1301–1317

    Article  CAS  PubMed  Google Scholar 

  • Delzenne NM, Neyrinck AM, Backhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7:639–646

    Article  CAS  PubMed  Google Scholar 

  • Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108:4554–4561

    Article  CAS  PubMed  Google Scholar 

  • Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818

    Article  CAS  PubMed  Google Scholar 

  • Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59:617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Gioia D, Aloisio I, Mazzola G, Biavati B (2014) Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl Microbiol Biotechnol 98:563–577

    Article  PubMed  CAS  Google Scholar 

  • Dobrijevic D, Di Liberto G, Tanaka K, de Wouters T, Dervyn R et al (2013) High-throughput system for the presentation of secreted and surface-exposed proteins from Gram-positive bacteria in functional metagenomics studies. PLoS One 8:e65956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  • Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM et al (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drexler DM, Reily MD, Shipkova PA (2011) Advances in mass spectrometry applied to pharmaceutical metabolomics. Anal Bioanal Chem 399:2645–2653

    Article  CAS  PubMed  Google Scholar 

  • Dubourg G, Lagier JC, Armougom F, Robert C, Hamad I et al (2013) The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics. Eur J Clin Microbiol Infect Dis 32:637–645

    Article  CAS  PubMed  Google Scholar 

  • Dumas ME, Barton RH, Toye A, Cloarec O, C B et al (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A 103:12511–12516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan SH, Aminov RI, Scott KP, Louis P, Stanton TB, Flint HJ (2006) Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56:2437–2441

    Article  CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, L D et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggesbo M, Botten G, Stigum H, Nafstad P, Magnus P (2003) Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol 112:420–426

    Article  PubMed  Google Scholar 

  • Elsden SR, Hilton MG, Waller JM (1976) The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol 107:283–288

    Article  CAS  PubMed  Google Scholar 

  • Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF et al (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS One 7:e49138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Wirth T, Linz B, Pritchard JK, Stephens M et al (2003) Traces of human migrations in Helicobacter pylori populations. Science 299:1582–1585

    Article  CAS  PubMed  Google Scholar 

  • Finegold SM, Attebery HR, Sutter VL (1974) Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27:1456–1469

    Article  CAS  PubMed  Google Scholar 

  • Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88(Suppl 1):S39–S49

    Article  CAS  PubMed  Google Scholar 

  • Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P et al (2012) NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 13:449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC et al (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A 105:3805–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Wang X (1994) Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol 77:412–420

    Article  CAS  PubMed  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gionchetti P, Rizzello F, Venturi A, Brigidi P, Matteuzzi D et al (2000) Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 119:305–309

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  CAS  PubMed  Google Scholar 

  • Gloux K, Berteau O, El Oumami H, Beguet F, Leclerc M, Dore J (2011) A metagenomic beta-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci U S A 108:4539–4546

    Article  CAS  PubMed  Google Scholar 

  • Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N et al (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grajek W, Olejnik A, Sip A (2005) Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol 52:665–671

    CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Harrell L, Wang Y, Antonopoulos D, Young V, Lichtenstein L et al (2012) Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon. PLoS One 7:e32545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiergeist A, Glasner J, Reischl U, Gessner A (2015) Analyses of Intestinal Microbiota: culture versus sequencing. ILAR J 56:228–240

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann C, Dollive S, Grunberg S, Chen J, Li H et al (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J et al (2014) Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant 20:640–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146:1449–1458

    Article  PubMed  Google Scholar 

  • Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK (2011) Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 19:349–359

    Article  CAS  PubMed  Google Scholar 

  • Hooijkaas H, Benner R, Pleasants JR, Wostmann BS (1984) Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered “antigen-free” diet. Eur J Immunol 14:1127–1130

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10:159–169

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A 96:9833–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Human Microbiome Project C (2012) A framework for human microbiome research. Nature 486:215–221

    Article  CAS  Google Scholar 

  • Hussain SA, Patil GR, Reddi S, Yadav V, Pothuraju R et al (2017) Aloe vera (Aloe barbadensis Miller) supplemented probiotic lassi prevents Shigella infiltration from epithelial barrier into systemic blood flow in mice model. Microb pathog 102: 143–147

    Article  CAS  PubMed  Google Scholar 

  • Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2. J Bacteriol 114:1231–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Simons M (2011) Probing asthenospheric density, temperature, and elastic moduli below the western United States. Science 332:947–951

    Article  CAS  PubMed  Google Scholar 

  • Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jialal I, Huet BA, Kaur H, Chien A, Devaraj S (2012) Increased toll-like receptor activity in patients with metabolic syndrome. Diabetes Care 35:900–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin C, Flavell RA (2013) Innate sensors of pathogen and stress: linking inflammation to obesity. J Allergy Clin Immunol 132:287–294

    Article  CAS  PubMed  Google Scholar 

  • Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C et al (2011) Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 94:58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM et al (2013) Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 58:949–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada N, Chen GY, Inohara N, Nunez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno T, Matsuki T, Oka M, Utsunomiya H, Inada K et al (2009) Gastric acid reduction leads to an alteration in lower intestinal microflora. Biochem Biophys Res Commun 381:666–670

    Article  CAS  PubMed  Google Scholar 

  • Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D et al (2015) Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149:223–237

    Article  PubMed  Google Scholar 

  • Kim K, Taylor SL, Ganti S, Guo L, Osier MV, Weiss RH (2011) Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. Omics 15:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaassens ES, de Vos WM, Vaughan EE (2007) Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 73:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Klaassens ES, Boesten RJ, Haarman M, Knol J, Schuren FH et al (2009) Mixed-species genomic microarray analysis of fecal samples reveals differential transcriptional responses of bifidobacteria in breast- and formula-fed infants. Appl Environ Microbiol 75:2668–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klupczynska A, Derezinski P, Kokot ZJ (2015) Metabolomics in medical sciences – trends, challenges and perspectives. Acta Pol Pharm 72:629–641

    CAS  PubMed  Google Scholar 

  • Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108:4578–4585

    Article  CAS  PubMed  Google Scholar 

  • Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Bansal A, Chakrabarti A, Singhi S (2013) Evaluation of efficacy of probiotics in prevention of candida colonization in a PICU-a randomized controlled trial. Crit Care Med 41:565–572

    Article  PubMed  Google Scholar 

  • Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagier JC, Million M, Hugon P, Armougom F, Raoult D (2012) Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakhdari O, Cultrone A, Tap J, Gloux K, Bernard F et al (2010) Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-kappa B modulation in the human gut. PLoS One 5:e13092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laubereau B, Filipiak-Pittroff B, von Berg A, Grubl A, Reinhardt D et al (2004) Caesarean section and gastrointestinal symptoms, atopic dermatitis, and sensitisation during the first year of life. Arch Dis Child 89:993–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V et al (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489

    Article  PubMed  CAS  Google Scholar 

  • Lepage P, Leclerc MC, Joossens M, Mondot S, Blottiere HM et al (2013) A metagenomic insight into our gut’s microbiome. Gut 62:146–158

    Article  PubMed  Google Scholar 

  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, LeBlanc J, Truong A, Vuthoori R, Chen SS et al (2011) A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface. PLoS One 6:e26542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11:1582–1590

    Article  CAS  PubMed  Google Scholar 

  • Lin CS, Chang CJ, Lu CC, Martel J, Ojcius DM et al (2014) Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biom J 37:259–268

    Google Scholar 

  • Ling WH, Hanninen O (1992) Shifting from a conventional diet to an uncooked vegan diet reversibly alters fecal hydrolytic activities in humans. J Nutr 122:924–930

    Article  CAS  PubMed  Google Scholar 

  • Lundin A, Bok CM, Aronsson L, Bjorkholm B, Gustafsson JA et al (2008) Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cell Microbiol 10:1093–1103

    Article  CAS  PubMed  Google Scholar 

  • Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN (1999) Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Mafra D, Barros AF, Fouque D (2013) Dietary protein metabolism by gut microbiota and its consequences for chronic kidney disease patients. Future Microbiol 8:1317–1323

    Article  CAS  PubMed  Google Scholar 

  • Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS et al (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 106:5859–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P et al (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6:546–551

    Article  CAS  PubMed  Google Scholar 

  • Markowiak P, Slizewska K (2017) Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 9:1021

    Article  PubMed Central  CAS  Google Scholar 

  • Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez FD (2014) The human microbiome. Early life determinant of health outcomes. Ann American Thorac Soc 11:S7–S12

    Article  Google Scholar 

  • Maurice CF, Haiser HJ, Turnbaugh PJ (2013) Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  CAS  PubMed  Google Scholar 

  • Metges CC, Petzke KJ, El-Khoury AE, Henneman L, Grant I et al (1999) Incorporation of urea and ammonia nitrogen into ileal and fecal microbial proteins and plasma free amino acids in normal men and ileostomates. Am J Clin Nutr 70:1046–1058

    Article  CAS  PubMed  Google Scholar 

  • Mills KH (2011) TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol 11:807–822

    Article  CAS  PubMed  Google Scholar 

  • Millward DJ, Forrester T, Ah-Sing E, Yeboah N, Gibson N et al (2000) The transfer of 15N from urea to lysine in the human infant. Br J Nutr 83:505–512

    Article  CAS  PubMed  Google Scholar 

  • Mishra C, Lambert J (1996) Production of anti-microbial substances by probiotics. Asia Pac J Clin Nutr 5:20–24

    CAS  PubMed  Google Scholar 

  • Monleon D, Morales JM, Barrasa A, Lopez JA, Vazquez C, Celda B (2009) Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed 22:342–348

    Article  CAS  PubMed  Google Scholar 

  • Murgas Torrazza R, Neu J (2011) The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol 31:S29–S34

    Article  PubMed  Google Scholar 

  • Nambiar PR, Gupta RR, Misra V (2010) An “Omics” based survey of human colon cancer. Mutat Res 693:3–18

    Article  CAS  PubMed  Google Scholar 

  • Nase L, Hatakka K, Savilahti E, Saxelin M, Ponka A et al (2001) Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res 35:412–420

    Article  CAS  PubMed  Google Scholar 

  • Nava GM, Friedrichsen HJ, Stappenbeck TS (2011) Spatial organization of intestinal microbiota in the mouse ascending colon. ISME J 5:627–638

    Article  CAS  PubMed  Google Scholar 

  • Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC (2009) Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis 15:300–310

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Lindon JC (2008) Systems biology: Metabonomics. Nature 455:1054–1056

    Article  CAS  PubMed  Google Scholar 

  • Nova E, Warnberg J, Gomez-Martinez S, Diaz LE, Romeo J, Marcos A (2007) Immunomodulatory effects of probiotics in different stages of life. Br J Nutr 98:S90–S95

    Article  CAS  PubMed  Google Scholar 

  • O’Mahony C, Scully P, O’Mahony D, Murphy S, O’Brien F et al (2008) Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-kappa B activation. PLoS Pathog 4:e1000112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oelschlaeger TA (2010) Mechanisms of probiotic actions – a review. Int J Med Microbiol 300:57–62

    Article  CAS  PubMed  Google Scholar 

  • Orrhage K, Nord CE (1999) Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr 88:47–57

    Article  CAS  Google Scholar 

  • Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54:987–991

    Article  PubMed  Google Scholar 

  • Payne AN, Zihler A, Chassard C, Lacroix C (2012) Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 30:17–25

    Article  CAS  PubMed  Google Scholar 

  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521

    Article  PubMed  Google Scholar 

  • Phua LC, Chue XP, Koh PK, Cheah PY, Ho HK, Chan EC (2014) Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biol Ther 15:389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott D, Lee J, Philpott DJ (2013) An epithelial armamentarium to sense the microbiota. Semin Immunol 25:323–333

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li Y, Cai Z, Li S, Zhu J et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    Article  CAS  PubMed  Google Scholar 

  • Raj T, Dileep U, Vaz M, Fuller MF, Kurpad AV (2008) Intestinal microbial contribution to metabolic leucine input in adult men. J Nutr 138(11):2217–2221

    Article  CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna BS, Roediger WE (1990) Bacterial short chain fatty acids: their role in gastrointestinal disease. Dig Dis 8:337–345

    Article  CAS  PubMed  Google Scholar 

  • Renesto P, Crapoulet N, Ogata H, La Scola B, Vestris G, Claverie JM, Raoult D (2003) Genome-based design of a cell free-culture medium for Tropheryma whipplei. Lancet 362:447–449

    Article  PubMed  Google Scholar 

  • Rettedal EA, Gumpert H, Sommer MO (2014) Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat Commun 5:4714

    Article  CAS  PubMed  Google Scholar 

  • Reyes A, Haynes M, Hanson N, Angly FE, Heath AC et al (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS (2014) Bile acids and the gut microbiome. Curr Opin Gastroenterol 30:332–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 2:S1–S63

    Article  CAS  Google Scholar 

  • Robinson CJ, Bohannan BJ, Young VB (2010) From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 74:453–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rook GA (2010) 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol 160:70–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S et al (2017) Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int J Food Microbiol 247:9–17

    Article  PubMed  Google Scholar 

  • Salminen S, Gibson GR, McCartney AL, Isolauri E (2004) Influence of mode of delivery on gut microbiota composition in seven year old children. Gut 53:1388–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F et al (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 105:16767–16772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  CAS  PubMed  Google Scholar 

  • Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU et al (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235

    Article  CAS  PubMed  Google Scholar 

  • Scanlan PD, Marchesi JR (2008) Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J 2:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Schachtsiek M, Hammes WP, Hertel C (2004) Characterization of Lactobacillus coryniformis DSM 20001T surface protein Cpf mediating coaggregation with and aggregation among pathogens. Appl Environ Microbiol 70:7078–7085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnoes AM, Brown SD, Dodevski I, Babbitt PC (2009) Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 5:e1000605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoster A, Arroyo LG, Staempfli HR, Weese JS (2013) Comparison of microbial populations in the small intestine, large intestine and feces of healthy horses using terminal restriction fragment length polymorphism. BMC Res Notes 6:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhmacher R, Krska R, Weckwerth W, Goodacre R (2013) Metabolomics and metabolite profiling. Anal Bioanal Chem 405:5003–5004

    Article  CAS  PubMed  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  CAS  PubMed  Google Scholar 

  • Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Slupsky CM, Steed H, Wells TH, Dabbs K, Schepansky A et al (2010) Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res 16:5835–5841

    Article  CAS  PubMed  Google Scholar 

  • Smith EA, Macfarlane GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81:288–302

    Article  CAS  PubMed  Google Scholar 

  • Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R et al (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:548–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M (2013) Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145:946–953

    Article  PubMed  Google Scholar 

  • Sommer F, Backhed F (2013) The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 11:227–238

    Article  CAS  PubMed  Google Scholar 

  • Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G et al (2013) Cohabiting family members share microbiota with one another and with their dogs. elife 2:e00458

    Article  PubMed  PubMed Central  Google Scholar 

  • Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99:15451–15455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T et al (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci U S A 101:1981–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Iwasaki E, Hibi T (2009) Helicobacter pylori and gastric cancer. Gastric Cancer 12:79–87

    Article  PubMed  Google Scholar 

  • Thomas DW, Greer FR (2010) Probiotics and prebiotics in pediatrics. Pediatrics 126:1217–1231

    Article  PubMed  Google Scholar 

  • Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121:2126–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmerman HM, Koning CJ, Mulder L, Rombouts FM, Beynen AC (2004) Monostrain, multistrain and multispecies probiotics-A comparison of functionality and efficacy. Int J Food Microbiol 96:219–233

    Article  CAS  PubMed  Google Scholar 

  • Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  CAS  PubMed  Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  CAS  PubMed  Google Scholar 

  • Trosvik P, Stenseth NC, Rudi K (2010) Convergent temporal dynamics of the human infant gut microbiota. ISME J 4:151–158

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T et al (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 107:7503–7508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyakht AV, Kostryukova ES, Popenko AS, Belenikin MS, Pavlenko AV et al (2013) Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun 4:2469

    Article  PubMed  CAS  Google Scholar 

  • van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM et al (2009) Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A 106:2371–2376

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Loo J, Clune Y, Bennett M, Collins JK (2005) The SYNCAN project: goals, set-up, first results and settings of the human intervention study. Br J Nutr 93:S91–S98

    Article  CAS  PubMed  Google Scholar 

  • Venema K, van den Abbeele P (2013) Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 27:115–126

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Verma AK, Ahuja V, Paul J (2010) Real-time analysis of mucosal flora in patients with inflammatory bowel disease in India. J Clin Microbiol 48:4279–4282

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinje H, Almoy T, Liland KH, Snipen L (2014) A systematic search for discriminating sites in the 16S ribosomal RNA gene. Microb Inf Exp 4:2

    Article  CAS  Google Scholar 

  • Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter J, Ley R (2011) The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol 65:411–429

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ahrne S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231

    Article  CAS  PubMed  Google Scholar 

  • Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21:803–814

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978

    Article  CAS  PubMed  Google Scholar 

  • Wild JM, Krutzfeldt NO (2010) Neocortical-like organization of avian auditory ‘cortex’. Commentary on Wang Y, Brzozowska-Prechtl A, Karten HJ (2010): laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci U S A 107:12676–12681

    Article  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong W, Giannone RJ, Morowitz MJ, Banfield JF, Hettich RL (2015) Development of an enhanced metaproteomic approach for deepening the microbiome characterization of the human infant gut. J Proteome Res 14:133–141

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Knight R (2015) Dietary effects on human gut microbiome diversity. Br J Nutr 113(Suppl):S1–S5

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M et al (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:e156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama MT, Carlson JR (1981) Production of Skatole and para-Cresol by a Rumen Lactobacillus sp. Appl Environ Microbiol 41:71–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ze X, Le Mougen F, Duncan SH, Louis P, Flint HJ (2013) Some are more equal than others: the role of “keystone” species in the degradation of recalcitrant substrates. Gut Microbes 4:236–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L (2018) Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol 9:765

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, R., Das, L., Das, S.K. (2019). Gut Microbiomes and Their Impact on Human Health. In: Satyanarayana, T., Johri, B., Das, S. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_12

Download citation

Publish with us

Policies and ethics