Skip to main content

Trends in Phytomanagement of Aquatic Ecosystems and Evaluation of Factors Affecting Removal of Inorganic Pollutants from Water Bodies

  • Chapter
  • First Online:
  • 1126 Accesses

Abstract

The deterioration of water quality due to the increasing unsustainable developmental activities like production processes carried at high energy inputs, discharge of untreated municipal/industrial wastewater coupled with runoff from agricultural fields led to build up of toxic inorganic contaminants including heavy metals and Reactive Nitrogenous Species (RNS) into the water bodies. Intake of water contaminated with heavy metals and nitrogenous ions (nitrate, nitrite and ammonium) by humans and other life forms may lead to disruption of various metabolic activities, leading to cardiovascular, neurological, renal disorders. Different technologies and methods are being employed to remediate these pollutants from water. Phytoremediation is an economical, ecofriendly and aesthetically pleasing technology that makes the use of plant systems to remove and/or detoxify pollutants from the environment. The efficiency of the decontamination or remediation function of aquatic macrophytes depends on several factors like water physico-chemistry, plant physiology, plant genotype, sediment geochemistry and nature of contaminant or pollutant. Also water remediation by macrophytes can be significantly improved by appropriate selection of plant species which is built on the type of substances to be removed, the topography of the area, microclimate, hydrological conditions, accumulation capacities of the plant species etc. This write-up provides some insights in phytoremediation of inorganic pollutants and factors affecting their removal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-Elela, S. I., Golinielli, G., Abou-Taleb, E. M., & Hellal, M. S. (2013). Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecological Engineering, 61, 460–468.

    Article  Google Scholar 

  • Adewuyi, G. O., Etchie, A. T., & Etchie TO. (2014). Health risk assessment of exposure to metals in a Nigerian water supply. Human and Ecological Risk Assessment: An International Journal, 20, 29–44.

    Article  CAS  Google Scholar 

  • Agarwal, R., Kumar, R., & Behari, J. R. (2007). Mercury and lead content fish species from the river Gomti, Lucknow, India, as biomarker of contamination. Bulletin of Environment Contamination and Toxicology, 78, 118–122.

    Article  CAS  Google Scholar 

  • Agca, N., Karanlık, S., & Odemiş, B. (2014). Assessment of ammonium, nitrate, phosphate, and heavy metal pollution in groundwater from Amik Plain, southern Turkey. Environment Monitoring Assessment. https://doi.org/10.1007/s10661-014-3829-z.

    Article  Google Scholar 

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 9, 869–881.

    Article  Google Scholar 

  • Alonso, A., & Camargo, J. A. (2009). Effects of pulse duration and post-exposure period on the nitrite toxicity to a freshwater amphipod. Ecotoxicology and Environmental Safety, 72(7), 2005–2008.

    Article  CAS  Google Scholar 

  • Anning, A. K., Korsah, P. E., & Addo-Fordjour, P. (2013). Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands. International Journal of Phytoremediation, 15(5), 452–464.

    Article  CAS  Google Scholar 

  • Arias, M. F. C., Bru, L. V., Rico, D. P., & Galvan, P. V. (2011). Kinetic behaviour of sodium and boron in brackish water membranes. Journal of Membrane Science, 368, 86–94.

    Article  CAS  Google Scholar 

  • Basile, A., Sorbo, S., Conte, B., Cobianchi, R. C., Trinchella, F., Capasso, C., & Carginale, V. (2012). Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. International Journal of Phytoremediation, 14(4), 374–387.

    Article  CAS  Google Scholar 

  • Bauddh, K., & Singh, R. P. (2012). Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus communis (L.) and Brassica juncea (L.) from the contaminated soil. International Journal of Phytoremediation, 14(8), 772–785.

    Article  CAS  Google Scholar 

  • Bellos, D., & Sawidis, T. (2005). Chemical pollution monitoring of the River Pinios (Thessalia—Greece). Journal of Environmental Management, 76, 282–292.

    Article  CAS  Google Scholar 

  • Bindu, T., Sylas, V. P., Mahesh, M., Rakesh, P. S., & Ramasamy, E. V. (2008). Pollutant removal from domestic wastewater with Taro (Colocasia esculenta) planted in a subsurface flow system. Ecological Engineering, 33(1), 68–82.

    Article  Google Scholar 

  • Campbell, C., Greenberg, R., Mankikar, D., & Ross, R. D. (2016). A case study of environmental injustice: The failure in Flint. International Journal of Environmental Research and Public Health, 13, 951. https://doi.org/10.3390/ijerph13100951.

    Article  Google Scholar 

  • Cardwell, A., Hawker, D., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from Southeast Queensland, Australia. Chemosphere, 48, 653–663.

    Article  CAS  Google Scholar 

  • Carty, A., Scholz, M., Heal, K., Gouriveau, F., & Mustafa, A. (2008). The universal design, operation and maintenance guidelines for farm constructed wetlands (FCW) in temperate climates. Bioresource Technology, 99, 6780–6792.

    Article  CAS  Google Scholar 

  • Chaudhuri, D., Majumder, A., Misra, A. K., & Bandyopadhyay, K. (2014). Cadmium removal by Lemna minor and Spirodela polyrhiza. International Journal of Phytoremediation, 16(11), 1119–1132.

    Article  CAS  Google Scholar 

  • Chavan, B. L., & Dhulap, V. P. (2012). Sewage treatment with constructed wetland using Panicum maximum forage grass. Journal of Environmental Science and Water Resources, 1(9), 223–230.

    Google Scholar 

  • Clijsters, H., Cuypers, A., & Vangronsveld, J. (1999). Physiological responses to heavy metals in higher plants: Defence against oxidative stress. Zeitschrift für Naturforschung C, 54, 730–734.

    Article  CAS  Google Scholar 

  • EPA. (2001). A Citizen’s guide to phytoremediation.

    Google Scholar 

  • Fawzy, M. A., El-sayed Badr, N., El-Khatib, A., & Abo-El-Kassem, A. (2012). Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environment Monitoring Assessment, 184, 1753–1771.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian Journal of Energy and Environment, 6(4), 18.

    Google Scholar 

  • Hadad, H. R., Maine, M. A., & Bonetto, C. A. (2006). Macrophytes growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere, 63, 1744–1753.

    Article  CAS  Google Scholar 

  • Haloi, N., & Sarma, H. P. (2012). Heavy metal contaminations in the groundwater of Brahmaputra flood plain: An assessment of water quality in Barpeta District, Assam (India). Environmental Monitoring and Assessment, 184(10), 6229–6237.

    Article  CAS  Google Scholar 

  • Headley, T. R., & Tanner, C. C. (2008). Floating wetlands for stormwater treatment: Removal of copper, zinc and fine particulates (Technical Report 2008–030), Auckland Regional Council Auckland, NZ, 38p.

    Google Scholar 

  • Hegazy, A. K., Abdel-Ghani, N. T., & El-Chaghaby, G. A. (2011). Phytoremediation of industrial wastewater potentiality by Typha domingensis. International Journal of Environmental Science & Technology, 8(3), 639–648.

    Article  CAS  Google Scholar 

  • Hubbard, R. K. (2010). Floating vegetated mats for improving surface water quality. In V. Shah (Ed.), Emerging environmental technologies (pp. 211–244). New York: Springer.

    Google Scholar 

  • Iqbal, H., Ishfaq, M., Ullah, M., & Ahmad, W. (2013). Physico-chemical analysis of drinking water in district Kohat, Khyberpakhtunkhwa, Pakistan. International Journal of Basic Medical Sciences and Pharmacy, 3, 2.

    Google Scholar 

  • Jadia, C. D., & Fulekar, M. H. (2009). Phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology, 8(6), 921–928.

    CAS  Google Scholar 

  • Jayaweera, M. W., Kasturiarachchi, J. C., Kularatne, R. K., & Wijeyekoon, S. L. (2008). Removal of aluminium by constructed wetlands with water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutritional conditions. Journal of Environmental Science and Health Part A, 42(2), 185–193.

    Article  Google Scholar 

  • Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands (2nd ed.). Boca Raton: Taylor and Francis group. ISBN: 9781-56670-526-4.

    Google Scholar 

  • Kennish, L. (1992). Toxicity of heavy metals: Effects of Cr and Se on humans health. Journal of Indian Public Health Education, India, 2, 36–64.

    Google Scholar 

  • Kumar, N., Mallick, S., Yadava, R. N., Singh, A. P., & Sinha, S. (2013). Co-application of selenite and phosphate reduces arsenite uptake in hydroponically grown rice seedlings: Toxicity and defence mechanism. Ecotoxicology and Environmental Safety, 911, 71–179.

    Google Scholar 

  • Ladislas, S., Gérente, C., Chazarenc, F., Brisson, J., & Andrès, Y. (2013). Performances of two macrophytes species in floating treatment wetlands for cadmium, nickel, and zinc removal from urban stormwater runoff. Water, Air, and Soil Pollution, 2(224), 1408.

    Google Scholar 

  • Ladislas, S., Gérente, C., Chazarenc, F. J., & Brisson, A. Y. (2015). Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecological Engineering, 80, 85–91.

    Article  Google Scholar 

  • Liu, J., Dong, Y., Xu, H., Wang, D., & Xu, J. (2007). Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. Journal of Hazardous Materials, 147(3), 947–953.

    Article  CAS  Google Scholar 

  • Lokhande, R. S., Singare, P. U., & Pimple, D. S. (2011). Toxicity study of heavy metals pollutants in waste water effluent samples collected from Taloja industrial estate of Mumbai, India. Resources and Environment, 1(1), 13–19.

    Google Scholar 

  • Maine, M. A., Suñé, N. L., & Lagger, S. C. (2004). Chromium bioaccumulation: Comparison of the capacity of two floating aquatic macrophytes. Water Research, 38(6), 1494–1501.

    Article  CAS  Google Scholar 

  • Malik, A. (2007). Environmental challenge vis-a-vis opportunity: The case of water hyacinth. Environment International, 33(1), 122–138.

    Article  CAS  Google Scholar 

  • Maltais-Landry, G., Maranger, R., Brisson, J., & Chazarenc, F. (2009). Nitrogen transformations and retention in planted and artificially aerated constructed wetlands. Water Research, 43(2), 535–545.

    Article  CAS  Google Scholar 

  • Mbuligwe, S. E. (2004). Comparative effectiveness of engineered wetland systems in the treatment of anaerobically pre-treated domestic wastewater. Ecological Engineering, 23(4), 269–284.

    Article  Google Scholar 

  • Mishra, S. S., & Mishra, A. (2008). Assessment of physico-chemical properties and heavy metal concentration in Gomti river. Research in Environment and Life Sciences, 1(2), 55–58.

    Google Scholar 

  • Mojiri, A. (2012). Phytoremediation of heavy metals from municipal wastewater by Typha domingensis. African Journal of Microbiology Research, 6(3), 643–647.

    CAS  Google Scholar 

  • Muchuweti, M., Birkett, J. W., Chinyanga, E., Zvauya, R., Scrimshaw, M. D., & Lister, J. N. (2006). Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implication for human health. Agric. Ecosyts. Environ., 112, 41–48.

    Article  CAS  Google Scholar 

  • Onur, C. T., Cengiz, T., Harun, B., & Anil, Y. (2014). Constructed wetlands as green tools for management of boron mine wastewater. International Journal of Phytoremediation, 16, 537–553.

    Article  Google Scholar 

  • Osorio, A. C., Villafane, P., Caballero, V., & Manzano, Y. (2011). Efficiency of mesocosm scale constructed wetland systems for treatment of sanitary wastewater under tropical conditions. Water, Air, and Soil Pollution, 220, 161–171.

    Article  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyperaccumulation of metals in plants. Water, Air, & Soil Pollution, 184, 105–126.

    Article  CAS  Google Scholar 

  • Rahman, M. A., & Hasegawa, H. (2011). Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere, 83, 633–646.

    Article  CAS  Google Scholar 

  • Rai, P. K. (2010). Seasonal monitoring of heavy metals and physicochemical characteristics in a lentic ecosystem of subtropical industrial region, India. Environmental Monitoring and Assessment, 165(1–4), 407–433.

    Article  CAS  Google Scholar 

  • Rai, P. K. (2012). An eco-sustainable green approach for heavy metals management: Two case studies of developing industrial region. Environmental Monitoring and Assessment, 184(1), 421–448.

    Article  Google Scholar 

  • Rai, P. K., & Tripathi, B. D. (2009). Comparative assessment of Azollapinnata and Vallisneria spiralis in Hg removal from GB Pant Sagar of Singrauli Industrial region, India. Environmental Monitoring and Assessment, 148(1–4), 75–84.

    Article  CAS  Google Scholar 

  • Rai, U. N., Tripathi, R. D., Singh, N. K., Upadhyay, A. K., Dwivedi, S., Shukla, M. K., & Nautiyal, C. S. (2013). Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresource Technology, 148, 535–541.

    Article  CAS  Google Scholar 

  • Rai, U. N., Upadhyay, A. K., Singh, N. K., Dwivedi, S., & Tripathi, R. D. (2015). Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. Ecological Engineering, 81, 115–122.

    Article  Google Scholar 

  • Rashed, M. N. (2010). Monitoring of contaminated toxic and heavy metals from mine tailings through age accumulation in soil and some wild plants at Southeast Egypt. Journal of Hazardous Materials, 178, 739–746.

    Article  CAS  Google Scholar 

  • Rawat, S. K., Singh, R. K., & Singh, R. P. (2012). Remediation of nitrite contamination in ground and surface waters using aquatic macrophytes. Journal of Environmental Biology, 33, 51–56.

    CAS  Google Scholar 

  • Rieumont, S. O., Lima, L., De la Rosa, D., Graham, D. W., Columbie, I., Santana, J. L., & Sanchez, M. J. (2007). Water hyacinths (Eichhornia crassipes) as indicators of heavy metal impact of a large landfill on the Almendares river near Havana, Cuba. Bulletin of Environment Contamination and Toxicology, 79, 583–587.

    Article  Google Scholar 

  • Rosli, N. R. M., & Yahya, K. (2012). Assessment of nutrients and sediment loading in a tropical river system in Malaysia. International conference on environment, chemistry and biology IPCBEE, 49.

    Google Scholar 

  • Rousseau, D. P. L., Vanrolleghem, P. A., & De Pauw, N. (2004). Constructed wetlands in Flanders: A performance analysis. Ecological Engineering, 23, 151–163.

    Article  Google Scholar 

  • Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429–448.

    Article  CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Nanda-Kumar, P. B. A., Dushenkov, V., Ensly, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: A novel strategy for the removal of toxic elements from the environment using plants. Bio-Technology, 13, 468–475.

    CAS  Google Scholar 

  • Shah, A. B., Rai, U. N., & Singh, R. P. (2015). Correlations between some hazardous inorganic pollutants in the Gomti River and their accumulation in selected macrophytes under aquatic ecosystem. Bulletin of Environmental Contamination and Toxicology, 94, 783–790.

    Article  CAS  Google Scholar 

  • Shuping, L. S., Snyman, R. G., Odendaa, P. J., & Ndakidemi, P. A. (2011). Accumulation and distribution of metals in Bolboschoenus maritimus (Cyperaceae), from a South African River. Water Air Soil Pollution, 216, 319–328.

    Article  CAS  Google Scholar 

  • Singh, D., Gupta, R., & Tiwari, A. (2012). Potential of duckweed (Lemna minor) for removal of lead from wastewater by phytoremediation. Journal of Pharmacy Research, 5(3).

    Google Scholar 

  • Sinha, S. N., & Nag, P. K. (2011). Air pollution from solid fuels. In J. O. Nriagu (Ed.), Encyclopedia of environmental health (Vol. 1, p. 46).

    Google Scholar 

  • Skinner, K., Wright, N., & Porter-Goff, E. (2007). Mercury uptake and accumulation by four species of aquatic plants. Environmental Pollution, 145(1), 234–237.

    Article  CAS  Google Scholar 

  • Soda, S., Hamad, T., Yamaoka, Y., Ike, M., Nakazato, H., Saeki, Y., Kasamatsu, T., & Sakurai, Y. (2012). Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant: Bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius. Ecological Engineering, 39, 63–70.

    Article  Google Scholar 

  • Souza, F. A., Dziedzic, M., Cubas, S. A., & Maranho, L. T. (2013). Restoration of polluted waters by phytoremediation using Myriophyllum aquaticum (Vell.)Verdc., Haloragaceae. Journal of Environmental Management, 120, 5–9.

    Article  CAS  Google Scholar 

  • Sukias, J. P. S., Yates, C. R., & Tanner, C. C. (2010). Assessment of floating treatment wetlands for remediation of eutrophic lake waters – Maero Stream (Lake Rotoehu). NIWA client report for environment bay of plenty, HAM2010-104, NIWA, Hamilton Dec 2010.

    Google Scholar 

  • Tanner, C. C., & Headley, T. R. (2011). Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecological Engineering, 37, 474–486.

    Article  Google Scholar 

  • Tee, H. C., Lim, P. E., Seng, C. E., & Nawi, M. A. (2012). Newly developed baffled subsurface flow constructed wetland for the enhancement of nitrogen removal. Bioresource Technology, 104, 235–242.

    Article  CAS  Google Scholar 

  • Tolu, O. A., & Atoke, O. O. (2012). Achieving environmental sustainability in wastewater treatment by phytoremediation with water hyacinth (Eichhornia crassipes). Journal of Sustainable Development, 5–7.

    Google Scholar 

  • Utmazian, M. N. D. S, & Wenzel, W. W. (2006). Phytoextraction of metal polluted soils in Latin America. Environmental Applications of Poplar and Willow Working Party, pp 18–20.

    Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1), 48–65.

    Article  CAS  Google Scholar 

  • Vymazal, J., & Kropfelova, L. (2011). A three-stage experimental constructed wetland for treatment of domestic sewage: First 2 years of operation. Ecological Engineering, 37(1), 90–98.

    Article  Google Scholar 

  • Wang, H., & Yu, X. (2014). A review of the protection of sources of drinking water in China. Natural Resources Forum. https://doi.org/10.1111/1477-8947.12036.

    Article  CAS  Google Scholar 

  • Wang, H., Zhang, H., & Cai, G. (2011). An application of phytoremediation to river pollution remediation. Procedia Environmental Sciences, 10, 1904–1907.

    Article  CAS  Google Scholar 

  • Wu, H., Zhang, J., Li, P., Zhang, J., Xie, H., & Zhang, B. (2011). Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecological Engineering, 37, 560–568.

    Article  Google Scholar 

  • Zhang, D. Q., Gersberg, R. M., Hua, T., Zhu, J., Tuan, N. A., & Tan, S. K. (2012). Pharmaceutical removal in tropical sub-surface flow constructed wetlands at varying hydraulic rates. Chemosphere, 87, 273–277.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, A.B., Singh, R.P., Rai, U.N. (2020). Trends in Phytomanagement of Aquatic Ecosystems and Evaluation of Factors Affecting Removal of Inorganic Pollutants from Water Bodies. In: Qadri, H., Bhat, R., Mehmood, M., Dar, G. (eds) Fresh Water Pollution Dynamics and Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-13-8277-2_14

Download citation

Publish with us

Policies and ethics