Skip to main content

Urban Pond Ecosystems: Preservation and Management Through Phytoremediation

  • Chapter
  • First Online:

Abstract

Life is impossible without freshwater as it is significantly important for all living creatures on earth. The natural built-up of nutrients in freshwater bodies is an extremely time-consuming process but human interferences have enhanced the rate of contaminating the pond and lake ecosystems with N and P plenty of times than natural cause. Large quantities of untreated effluents from industrial and domestic sector are directly discharged into adjacent recipient freshwater environs (ponds and lakes), which manifolds the concentration of concerned nutrients into these freshwater ecosystems. There is no limit pertaining to the treatment techniques availability, but they are either insufficient or least effective for removing the nuisance contaminates from the wastewaters. Besides, these techniques have plenty of environment related issues, in other words conventional remediation techniques pose threats to the freshwater environs and required high energy and cost for establishment. Employing naturally growing plants in disturbed aquatic environs has been observed a viable technique to clean up the nuisance nutrients and toxic pollutants. Phytoremediants scavenge the harmful substances (nutrients and heavy metals) from disturbed surface waters have recently been explored as substitute to conventional methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi, S. A., & Nipaney, P. C. (1984). The catalytic effect of copper (II), zinc (II) and nickel (II) on the anaerobic digestion of Salvinia molesta (Mitchell). In F. A. Curtis (Ed.), Energy development: New forms, renewable, conservation (pp. 237–247). Pergamon: Oxford.

    Chapter  Google Scholar 

  • Abbasi, S. A., & Nipaney, P. C. (1985). Waste water treatment using aquatic plants. Survivability and growth of Salvinia molesta (Mitchell) over water treated with zinc II and subsequent utilization of the harvested weed for energy (biogas) production. Resource Conservation, 12, 47–55.

    Article  CAS  Google Scholar 

  • Abhilash, P. C., Pandey, V. C., Srivastava, P., Rakesh, P. S., Chandran, S., Singh, N., & Thomas, A. P. (2009). Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenaugrown in free-floating culture system. Journal of Hazardous Materials, 170(2–3), 791–797.

    Article  CAS  Google Scholar 

  • Abhilash, P. C., Powell, J. R., Singh, H. B., & Singh, B. K. (2012). Plant-microbe interactions: Novelapplications for exploitation inmultipurpose remediation technologies. Trends in Biotechnology, 30, 416–420.

    Article  CAS  Google Scholar 

  • Al-Badaii, F., Othman, M. S., & Gasim, M. B. (2013). Water quality assessment of the Semenyih River, Selangor, Malaysia. Journal of Chemistry, 2013, 1–10. Article ID 871056. https://doi.org/10.1155/2013/871056.

    Article  CAS  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91, 869–881.

    Article  CAS  Google Scholar 

  • American Society of Civil Engineers (ASCE), Environmental Protection Agency (EPA). (2002). Urban stormwater BMP performance monitoring. A guidance manual for meeting the national stormwater BMP database requirements (pp. 395–400). Washington DC.

    Google Scholar 

  • Anon. (1981). Characterisation of pollution in urban stormwater runoff (Technical Paper No. 60, p. 8). Canberra: Australian Water Resources Council and Department of National Development and Energy.

    Google Scholar 

  • Arber, A. (1920). A study of aquatic angiosperms (p. 436). Cambridge: Cambridge University Press.

    Google Scholar 

  • Asada, M., & Ohgaki, S. (1996). Benzo(a) pyrene in urban runoff at the beginning of rainfall. Journal of Japan Society on Water Environment, 19, 904–909.

    Article  CAS  Google Scholar 

  • Asefi, M., & Zamani-Ahamadmahmoodi, R. (2015). Mercury concentrationsand health risk assessment for two fish species, Barbus grypus and Barbus luteus from the maroon river,Khuzestan province, Iran. Environmental Monitoring and Assessment, 187, 653.

    Article  CAS  Google Scholar 

  • Ashley, R. M., Wotherspoon, D. J. J., Coghlan, B. P., & McGregor, I. (1992). The erosion and movement of sediments and associated pollutants in combined drainage systems. Water Science and Technology, 25, 101–114.

    Article  CAS  Google Scholar 

  • Bergmann, B. A., Cheng, J., Classen, J., & Stomp, A. M. (2000a). Nutrient removal from swine lagoon effluent by duckweed. Transactions of the American Society of Agricultural Engineers, 43, 263–269.

    Article  CAS  Google Scholar 

  • Bergmann, B. A., Cheng, J., Classen, J., & Stomp, A. M. (2000b). In-vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource Technology, 73, 13–20.

    Article  CAS  Google Scholar 

  • Bhat, S. C., Goswami, S., & Ghosh, U. C. (2005). Removal of trace chromium (VI) from contaminated water: Biosorption by Ipomea aquatica. Journal of Environmental Science and Engineering, 47, 316–321.

    CAS  Google Scholar 

  • Bhat, M. M., Yazdani, T., Narain, K., Yunus, M., & Shukla, R. N. (2009). Water quality status of some urban ponds of Lucknow, Uttar Pradesh. Journal of Wetlands Ecology, 2, 67–73.

    Google Scholar 

  • Bhat, M. M., Narain, K., Andrabi, S. Z., Shukla, R. N., & Yunus, M. (2012a). Assessment of heavy metal pollution in urban pond ecosystems. Universal Journal of Environmental Research and Technology, 2(4), 225–232.

    CAS  Google Scholar 

  • Bhat, M. M., Narain, K., Ahmad, A., Shukla, R. N., & Yunus, M. (2012b). Seasonal variations of physico-chemical characteristics in several ponds of Lucknow city affected by urban drainage. Advances in Environmental Biology, 6(10), 2654–2662.

    CAS  Google Scholar 

  • Bhat, M. M., Narain, K., Shukla, R. N., & Yunus, M. (2013). Apportionment of pollution loads arising from catchments in pond water bodies. Advances in Applied Science Research, 4(4), 436–441.

    CAS  Google Scholar 

  • Bhuyan, S. J., Marzen, L. J., Koelliker, J. K., Harrington, J. A., & Barnes, P. L. (2001). Assessment of runoff and sediment yield using remote sensing, GIS and AGNPS. Journal of Soil and Water Conservation, 57, 351–364.

    Google Scholar 

  • Biswas, A. K., & Tortajada, C. (2011). Water quality management: An introductory framework. International Journal of Water Resources Development, 27(1), 5–11.

    Article  Google Scholar 

  • Bortey-Sam, N., Nakayama, S. M. M., Ikenaka, Y., Akoto, O., Baidoo, E., Mizukawa, H., & Ishizuka, M. (2015). Healthrisk assessment of heavy metals and metalloids in drinkingwater from communities near gold mines in Tarkwa, Ghana. Environmental Monitoring and Assessment, 187, 397.

    Article  CAS  Google Scholar 

  • Boyd, C. E. (1969). Vascular aquatic plants for mineral nutrient removal from polluted waters. Economic Botany, 24, 95–103.

    Article  Google Scholar 

  • Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35, 11–17.

    Article  CAS  Google Scholar 

  • Brix, H., & Schierup, H. H. (1989). The use of aquatic macrophytes in water pollution control. Ambio, 18, 100–197.

    Google Scholar 

  • Brown, L. R., Gray, R. H., Hugies, R. M., & Meador, M. R. (2005). Introduction to effects of urbanization on stream ecosystems. American Fisheries Society Symposium, 47, 1–8.

    Google Scholar 

  • Brune, A., Urbach, W., & Dietz, K. (1994). Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant, Cell & Environment, 17, 153–162.

    Article  CAS  Google Scholar 

  • Bu, F. P., & Xu, X. Y. (2013). Planted floating bed performance intreatmentofeutrophicriverwater. Environmental Monitoring and Assessment, 185, 9651–9662.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 83, 559–568.

    Article  Google Scholar 

  • Chan, N. W. (2012). Managing urban rivers and water quality in Malaysia for sustainable water resources. Water Resources Development, 28(2), 343–354.

    Article  Google Scholar 

  • Choe, J. S., Bang, K. W., & Lee, J. H. (2002). Characterization of surface runoff in urban areas. Water Science and Technology, 45, 249–254.

    Article  CAS  Google Scholar 

  • Chow, T. J., Snyder, C. B., Snyder, H. G., & Earl, J. L. (1976). Lead content of some marine organisms. Journal of Environmental Science and Health, Part A, 11, 33–44.

    Article  Google Scholar 

  • Christensen, E. R., & Chien, N. K. (1981). Fluxes of arsenic, lead, zinc and cadmium to Green Bay and Lake Michigan sediments. Environmental Science and Technology, 15, 553–558.

    Article  CAS  Google Scholar 

  • Chung, I. H., & Jeng, S. S. (1974). Heavy metal pollution of Ta-Tu River. Bulletin of the Institute of Zoology, Academy of Science, 13, 69–73.

    CAS  Google Scholar 

  • Cordery, I. (1976). Some effects of urbanization on streams. Civil Engineering Transactions, Institution of Engineers, Australia, 18, 7–11.

    Google Scholar 

  • Das, S., Goswami, S., & Talukdar, A. D. (2014). A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bulletin of Environmental Contamination and Toxicology, 92(2), 169–174.

    Article  CAS  Google Scholar 

  • Dearing, J. A., Elner, J. J., & Happey-Wood, C. M. (1981). Recent sediment flux and erosional processes in a Welsh upland lake-catchment based on magnetic susceptibility measurements. Quaternary Research, 16, 356–372.

    Article  CAS  Google Scholar 

  • Deaver, E., Moore, M. T., Cooper, C. M., & Knight, S. S. (2005). Efficiency of three aquatic macrophytes in mitigating nutrient run-off. International Journal of Ecology and Environmental Sciences, 31, 1–7.

    Google Scholar 

  • Deletic, A., & Maksimovic, C. T. (1998). Evaluation of water quality factors in storm water runoff from paved areas. Journal of Environmental Engineering, 124, 869–878.

    Article  CAS  Google Scholar 

  • Denny, H., & Wilkins, D. (1987). Zinc tolerance in Betula spp. II. Microanalytical studies of zinc uptake into root tissues. The New Phytologist, 106, 525–534.

    CAS  Google Scholar 

  • Depledge, M. H., Weeks, J. M., & Bjerregaard, P. (1993). Heavy metals. In P. Calow (Ed.), Handbook of ecotoxicology (Vol. 2, pp. 79–99). Oxford: Blackwell.

    Google Scholar 

  • Dhananjayan, V., Muralidharan, S., & Peter, V. R. (2012). Occurrence and distribution of polycyclic aromatic hydrocarbons in water and sediment collected along the Harbour Line, Mumbai, India. International Journal of Oceanography, 2012, 1–7. https://doi.org/10.1155/2012/403615.

    Article  Google Scholar 

  • Dorval, J., Leblond, V. S., & Hentela, A. (2003). Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochlorine pesticide. Aquatic Toxicology, 63, 229–241.

    Article  CAS  Google Scholar 

  • Dunbabin, J. S., & Bowmer, K. H. (1992). Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment, 111, 151–168.

    Article  CAS  Google Scholar 

  • Eichenberger, E. (1993). Correlation between necessity and toxicity of metals in water ecosystems. In Some problems of metal ions toxicity (pp. 62–87). Moscow: Mir Publishing House.

    Google Scholar 

  • El-Gendy, A. S., Biswas, N., & Bewtra, J. K. (2005). A floating aquatic system employing water hyacinth for municipal landfill leachate treatment: Effect of leachate characteristics on the plant growth. Journal of Environmental Engineering and Science, 4, 227–240.

    Article  CAS  Google Scholar 

  • Elliott, S., & Sorrell, B. (2002). Lake Manager’s handbook, land–water interactions (pp. 61–62). Wellington: Ministry for the Environment.

    Google Scholar 

  • Ellis, J., Shutes, R., Revitt, D., & Zhang, T. (1994). Use of macrophytes for pollution treatment in urban wetlands. Resources, Conservation and Recycling, 11, 1–12.

    Article  Google Scholar 

  • EL-Sayed, A. F. M. (1999). Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture, 179, 149–168.

    Article  Google Scholar 

  • Ernst, W., Verkleij, J., & Schat, H. (1992). Metal tolerance in plants. Acta Botanica Neerlandica, 41, 229–248.

    Article  CAS  Google Scholar 

  • Falbo, M. B., & Weaks, T. E. (1990). A comparison of Eichhornia crassipes (Pontederiaceae) and Sphagnum quinquefarium (Sphagnaceae) in treatment of acid mine water. Economic Botany, 44, 40–49.

    Article  CAS  Google Scholar 

  • Farm, C. (2002). Evaluation of the accumulation of sediment and heavy metals in a storm-water detention basin. Water Science and Technology, 45, 105–112.

    Article  CAS  Google Scholar 

  • Fernandes, C., Fontaínhas-Fernandes, A., Cabral, D., & Salgado, M. A. (2008). Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz–Paramos lagoon, Portugal. Environmental Monitoring and Assessment, 136, 267–275.

    Article  CAS  Google Scholar 

  • Fitzpatrick, F. A., Harris, M. A., Arnold, T. L., & Richards, K. D. (2004). Urbanization influences on aquatic communities in North-Eastern Illinois streams. Journal of the American Water Resources Association, 40, 461–475.

    Article  CAS  Google Scholar 

  • Forstner, U., & Whittman, G. T. W. (Eds.). (1979). Metal pollution in the aquatic environment (p. 486). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Foster, I. D. L., & Dearing, J. A. (1987). Quantification of long term trends in atmospheric pollution and agricultural eutrophication: A lake-watershed approach. IAHS Publication, 168, 173–189.

    CAS  Google Scholar 

  • Fulazzaky, M. A., Seong, T. W., & Masrin, M. I. M. (2010). Assessment of water quality status for the Selangor River in Malaysia. Water, Air, and Soil Pollution, 205, 63–77.

    Article  CAS  Google Scholar 

  • Galiulin, R. V. (1994). Inventory and recultivation of the agro landscape soil cover contaminated by different chemical substances. Agrochemistry, 7(8), 132–143.

    Google Scholar 

  • Gazi, N. W. R., & Steven, P. K. S. (1999). Bioremoval of lead from water using Lemna minor. Bioresource Technology, 70, 225–230.

    Article  Google Scholar 

  • Geiger WF (1987) Flushing effects in combined drainage systems. In: Proceedings of the 4th International Conference on Urban Storm Drainage, Lausanne, Switzerland, pp. 46.

    Google Scholar 

  • Ghaderian, S. M., Mohttadi, A., Rahiminejad, M. R., & Baker, A. J. M. (2007). Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environmental Pollution, 145, 293–298.

    Article  CAS  Google Scholar 

  • Gijzen, H. J., & Veenstra, S. (2000). Duckweed-based wastewater treatment for rational resource recovery and reuse. In E. J. Olguin, G. Sánchez, & E. Hérnandez (Eds.), Environmental biotechnology and cleaner bioprocesses (pp. 83–100). London: Taylor and Francis.

    Google Scholar 

  • Gopal, B. (1999). Natural and constructed wetlands for wastewater treatment: Potentials and problems. Water Science and Technology, 40(3), 27–35.

    Article  CAS  Google Scholar 

  • Gotheberg, A., Greger, M., & Bengtsson, B. E. (2002). Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environmental Toxicology and Chemistry, 21, 1934–1939.

    Article  Google Scholar 

  • Gowd, S. S., & Kotaiah, B. (2000). Seasonal variation of water quality in a tropical Kalyani reservoir, near Tirupati. Indian Journal of Environmental Protection, 20, 452–455.

    CAS  Google Scholar 

  • Gray, L. (2004). Changes in water quality and macroinvertebrate communities resulting from urban stormflows in the Provo River, Utah, USA. Hydrobiologia, 518, 33–46.

    Article  CAS  Google Scholar 

  • Greipsson, S. (2011). Phytoremediation. Nature Education Knowledge, 2, 7.

    Google Scholar 

  • Griffin, Jr., Gizzard, D. M., Randall, T. J., Hessle, C. W., & Hartigan, J. P. (1980). Analysis of non-point pollution export from small catchments. Journal WPCF, 52, 780–790.

    CAS  Google Scholar 

  • Gulati, K. L., Nagpaul, K. K., & Bukhari, S. S. (1979). Uranium, boron, nitrogen, phosphorus and potassium in leaves of mangroves, Mahasagar. Bulletin of the National Institute of Oceanography, 12, 183–186.

    CAS  Google Scholar 

  • Gupta, M., & Devi, S. (1995). Uptake and toxicity of cadmium in aquatic ferns. Journal of Environmental Biology, 16, 131–136.

    CAS  Google Scholar 

  • Gupta, K., & Saul, A. J. (1996). Specific relationships for the first flush load in combined drainage systems. Water Research, 30, 1244–1252.

    Article  CAS  Google Scholar 

  • Gupta, P., & Srivastava, N. (2006). Effects of sub-lethal concentrations of zinc on histological changes and bioaccumulation of zinc by kidney of fish Channa punctatus (Bloch). Journal of Environmental Biology, 27, 211–215.

    CAS  Google Scholar 

  • Gupta, S. C., Rathore, G. S., & Mathur, G. C. D. (2001). Hydro-chemistry of Udaipur lakes. Indian Journal of Environmental Health, 43, 38–44.

    CAS  Google Scholar 

  • GWP Technical Advisory Committee. (2000). TAC background paper no. 4 (pp. 1–15). Stockholm: Global Water Partnership. Integrated Water Resources Management.

    Google Scholar 

  • Hakanson, L., & Jansson, M. (1983). Principles of lake sedimentology (Vol. 3, p. 16). Berlin: Springer.

    Book  Google Scholar 

  • Hassan, S. H., Talat, M., & Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichhornia crassipes). Bioresource Technology, 98, 918–928.

    Article  CAS  Google Scholar 

  • Hernández, E., Olguín, E. J., Trujillo, S., & Vivanco, J. (1997). Recycling and treatment of anaerobic effluents from pig waste using Lemna sp. under temperate climatic conditions. In D. L. Wise (Ed.), Global environmental biotechnology (pp. 293–304). Amsterdam: Elsevier.

    Google Scholar 

  • HO, Y. B. (1988). Metal levels in three intertidal macroalgae in Hong Kong waters. Aquatic Botany, 29, 367–372.

    Article  CAS  Google Scholar 

  • Hoo, L. S., Samat, A., & Othman, M. R. (2004). The level of selected Heavy metals (Cd, Cu, Fe, Pb, Mn and Zn) at residential area nearby Labu river system Riverbank, Malaysia. Research Journal of Chemistry and Environment, 8, 24–29.

    CAS  Google Scholar 

  • Ismail, A. S., Abael-Sabour, R. M., & Radwan. (1996). Water hyacinth as an indicator for heavy metal pollution in different selected sites and water bodies around greater Cairo Egypt. Journal of Soil Science, 36, 343–354.

    CAS  Google Scholar 

  • Jackson, L., Rasmussen, J., & Kalff, J. (1994). A mass balance analysis of trace metals in two weedbeds. Water, Air, and Soil Pollution, 75, 107–119.

    Article  CAS  Google Scholar 

  • Jain, S. K., Vasudevan, P., & Jha, N. K. (1989). Removal of some heavy metals from polluted water by aquatic plants: Studies on duckweed and water velvet. Biological Wastes, 28, 115–126.

    Article  CAS  Google Scholar 

  • Jana, S., & Chaudhari, M. A. (1982). Senescence in submerged aquatic angiosperms: Effects of heavy metal. The New Phytologist, 90, 477–484.

    Article  CAS  Google Scholar 

  • Johnes, P. J., Moss, B., & Phillips, G. (1996). The determination of total nitrogen and total phosphorus concentrations in freshwaters from land-use, stocking headage and population data: Testing of a model for use in conservation and water quality management. Freshwater Biology, 36, 451–473.

    Article  CAS  Google Scholar 

  • Joliffe, I. B. (1995). Hydrological cycle and impacts of urbanization. In M. G. Sharpin (Ed.), Environmental aspects of urban drainage, Concord Function Centre, Sydney, 22 August (pp. 1–20). Sydney: Stormwater Industry Association.

    Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands. In Lewis Publishers. Boca Raton: Florida.

    Google Scholar 

  • Kamal, M., Ghalya, A. E., Mahmouda, N., & Cote, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Palaniappan, P. L. R. M., & Sabhanayakam, S. (2007). Influence of pH and water hardness upon nickel accumulation in edible fish Cirrhinus mrigala. Journal of Environmental Biology, 28, 489–492.

    CAS  Google Scholar 

  • Keskinkan, O., Goksu, M. Z. L., Basibuyuk, M., & Forster, C. F. (2004). Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92, 197–200.

    Article  CAS  Google Scholar 

  • Kramer, U. (2005). Phytoremediation: Novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16, 133–141.

    Article  CAS  Google Scholar 

  • Kreuzig, R. (2005). Phytoremediation: Potential of plants to clean-up polluted soils. Braunschweig University of Technology, Institute of Ecological Chemistry and Waste Analysis.

    Google Scholar 

  • Kulli, B., Balmer, M., Krebs, R., Lothenbach, B., Geiger, G., & Schulin, R. (1999). The influence of nitrillotriacetate on heavy metal uptake of lettuce and ryegrass. Journal of Environmental Quality, 28, 1699–1705.

    Article  CAS  Google Scholar 

  • Kumar, A. R., & Riyazuddin, P. (2006). Chemical speciation of trace metals in aquatic environment – An overview. Research Journal of Chemistry and Environment, 10, 93–103.

    CAS  Google Scholar 

  • Kusin, F. M., Muhammad, S. N., Zahar, M. S. M., & Madzin, Z. (2016a). Integrated river basin management: Incorporating the use of abandoned mining pool and implication on waterquality status. Desalination and Water Treatment, 57(60), 29126–29136.

    Article  Google Scholar 

  • Kusin, F. M., Zahar, M. S. M., Muhammad, S. N., Mohamad, N. D., Zin, Z. M., & Sharif, S. M. (2016b). Hybrid off-river augmentation system as an alternative raw water resource: The hydrogeochemistry of abandoned mining ponds. Environment and Earth Science, 75(3), 1–15.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    Article  CAS  Google Scholar 

  • Lazzarotto, P., Prasuhn, V., Butscher, E., Crespi, C., Fluhler, H., & Stamm, C. (2005). Phosphorus export dynamics from two Swiss grassland catchments. Journal of Hydrology, 304, 139–150.

    Article  CAS  Google Scholar 

  • Lee, J. H., Bang, K. W., Choe, J. S., Yu, M. J., & Ketchum, L. H. (2002). First flush analysis of urban storm runoff. The Science of the Total Environment, 293, 163–175.

    Article  CAS  Google Scholar 

  • Lipp, E. K., Kurz, R., Vincent, R., Rodriguez-Palacios, C., Farrah, S. R., & Rose, J. B. (2001). The effects of seasonal variability and weather on microbial faecal pollution and enteric pathogens in a subtropical estuary. Estuaries, 24, 491–497.

    Article  Google Scholar 

  • Lougheed, V. L., Crosbie, B., & Chow-Fraser, P. (2001). Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: Latitude, land use, and water quality effects. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1603–1612.

    Article  Google Scholar 

  • Lukina, L. F., & Smirnova, N. N. (1988). Physiology of higher aquatic plants (p. 188). Kiev: Naukova Dumka Publishing House.

    Google Scholar 

  • Ma, L., He, F., Huang, T., Zhou, Q. H., Zhang, Y., & Wu, Z. B. (2016). Nitrogen and phosphorus transformations and balancein a pond-ditch circulation system for rural polluted water treatment. Ecological Engineering, 94, 117–126.

    Article  CAS  Google Scholar 

  • Maberly, S. C., King, L., Gibson, C. E., May, L., Jones, R. I., Dent, M. M., & Crawford, J. (2003). Linking nutrient limitation and water chemistry in upland lakes to catchment characteristics. Hydrobiologia, 506–509, 83–91.

    Article  Google Scholar 

  • Mahvi, A. H., & Mardani, G. (2005). Determination of Phenanthrene in urban runoff of Tehran, Capital of Iran. Iranian Journal of Environmental Health Science and Engineering, 2(2), 5–11.

    Google Scholar 

  • Maine, M., Duarte, M., & Sune, N. (2001). Cadmium uptake by floating macrophytes. Water Research, 35, 2629–2634.

    Article  CAS  Google Scholar 

  • Maine, M. A., Sune, N. L., & Lagger, S. C. (2004). Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes. Water Research, 38, 1494–1501.

    Article  CAS  Google Scholar 

  • Mal, T., Adorjan, P., & Corbett, A. (2002). Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environmental Pollution, 120, 307–311.

    Article  CAS  Google Scholar 

  • Mallin, M., Williams, K., Esham, E., & Lowe, R. (2000). Effect of human development on bacteriological water quality in coastal watershed. Ecological Applications, 10, 1047–1056.

    Article  Google Scholar 

  • Mangkoedihardjo, S. (2007). Phytotechnology integrity in environmental sanitation for sustainable development. Journal of Applied Sciences Research, 3(10), 1037–1044.

    Google Scholar 

  • Marsalek, J. (1998). Challenges in urban drainage. In J. Marsalek, C. Maksimovic, E. Zeman, & R. Price (Eds.), Hydroinformatics tools for planning, design, operation and rehabilitation of sewer systems (pp. 1–23). Dordech/Boston/London: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Marzen, L. J., Bhuyan, S. J., Harrington, J. A., Koelliker, J. K., Frees, L. D., & Volkman, C. G. (2000). Water quality modeling in the red rock creek watershed, Kansas. Proceedings of Applied Geography Conferences, 23, 175–182.

    Google Scholar 

  • Meitei, M. D., & Prasad, M. N. V. (2013). Lead (II) and cadmium (II) biosorption. Chemical Engineer, 1(3), 200–207.

    CAS  Google Scholar 

  • Memon, A. R., Aktoprakligül, D., ÖZdemür, A., & Vertii, A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal of Botany, 25, 111–121.

    Google Scholar 

  • Milic, D., Lukovic, J., Ninkov, J., Zeremski-Skoric, T., Zoric, L., Vasin, J., & Milic, S. (2012). Heavy metal content inhalophytic plants frominland and maritime salineareas. Central European Journal of Biology, 7, 307–317.

    CAS  Google Scholar 

  • Miretzkey, P., Saralegui, A., & Fernandez Cirelli, A. (2004). Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere, 57(8), 997–1005.

    Article  CAS  Google Scholar 

  • Mishra, V. K., & Tripathi, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99, 7091–7097.

    Article  CAS  Google Scholar 

  • Mitsch, W. J., & Gooselink, J. G. (2007). Wetlands (4th ed., pp. 1–34). New York: Wiley.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (1993). Wetlands (2nd ed., p. 539). New York: Van Nostrand-Reinhold.

    Google Scholar 

  • Mohanraj, R., Sathishkumar, M., Azeez, P. A., & Sivakumar, R. (2000). Pollution status of wetlands in urban Coimbatore, Tamilnadu, India. Bulletin of Environmental Contamination and Toxicology, 64, 638–643.

    Article  CAS  Google Scholar 

  • Mohapatra, U. K., & Singh, B. C. (1999). Trace metals in drinking water from different sources in old capital city of Cuttak. Indian Journal of Environmental Health, 41, 115–120.

    CAS  Google Scholar 

  • Moshiri, G. A. (1993). Constructed wetlands for water quality improvement. Boca Raton, FL: Lewis Publishers, CRC Press.

    Google Scholar 

  • Mungur, A. S., Shutes, R. B. E., Revitt, D. M., & House, M. A. (1995). An assessment of metal removal from highway runoff by a natural wetland. Water Science and Technology, 32, 169–175.

    Article  CAS  Google Scholar 

  • Nahlik, A. M., & Mitsch, W. J. (2006). Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering, 28, 246–257.

    Article  Google Scholar 

  • Nihan, O., & Elmaca, A. (2007). Performance of duckweed (Lemna minor L.) on different types of waste water treatment. Journal of Environmental Biology, 27, 307–314.

    Google Scholar 

  • Noble, R. T., Dorsey, J., Leecaster, M. K., Reid, D., Schiff, K. C., & Weisberg, S. B. (2000). A regional survey of the microbiological water quality along Southern California bight shoreline. Environmental Monitoring and Assessment, 64, 435–447.

    Article  CAS  Google Scholar 

  • Novotny, V. (1994). Diverse solutions for diffuse pollution, vol. 1, 24–31. Water Quality International, International Association for Water Quality.

    Google Scholar 

  • Novotny, V. (1999). Integrating diffuse pollution control and water body restoration into watershed management. Journal of the American Water Resources Association, 35, 717–727.

    Article  Google Scholar 

  • Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature, 279, 409–411.

    Article  CAS  Google Scholar 

  • Nyer, E. K., & Gatliff, E. G. (1996). Phytoremediation. Groundwater Monitoring and Remediation, 16, 58–62.

    Article  CAS  Google Scholar 

  • O’Loughlin, G. (1994). Pollution prevention and politics – The recent experience in Sydney. Water Science and Technology, 30, 13–22.

    Article  Google Scholar 

  • Olguin, E. J., Rodriguez, D., Sanchez, G., Hernandez, E., & Ramirez, M. E. (2003). Productivity, protein content and nutrient removal from anaerobic effluents of coffee wastewater in Salvinia minima ponds under subtropical conditions. Acta Biotechnologica, 23, 259–270.

    Article  CAS  Google Scholar 

  • Othman, F., Eldin, M. E. A., & Mohamed, I. (2012). Trend analysis of a tropical urban river water quality in Malaysia. Journal of Environmental Monitoring, 14, 3164–3173.

    Article  CAS  Google Scholar 

  • Park, K. S., & Shin, H. W. (2007). Studies on phyto and zooplankton composition and its relation to fish productivity in a west coast fish pond ecosystem. Journal of Environmental Biology, 28, 415–422.

    CAS  Google Scholar 

  • Pavendan, P., Anbu selvan, S., & Sebastian rajasekaran, C. (2011). Physico Chemical and microbial assessment of drinking water from different water sources of Tiruchirappalli District, South India. European Journal of Experimental Biology, 1(1), 183–189.

    Google Scholar 

  • Pegram, G. C., Görgens, A. H. M. (2001). A guide to non-point source assessment (Water Research Commission Report TT142/01, pp 115).

    Google Scholar 

  • Pilon-Smiths, E., & Pilon, M. (2002). Phytoremediation of metals using transgenic plants. Critical Reviews in Plant Sciences, 21, 439–456.

    Article  Google Scholar 

  • Pinto, C. L., Caconia, A., & Souza, M. (1987). Utilization of water hyacinth for removal and recovery of silver from industrial wastewater. In D. Athie (Ed.), The use of macrophytes in water pollution controls (Water Sci Technol) (Vol. 19, pp. 89–102).

    Google Scholar 

  • Polkowska, ò., Grynkiewicz, M., Zabiegala, B., & NamieÑnik, J. (2001). Levels of pollutants in runoff water from roads with high traffic intensity in the City of Gda½sk, Poland. Polish Journal of Environmental Studies, 10, 351–363.

    CAS  Google Scholar 

  • Pote, J., Haller, L., Loizeau, J. L., Bravo, A. G., Sastre, V., & Wildi, W. (2008). Effects of a sewage treatment plant outlet pipe extension on the distribution of contaminants in the sediments of the bay of Vidy, Lake Geneva, Switzerland. Bioresource Technology, 99, 7122–7131.

    Article  CAS  Google Scholar 

  • Prajapati, S. K., Meravi, N., & Singh, S. (2012). Phytoremediation of Chromium and Cobalt using Pistia stratiotes: A sustainable approach. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(2), 136–138.

    CAS  Google Scholar 

  • Prakash, O., Mehroira, I., & Kumar, P. (1987). Removal of cadmium from water by water hyacinth. Journal of Environmental Engineering, 113, 352–365.

    Article  CAS  Google Scholar 

  • Praveena, S. M., Radojevic, M., Abdullah, M. H., & Aris, A. Z. (2008). Application of sediment quality guidelines in the assessment of mangrove surface sediment in Mengkabong lagoon, Sabah, Malaysia. Iran Journal of Environmental Health Science and Engineering, 5(1), 35–42.

    CAS  Google Scholar 

  • Qin, H. J., Zhang, Z. Y., & Liu, M. H. (2016). Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecological Engineering, 95, 753–762.

    Article  Google Scholar 

  • Rai, P. K. (2007). Wastewater management through biomass of Azolla pinnata: An ecosustainable approach. Ambio: A Journal on Human Environment, 36, 426–428.

    Article  CAS  Google Scholar 

  • Rai, P. K., & Tripathi, B. D. (2007a). Heavy metals adsorption characteristics of free floating aquatic macrophyte Spirodela poyrhhiza. Journal of Environmental Research and Development, 5, 656–660.

    Google Scholar 

  • Rai, P. K., & Tripathi, B. D. (2007b). Heavy metals removal using nuisance blue green alga Microcystis in continuous culture experiment. Environmental Sciences, 4, 53–59.

    Article  Google Scholar 

  • Rai, U. N., Sinha, S., Tripathi, R. D., & Chandra, P. (1995). Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecological Engineering, 157, 1–8.

    Google Scholar 

  • Ramachandra TV, Solanki M (2007) Ecological assessment of lentic water bodies of Bangalore. ENVIS Technical Report, Vol. 25, pp. 8–9.

    Google Scholar 

  • Ramachandra, T. V., Kiran, R., & Ahalya, N. (2002). Status, conservation and management of wetlands (p. 3). New Delhi: Allied Publishers (P) Limited.

    Google Scholar 

  • Ran, N., Agami, M., & Oron, G. (2004). A pilot study of constructed wetlands using duckweed (Lemna gibba L.) for treatment of domestic primary effluent in Israel. Water Research, 38, 2241–2248.

    Article  CAS  Google Scholar 

  • Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 193–229). New York: Wiley.

    Google Scholar 

  • Raskin, I., Nanda Kumar, P. B. A., Dushenkov, V., & Salt, D. E. (1994). Bioconcentration of heavy metals by plants. Current Opinions Biotechnology, 5, 285–290.

    Article  CAS  Google Scholar 

  • Ray, M. K., & Majumdar, S. (2005). Evaluating economic sustainability of urban and peri-urban waterbodies, a case study from Kolkata Ponds. In N. Sengupta & J. Badyopadhyay (Eds.), Biodiversity and quality of life (pp. 135–146). New Delhi: Macmillan.

    Google Scholar 

  • Renburg, I. (1986). Concentration and annual accumulation of heavy metals in lake sediments: Their significance in studies of the history of heavy metal pollution. Hydrobiologia, 143, 379–385.

    Article  Google Scholar 

  • Roley, S. S., Tank, J. L., Tyndall, J. C., & Witter, J. D. (2016). How cost-effective are cover crops, wetlands, and two-stage ditches for nitrogen removal in the Mississippi River Basin? Water Resources and Economics, 15, 43–56.

    Article  Google Scholar 

  • Saget, A., Chebbo, G., & Desbordes, M. (1995). Urban discharges during wet weather: What volumes have to be treated? Water Science and Technology, 32, 225–232.

    Article  CAS  Google Scholar 

  • Sahu, R. K., Naraian, R., & Chandra, V. (2007). Accumulation of metals in naturally grown weeds (aquatic macrophytes) grown on an industrial effluent channel. Clean, 35, 261–265.

    CAS  Google Scholar 

  • Salt, D. E., Blaylock, M. N. P., Kumar, B. A., Dushenkov, V., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.

    CAS  Google Scholar 

  • Schindler, D. W. (1997). Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes, 11, 1043–1067.

    Article  Google Scholar 

  • Schneider, I. A. H., Rubio, J., & Smith, R. W. (1999). Effect of some mining chemicals on biosorption of Cu (II) by the nonliving biomass of the freshwater macrophyte Potamogeton lucens. Minerals Engineering, 12, 255–260.

    Article  CAS  Google Scholar 

  • Schreiber, J. D., Rebich, R. A., & Cooper, C. M. (2001). Dynamics of diffuse pollution from US southern catchements. Water Research, 35, 2534–2542.

    Article  CAS  Google Scholar 

  • Sculthorpe, C. D. (1967). The biology of aquatic vascular plants (p. 610). New York: St. Martin’s Press.

    Google Scholar 

  • Settacharnwit, S., Buckney, R. T., & Lim, R. P. (2003). The nutrient status of Nong Han, a shallow tropical lake in North-Eastern Thailand: Spatial and temporal variations. Lakes & Reservoirs: Research and Management, 8, 189–200.

    Article  CAS  Google Scholar 

  • Shastri, Y., & Pendse, D. C. (2001). Hydro biological study of Dahikhura reservoir. Journal of Environmental Biology, 22, 67–70.

    CAS  Google Scholar 

  • Shinya, M., Tsuruho, K., Konishi, T., & Ishikawa, M. (2003). Evaluation of factors influencing diffuse pollutant loads in urban highway runoff. Water Science and Technology, 47, 227–232.

    Article  CAS  Google Scholar 

  • Shrivastava, S., & Rao, K. S. (1997). Observation on the utility of integrated aquatic macrophyte base system for mercury toxicity removal. Bulletin of Environmental Contamination Toxicology, 59, 777–782.

    Article  CAS  Google Scholar 

  • Singh, D., Nath, K., Trivedi, S. P., & Sharma, Y. K. (2008). Impact of copper on haematological profile of freshwater fish, Channa punctatus. Journal of Environmental Biology, 29, 253–257.

    CAS  Google Scholar 

  • Singh, N. K. S., Devi, C. B., Sudarshan, M., Meetei, N. S., Singh, T. B., & Singh, N. R. (2013). Influence of Nambul river on the water quality of fresh water in Loktak lake. International Journal of Water Resources and Environmental Engineering, 5(6), 321–327.

    Google Scholar 

  • Singhal, V., & Rai, J. P. N. (2003). Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresource Technology, 86, 221–225.

    Article  CAS  Google Scholar 

  • Smitha, P. G., Byrappa, K., & Ramaswamy, S. N. (2007). Physico-chemical characteristics of water samples of Bantwal Taluk, South-Western Karnataka, India. Journal of Environmental Biology, 28, 591–595.

    CAS  Google Scholar 

  • Sonneman, J. A., Walsh, C. J., Breen, P. F., & Sharpe, A. K. (2001). Effects of urbanization on streams of the Melbourne region, Victoria, Australia. Freshwater Biology, 46, 553–565.

    Article  CAS  Google Scholar 

  • Sooknah, R. D., & Wilkie, A. C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22, 27–42.

    Article  Google Scholar 

  • Srivastava, N., Agarwal, M., & Tyagi, A. (2003). Study of physico-chemical characteristics of water bodies around Jaipur. Journal of Environmental Biology, 24, 177–180.

    Google Scholar 

  • Sriyaraj, K., & Shutes, R. B. E. (2001). An assessment of the impact of motorway runoff on a pond, wetland and stream. Environment International, 26, 433–439.

    Article  CAS  Google Scholar 

  • Storelli, M. M., Storelli, A., D’ddabbo, R., Marano, C., Bruno, R., & Marcotrigiano, G. O. (2005). Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: Overview and evaluation. Environmental Pollution, 135, 163–170.

    Article  CAS  Google Scholar 

  • Suelee, A. L., HasanSNMS, K. F. M., Yusuff, F. M., & Ibrahim, Z. Z. (2017). Phytoremediation potential of Vetiver Grass (Vetiveria zizanioides) for treatment of metal-contaminated water. Water, Air, and Soil Pollution, 228, 158. https://doi.org/10.1007/s11270-017-3349-x.

    Article  CAS  Google Scholar 

  • Thorat, S. R., & Sultana, M. (2000). Pollution status of Salim Ali Lake, Aurangabad (M.S.). Journal of Pollution Research, 19, 307–309.

    CAS  Google Scholar 

  • Tilak, K. S., Veeraiah, K., & Milton Prema Raju, J. (2007). Effects of ammonia, nitrite and nitrate on haemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). Journal of Environmental Biology, 28, 45–47.

    CAS  Google Scholar 

  • Tremp, H., & Kohler, A. (1995). The usefulness of macrophyte monitoring systems, exemplified on eutrophication and acidification of running waters. Acta Botanica Gallica, 142, 541–550.

    Article  Google Scholar 

  • Truong P (1999) Vetiver grass technology for mine tailings rehabilitation. Proceedings of the first Asia-Pacific conference on ground and water bioengineering for erosion control and slope stabilization, Manila.

    Google Scholar 

  • Truong P, Stone R (1996) Vetiver grass for landfill rehabilitation: Erosion and leachate control. Report to DNR and Redland Shire Council, Queensland, Australia.

    Google Scholar 

  • Tuzen, M. (2003). Determination of heavy metals in fish samples of the Mid Dam Lake Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80, 119–123.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (USEPA), Office of Water. (1998). National water quality inventory: 1996 report to congress (p. 305). Washington, DC: US Environmental Protection Agency (USEPA).

    Google Scholar 

  • USEPA. (1999). Phytoremediation resource guide. EPA/542/B-99/003, available online at http://www.epa.gov/tio

  • USEPA. (2000). Introduction to phytoremediation. EPA/600/R-99/107.

    Google Scholar 

  • Van Aardt, W. J., & Erdmann, R. (2004). Heavy metals (Cd, Pb, Cu, Zn) in mudfish and sediments from three hard water dams of the Mooi River catchment area, South Africa. Water SA, 30, 211–218.

    Google Scholar 

  • Van, A., & Clijsters, H. (1990). Effect of metals on enzyme activity in plants. Plant, Cell and Environment, 13, 195–206.

    Article  Google Scholar 

  • Van Steveninck, R., van Steveninck, M., & Fernando, D. (1992). Heavy metal (Zn, Cd) tolerance in selected clones of duckweed (Lemna minor). Plant and Soil, 146, 271–280.

    Article  Google Scholar 

  • Vardanyan, L., & Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 32, 208–218.

    Article  CAS  Google Scholar 

  • Vidali, M. (2001). Bioremediation: An overview. Pure and Applied Chemistry, 73, 1163–1172.

    Article  CAS  Google Scholar 

  • Vorreiter L, Hickey C (1994) Incidence of the first flush phenomenon in catchments of the Sydney region, vol. 3, 359–364. National Conference Publication- Institute of Engineers, Australia.

    Google Scholar 

  • Wagh, V. M., Ghole, V. S., Wavde, P. N., Todkar, V. V., Kokate, K. K. (2008). Assessment of water quality of Mutha River in Pune City. GCE: Indo-Italian International Conference on Green and Clean Environment March 20–21, MAEER’s MIT College of Engineering, Pune.

    Google Scholar 

  • Walsh, C. J. (2000). Urban impact on the ecology of receiving waters: A framework for assessment, conservation and restoration. Hydrobiologia, 431, 107–114.

    Article  Google Scholar 

  • Wang, W., Zhen, W., & Lin, P. (1997). Content and dynamics of five heavy metal elements in the leaves of five mangrove species in Jiulong Estuary. Journal of Oceanography in Taiwan Strait, 16, 233–238.

    CAS  Google Scholar 

  • Weerasinghe, A., Ariyawnasa, S., & Weerasooriya, R. (2008). Phytoremediation potential of Ipomoea aquatica for Cr (VI) mitigation. Chemosphere, 70, 521–524.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (1975). Primary production. In B. A. Whitton (Ed.), River ecology (pp. 81–105). Berkeley: University of California Press.

    Google Scholar 

  • Wickramasinghe, S., & Jayawardana, C. K. (2018). Potential of aquatic macrophytes eichhornia crassipes, pistia stratiotes and salvinia molesta in phytoremediation of textile wastewater. Journal of water security, 4. https://doi.org/10.15544/jws.2018.001.

  • Wu, Q. T., Wei, Z. B., & Quyang, Y. (2007). Phytoextraction of metal contaminated soil by Sedum alfredi H: Effects of chelator and coplanting. Water, Air, and Soil Pollution, 180, 131–139.

    Article  CAS  Google Scholar 

  • Wu, Q., Hu, Y., Li, S. Q., Peng, S., & Zhao, H. B. (2016). Microbial mechanisms of using enhanced ecological floating beds for eutrophic water improvement. Bioresource Technology, 211, 451–456.

    Article  CAS  Google Scholar 

  • WWDR. (2003). Water for people, water for life (The UN world water development report) (p. 9). New York: UNESCO.

    Google Scholar 

  • Yamane, Y., Nagashima, I., Izumikawa, S., & Murakami, A. (1993). Stormwater runoff of petroleum hydrocarbons in the Nogawa river basin in Tokyo. Journal of Japan Society on Water Environment, 16, 251–260.

    Article  CAS  Google Scholar 

  • Yang, H., Wang, G., Yang, Y., & XueB, W. B. (2014). Assessment of the impacts of land use changes on nonpoint source pollution inputs upstream of the three gorges reservoir. The Scientific World Journal, 2014, 1–15.

    Google Scholar 

  • Yeh, N., Yeh, P., & Chang, Y. H. (2015). Artificial floating islands for environmental improvement. Renewable and Sustainable Energy Reviews, 47, 616–622.

    Article  CAS  Google Scholar 

  • Yin, C. Q., & Mao, Z. P. (2002). Nonpoint pollution control for rural areas of China with ecological engineering technologies. Chinese Journal of Applied Ecology, 13(2), 229–232.

    Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoremediation of trace elements by wetland plants. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

  • Zhang, M., Cui, L., Sheng, L., & Wang, Y. (2009). Distribution and enrichment of heavy metals among sediments, waterbody and plants in Hengshihu wetlands of northern China. Ecological Engineering, 35, 563–569.

    Article  CAS  Google Scholar 

  • Zhang, R., Jiang, D., Zhang, L., Cui, Y., Li, M., & Xiao, L. (2014). Distribution of nutrients, heavy metals and PAH’s affected by sediment dredging in the Wujin’gang River basin flowing into Meiliang bay of Lake Taihu. Environmental Science and Pollution Research, 21, 2141–2153.

    Article  CAS  Google Scholar 

  • Zhu, Y. L., Zayed, A. M., Qian, J. H., Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants. Journal of Environmental Quality, 28, 339–344.

    Article  CAS  Google Scholar 

  • Zolotukhina, E. Y., & Gavrilenko, E. E. (1989). Heavy metals in aquatic plants: Accumulation and toxicity. Biology Sciences, 9, 93–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, M.M., Shukla, R.N., Yunus, M. (2020). Urban Pond Ecosystems: Preservation and Management Through Phytoremediation. In: Qadri, H., Bhat, R., Mehmood, M., Dar, G. (eds) Fresh Water Pollution Dynamics and Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-13-8277-2_15

Download citation

Publish with us

Policies and ethics