Skip to main content

Bioremediation: A Sustainable and Emerging Tool for Restoration of Polluted Aquatic Ecosystem

  • Chapter
  • First Online:
Fresh Water Pollution Dynamics and Remediation

Abstract

The most important and visible factors like the population explosion, urbanization and economic growth are accountable for ecological degradation and contamination. Ecological detoxification is a riddle that needs to be solved through ecological concepts and techniques. Thus, the application of advanced science and technology helps us to apply diverse biota for pollution abatement. Diverse and potential biota has efficiency to reinstate the polluted environment effectively, but dearth of knowledge about the factors viz., pH, moisture content, temperature, redox potential, soil type and oxygen controlling the growth and metabolism of microorganism in polluted environments often limits its implementation. The enhancements in bioremediation have been realized through the help of the various areas of microbiology, biochemistry, molecular biology, analytical chemistry, chemical and environmental engineering. The techniques involved in the process of bioremediation are Ex-Situ and In-Situ, depends on the type and site of contamination. In the present context it has been revealed bioremediation plays an important role in the restoration of polluted ecosystem through environmental friendly mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, S. K. (1998). Environmental biotechnology (1st ed., p. 267289). New Delhi: APH Publishing Corporation.

    Google Scholar 

  • Anonymous. (2009). ITRC (Interstate Technology and Regulatory Council). Phytotechnology technical and regulatory guidance and decision trees, revised. PHYTO-3. Washington DC.

    Google Scholar 

  • Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14, 94.

    Article  CAS  Google Scholar 

  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques-classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 180.

    Article  CAS  Google Scholar 

  • Baker, K. H., & Herson, D. S. (1994). Introduction and overview of bioremediation. In K. H. Baker & D. S. Herson (Eds.), Bioremediation. New York: McGraw-Hill.

    Google Scholar 

  • Barr, D. (2002). Biological methods for assessment and remediation of contaminated land: Case studies. London: Construction Industry Research and Information Association.

    Google Scholar 

  • Bhadra, R., Wayment, D. G., Hughes, J. B., & Shanks, J. V. (1999). Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environmental Science & Technology, 33, 446–452.

    Article  CAS  Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865.

    Article  Google Scholar 

  • Boufadel, M. C., Suidan, M. T., & Venosa, A. D. (2006). Tracer studies in laboratory beach simulating tidal influences. Journal of Environmental Engineering, 132, 616–623.

    Article  CAS  Google Scholar 

  • Congress US. (1991). Office of technology assessment (Bioremediation for marine oil spills-background paper). Government Printing Office OTA-BP-O-70: Washington, DC.

    Google Scholar 

  • Cybulski, Z., Dzuirla, E., Kaczorek, E., & Olszanowski, A. (2003). The influence of emulsifiers on hydrocarbon biodegradation by Pseudomonadacea and Bacillacea strains. Spill Science and Technology Bulletin, 8, 503–507.

    Article  CAS  Google Scholar 

  • Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011, 941810.

    Google Scholar 

  • Dave, D., & Ghaly, A. E. (2011). Remediation technologies for marine oil spills: A critical review and comparative analysis. American Journal of Environmental Sciences, 7, 423–440.

    Article  CAS  Google Scholar 

  • Davis, L. C., Erickson, L. E., Narayanan, N., & Zhang, Q. (2003). Modeling and design of phyto remediation. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 663–694). New York: Wiley.

    Google Scholar 

  • Dean-Ross, D., Moody, J., & Cerniglia, C. E. (2002). Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiology Ecology, 41, 17.

    Article  Google Scholar 

  • Dias, R. L., Ruberto, L., Calabro´, A., Balbo, A. L., Del-Panno, M. T., & Mac-Cormack, W. P. (2015). Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biology, 38, 677–687.

    Article  Google Scholar 

  • Dubey, R. C. (2004). A text book of biotechnology (3rd ed., p. 365375). New Delhi: S. Chand and Company Ltd.

    Google Scholar 

  • Folch, A., Vilaplana, M., Amado, L., Vicent, R., & Caminal, G. (2013). Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. Journal of Hazardous Materials, 262, 554–560.

    Article  CAS  Google Scholar 

  • Frascari, D., Zanaroli, G., & Danko, A. S. (2015). In situ aerobic cometabolism of chlorinated solvents: A review. Journal of Hazardous Materials, 283, 382–399.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gadd, G. M. (2001). Fungi in bioremediation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gidarakos, E., & Aivalioti, M. (2007). Large scale and long term application of bioslurping: The case of a Greek petroleum refinery site. Journal of Hazardous Materials, 149, 574–581.

    Article  CAS  Google Scholar 

  • Glazer, A. N., & Nikaido, H. (2007). Microbial biotechnology: Fundamentals of applied microbiology (2nd ed., p. 510528). Cambridge/New York: Cambridge University Press.

    Book  Google Scholar 

  • Gomez, F., & Sartaj, M. (2014). Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). International Biodeterioration & Biodegradation, 89, 103–109.

    Article  CAS  Google Scholar 

  • Hamer, G. (1993). Bioremediation: A response to gross environmental abuse. Trends in Biotechnology, 11(8), 317–319.

    Article  Google Scholar 

  • Hess, A., Zarda, B., Hahn, D., Häner, A., Stax, D., Höhener, P., & Zeyer, J. (1997, June). In situ analysis of denitrifying toluene-and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Applied and Environmental Microbiology, 63(6), 2136–2141.

    CAS  Google Scholar 

  • Hillel, D. (1998). Environmental soil physics. Waltham: Academic.

    Google Scholar 

  • Hughes, J. B., Shanks, J., Vanderford, M., Lauritzen, J., & Bhadra, R. (1997). Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271.

    Article  CAS  Google Scholar 

  • Husain, Q., Husain, M., & Kulshrestha, Y. (2009). Remediation and treatment of organopollutants mediated by peroxidases: A review. Critical Reviews in Biotechnology, 29(2), 94–119.

    Article  CAS  Google Scholar 

  • Ijah, U. J. J. (2002). Accelerated crude oil biodegradation in soil by inoculation with bacterial slurry. Journal of Environmental Sciences, 6(1), 3847.

    Google Scholar 

  • Jogdand, S. N. (1995). Environmental biotechnology (1st ed., p. 1041). Bombay: Himalaya Publishing House.

    Google Scholar 

  • Kamaludeen, S. P. B. K., Arunkumar, K. R., Avudainayagam, S., & Ramasamy, K. (2003). Bioremediation of chromium contaminated environments. The Indian Journal of Experimental Biology, 41, 972–985.

    CAS  Google Scholar 

  • Kim, S., Krajmalnik-Brown, R., Kim, J. O., & Chung, J. (2014). Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Science of the Total Environment, 497, 250–259.

    Article  CAS  Google Scholar 

  • Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006). Uptake, translocation and effects of contaminants in plants. In Biochemical mechanisms of detoxification in higher plants: Basis of phytoremediation (pp. 55–102). Berlin/New York: Springer.

    Google Scholar 

  • Lal, B., & Khanna, S. (1996). Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. Journal of Applied Bacteriology, 81(4), 355–362.

    Article  CAS  Google Scholar 

  • Lee, S. H., Lee, S., Kim, D. Y., & Kim, J. G. (2007). Degradation characteristics of waste lubricants under different nutrient conditions. Journal of Hazardous Materials, 143(1–2), 65–72.

    Article  CAS  Google Scholar 

  • Macek, T., Mackova, M., & Káš, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances, 18(1), 23–34.

    Article  CAS  Google Scholar 

  • Mbhele, P. P. (2007). Remediation of soil and water contaminated by heavy metals and hydrocarbons using silica encapsulation. Doctoral dissertation, University of Witwatersrand, Johannesburg.

    Google Scholar 

  • Mesa, J., Rodrı´guez-Llorente, J. D., Pajuelo, E., Piedras, J. M. B., Caviedes, M. A., Redondo-Go´mez, S., & Mateos-Naranjo, E. (2015). Moving closer towards restoration of contaminated estuaries: Bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. Journal of Hazardous Materials, 300, 263–271.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Sirisha, K., Rao, N. C., Sarma, P. N., & Reddy, S. J. (2004). Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: Bioprocess monitoring. Journal of Hazardous Materials, 116(1–2), 39–48.

    Article  CAS  Google Scholar 

  • Morel, J. L., Echevarria, G., & Goncharova, N. (Eds.). (2002). Phytoremediation of metal-contaminated soils (Vol. 68). Dordrecht: Springer Science and Business Media.

    Google Scholar 

  • National Research Council, Division on Engineering and Physical Sciences, Commission on Engineering and Technical Systems, Committee on In Situ Bioremediation. National Academies Press, February 01, 1993.

    Google Scholar 

  • Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Option in Biotechnology, 15, 225–230.

    Article  CAS  Google Scholar 

  • Nikolopoulou, M., Pasadakis, N., Norf, H., & Kalogerakis, N. (2013). Enhanced ex-situ bioremediation of crude oil contaminated beach sand by supplementation with nutrients and rhamnolipids. Marine Pollution Bulletin, 77, 37–44.

    Article  CAS  Google Scholar 

  • Obiri-Nyarko, F., Grajales-Mesa, S. J., & Malina, G. (2014). An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere, 111, 243–259.

    Article  CAS  Google Scholar 

  • Ojuederie, O., & Babalola, O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health, 14(12), 1504.

    Article  CAS  Google Scholar 

  • Paniagua-Michel, J., & Rosales, A. (2015). Marine bioremediation-A sustainable biotechnology of petroleum hydrocarbons biodegradation in coastal and marine environments. Journal of Bioremediation and Biodegredation, 6(2), 1.

    Google Scholar 

  • Park, A. J., Cha, D. K., & Holsen, T. M. (1998). Enhancing solubilization of sparingly soluble organic compounds by biosurfactants produced by Nocardia erythropolis. Water Environment Research, 70(3), 351–355.

    Article  CAS  Google Scholar 

  • Paudyn, K., Rutter, A., Rowe, R. K., & Poland, J. S. (2008). Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Regions Science and Technology, 53(1), 102–114.

    Article  Google Scholar 

  • Philp, J. C., & Atlas, R. M. (2005). Bioremediation of contaminated soils and aquifers. In R. M. Atlas & J. C. Philp (Eds.), Bioremediation: Applied microbial solutions for real-world environmental cleanup (pp. 139–236). Washington: American Society for Microbiology (ASM) Press.

    Chapter  Google Scholar 

  • Pichtel, J. (2007). Fundamentals of site remediation: For metal and hydrocarbon-contaminated soils. New York: Government Institutes.

    Google Scholar 

  • Prasad, M. N. (2004a). Phytoremediation of metals in the environment for sustainable development. Proceedings-Indian National Science Academy Part B, 70(1), 71–98.

    CAS  Google Scholar 

  • Prasad, M. N. V. (2004b). Heavy metal stress in plants: From biomolecules to ecosystems (2nd ed., 462 pp). Heidelberg: Springer.

    Google Scholar 

  • Prescott, L. M., Harley, J. P., & Klein, D. A. (2002). Microbiology (5th ed., p. 1014). New York: McGrawHill.

    Google Scholar 

  • Raskin, I., Kumar, P. B. A. N., Dushenkov, S., & Salt, D. E. (1994). Bioconcentration of heavy metals by plants. Current Opinion in Biotechnology, 5, 285–290.

    Article  CAS  Google Scholar 

  • Reichenauer, T. G., & Germida, J. J. (2008). Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem, 1, 708–717.

    Article  CAS  Google Scholar 

  • Rike, A. G., Schiewer, S., & Filler, D. M. (2008). Temperature effects on biodegradation of petroleum contaminants in cold soils. In Bioremediation of petroleum hydrocarbons in cold regions (pp. 84–108). Cambridge/New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Roy, M., Giri, A. K., Dutta, S., & Mukherjee, P. (2015). Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environment International, 75, 180–198.

    Article  CAS  Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Biology, 49(1), 643–668.

    Article  CAS  Google Scholar 

  • Sara, M. N. (2003). Site assessment and remediation handbook. Boca Raton: Lewis Publishers/CRC Press.

    Book  Google Scholar 

  • Shanahan, P. (2004, Spring). Bioremediation; waste containment and remediation technology. Massachusetts Institute of Technology.

    Google Scholar 

  • Sharma, S. (2012). Bioremediation: Features, strategies and applications. Asian Journal of Pharmacy and Life Science, 2(2), 4423.

    Google Scholar 

  • Silva-Castro, G. A., Uad, I., Rodríguez-Calvo, A., González-López, J., & Calvo, C. (2015). Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. Environmental Research, 137, 49–58.

    Article  CAS  Google Scholar 

  • Strong, P. J., & Burgess, J. E. (2008). Treatment methods for wine related distillery wastewaters: A review. Bioremediation Journal, 12, 7087.

    Article  CAS  Google Scholar 

  • Suthersan, S. S., Horst, J., Schnobrich, M., Welty, N., & McDonough, J. (2016). Remediation engineering: Design concepts. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Tang, C. Y., Fu, Q. S., Criddle, C. S., & Leckie, J. O. (2007). Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science and Technology, 41(6), 2008–2014.

    Article  CAS  Google Scholar 

  • Thiruvenkatachari, R., Vigneswaran, S., & Naidu, R. (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14(2), 145–156.

    Article  CAS  Google Scholar 

  • Tyagi, M., da Fonseca, M. M., & de Carvalho, C. C. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231–241.

    Article  CAS  Google Scholar 

  • Van Aken, B. (2009). Transgenic plants for enhanced phytoremediation of toxic explosives. Current Opinion in Biotechnology, 20(2), 231–236.

    Article  CAS  Google Scholar 

  • Vázquez, S., Agha, R., Granado, A., Sarro, M. J., Esteban, E., Penalosa, J. M., & Carpena, R. O. (2006). Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water, Air, and Soil Pollution, 177(1–4), 349–365.

    Article  CAS  Google Scholar 

  • Verma, J. P., & Jaiswal, D. K. (2006). Book review: Advances in biodegradation and bioremediation of industrial waste. Frontiers in Microbiology, 6, 1555.

    Google Scholar 

  • Verma, P., George, K. V., Singh, H. V., Singh, S. K., Juwarkar, A., & Singh, R. N. (2006). Modeling rhizofiltration: Heavy-metal uptake by plant roots. Environmental Modeling and Assessment, 11(4), 387–394.

    Article  Google Scholar 

  • Vidali, M. (2001). Bioremediation an overview. Pure and Applied Chemistry, 73(7), 1163–1172.

    Article  CAS  Google Scholar 

  • Volpe, A., D’Arpa, S., Del Moro, G., Rossetti, S., Tandoi, V., & Uricchio, V. F. (2012). Fingerprinting hydrocarbons in a contaminated soil from an Italian natural reserve and assessment of the performance of a low-impact bioremediation approach. Water, Air, & Soil Pollution, 223(4), 1773–1782.

    Article  CAS  Google Scholar 

  • Watanabe, K., Watanabe, K., Kodama, Y., Syutsubo, K., & Harayama, S. (2000). Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Applied and Environmental Microbiology, 66(11), 4803–4809.

    Article  CAS  Google Scholar 

  • Whelan, M. J., Coulon, F., Hince, G., Rayner, J., McWatters, R., Spedding, T., & Snape, I. (2015). Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere, 131, 232–240.

    Article  CAS  Google Scholar 

  • Zahed, M. A., Aziz, H. A., Isa, M. H., & Mohajeri, L. (2010). Effect of initial oil concentration and dispersant on crude oil biodegradation in contaminated seawater. Bulletin of Environmental Contamination and Toxicology, 84(4), 438–442.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skinder, B.M., Uqab, B., Ganai, B.A. (2020). Bioremediation: A Sustainable and Emerging Tool for Restoration of Polluted Aquatic Ecosystem. In: Qadri, H., Bhat, R., Mehmood, M., Dar, G. (eds) Fresh Water Pollution Dynamics and Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-13-8277-2_9

Download citation

Publish with us

Policies and ethics