Skip to main content

Oxidative Stress in Hypertension and Cardiovascular-Renal Remodeling: Focus on the Renin-Angiotensin-Aldosterone System

  • Chapter
  • First Online:
  • 411 Accesses

Abstract

The last report of the World Health Organization highlights that ischaemic heart disease and stroke, which account for 15.2 millions of death in 2016 combined, are the two leading causes of mortality worldwide. Both diseases are strictly related to atherosclerosis and hypertension where oxidative stress and the renin-angiotensin-aldosterone system (RAAS) play a crucial role.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Montezano AC, Dulak-Lis M, Tsiropoulou S et al (2015) Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol 31:631–641. https://doi.org/10.1016/J.CJCA.2015.02.008

    Article  PubMed  Google Scholar 

  2. Maiolino G, Azzolini M, Paolo Rossi G et al (2015) Bartter/Gitelman syndromes as a model to study systemic oxidative stress in humans. Free Radic Biol Med 88:51–58. https://doi.org/10.1016/J.FREERADBIOMED.2015.02.037

    Article  CAS  PubMed  Google Scholar 

  3. Sies H (1985) Oxidative stress. Academic, London

    Google Scholar 

  4. Lassègue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Integr Comp Physiol 285:R277–R297. https://doi.org/10.1152/ajpregu.00758.2002

    Article  Google Scholar 

  5. Bokoch GM, Zhao T (2006) Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxid Redox Signal 8:1533–1548. https://doi.org/10.1089/ars.2006.8.1533

    Article  CAS  PubMed  Google Scholar 

  6. Cosentino F, Francia P, Camici GG et al (2008) Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 28:622–628. https://doi.org/10.1161/ATVBAHA.107.156059

    Article  CAS  PubMed  Google Scholar 

  7. Cruzado MC, Risler NR, Miatello RM et al (2005) Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hypertension: effect of angiotensin II and role of insulinlike growth factor-1 receptor transactivation. Am J Hypertens 18:81–87. https://doi.org/10.1016/J.AMJHYPER.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  8. Nistala R, Whaley-Connell A, Sowers JR (2008) Redox control of renal function and hypertension. Antioxid Redox Signal 10:2047–2089. https://doi.org/10.1089/ars.2008.2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM (2014) Angiotensin II and vascular injury. Curr Hypertens Rep 16:431. https://doi.org/10.1007/s11906-014-0431-2

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen Dinh Cat A, Touyz RM (2011) Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep 13:122–128. https://doi.org/10.1007/s11906-011-0187-x

    Article  CAS  PubMed  Google Scholar 

  11. Hingtgen SD, Tian X, Yang J et al (2006) Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics 26:180–191. https://doi.org/10.1152/physiolgenomics.00029.2005

    Article  CAS  PubMed  Google Scholar 

  12. Li J-M, Gall NP, Grieve DJ et al (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484. https://doi.org/10.1161/01.HYP.0000032031.30374.32

    Article  CAS  PubMed  Google Scholar 

  13. Grieve DJ, Byrne JA, Siva A et al (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47:817–826. https://doi.org/10.1016/J.JACC.2005.09.051

    Article  CAS  PubMed  Google Scholar 

  14. Johar S, Cave AC, Narayanapanicker A et al (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20:1546–1548. https://doi.org/10.1096/fj.05-4642fje

    Article  CAS  PubMed  Google Scholar 

  15. Byrne JA, Grieve DJ, Bendall JK et al (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II–induced cardiac hypertrophy. Circ Res 93:802–805. https://doi.org/10.1161/01.RES.0000099504.30207.F5

    Article  CAS  PubMed  Google Scholar 

  16. Maytin M, Siwik DA, Ito M et al (2004) Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation 109:1168–1171. https://doi.org/10.1161/01.CIR.0000117229.60628.2F

    Article  CAS  PubMed  Google Scholar 

  17. Higashi M, Shimokawa H, Hattori T et al (2003) Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 93:767–775. https://doi.org/10.1161/01.RES.0000096650.91688.28

    Article  CAS  PubMed  Google Scholar 

  18. Doerries C, Grote K, Hilfiker-Kleiner D et al (2007) Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circ Res 100:894–903. https://doi.org/10.1161/01.RES.0000261657.76299.ff

    Article  CAS  PubMed  Google Scholar 

  19. Satoh M, Ogita H, Takeshita K et al (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci U S A 103:7432–7437. https://doi.org/10.1073/pnas.0510444103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Calò LA, Pessina AC, Semplicini A (2005) Angiotensin II signalling in Bartter’s and Gitelman’s syndromes: a negative human model of hypertension. High Blood Press Cardiovasc Prev 12:17–26. https://doi.org/10.2165/00151642-200512010-00004

    Article  Google Scholar 

  21. Calò LA (2006) Vascular tone control in humans: insights from studies in Bartter’s/Gitelman’s syndromes. Kidney Int 69:963–966. https://doi.org/10.1038/sj.ki.5000253

    Article  PubMed  Google Scholar 

  22. Calò LA, Davis PA, Pagnin E et al (2014b) Increased level of p63RhoGEF and RhoA/Rho kinase activity in hypertensive patients. J Hypertens 32:331–338. https://doi.org/10.1097/HJH.0000000000000075

    Article  CAS  PubMed  Google Scholar 

  23. Calò LA, Vertolli U, Pagnin E et al (2016) Increased Rho kinase activity in mononuclear cells of dialysis and stage 3-4 chronic kidney disease patients with left ventricular hypertrophy: cardiovascular risk implications. Life Sci 148:80–85. https://doi.org/10.1016/j.lfs.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  24. Calò LA, Dal Maso L, Pagnin E et al (2014a) Effect of olmesartan medoxomil on number and survival of circulating endothelial progenitor cells and calcitonin gene related peptide in hypertensive patients. J Hypertens 32:193–199. https://doi.org/10.1097/HJH.0b013e32836522c3

    Article  CAS  PubMed  Google Scholar 

  25. Ravarotto V, Pagnin E, Maiolino G et al (2015b) The blocking of angiotensin II type 1 receptor and RhoA/Rho kinase activity in hypertensive patients: effect of olmesartan medoxomil and implication with cardiovascular-renal remodeling. JRAAS – J Renin-Angiotensin-Aldosterone Syst 16:1245–1250. https://doi.org/10.1177/1470320315594324

    Article  CAS  PubMed  Google Scholar 

  26. Badyal DK, Lata H, Dadhich AP (2003) Animal models of hypertension and effect of drugs. Indian J Pharmacol 35:349–362. http://medind.nic.in/ibi/t03/i6/ibit03i6p349.pdf

  27. Leong X-F, Ng C-Y, Jaarin K (2015) Animal models in cardiovascular research: hypertension and atherosclerosis. Biomed Res Int 2015:1–11. https://doi.org/10.1155/2015/528757

    Article  CAS  Google Scholar 

  28. Park JB, Touyz RM, Chen X, Schiffrin EL (2002) Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 15:78–84

    Article  CAS  PubMed  Google Scholar 

  29. Shokoji T, Nishiyama A, Fujisawa Y et al (2003) Renal sympathetic nerve responses to tempol in spontaneously hypertensive rats. Hypertension (Dallas, Tex 1979) 41:266–273

    Article  CAS  Google Scholar 

  30. Laursen JB, Rajagopalan S, Galis Z et al (1997) Role of superoxide in angiotensin II-induced but not catecholamine- induced hypertension. Circulation 95:588–593. https://doi.org/10.1161/01.CIR.95.3.588

    Article  CAS  PubMed  Google Scholar 

  31. Tanito M, Nakamura H, Kwon Y-W et al (2004) Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid Redox Signal 6:89–97. https://doi.org/10.1089/152308604771978381

    Article  CAS  PubMed  Google Scholar 

  32. Brosnan MJ, Hamilton CA, Graham D et al (2002) Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. J Hypertens 20:281–286

    Article  CAS  PubMed  Google Scholar 

  33. Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44:248–252. https://doi.org/10.1161/01.HYP.0000138070.47616.9d

    Article  CAS  PubMed  Google Scholar 

  34. Zhang W, Han Y, Meng G et al (2014) Direct renin inhibition with aliskiren protects against myocardial ischemia/reperfusion injury by activating nitric oxide synthase signaling in spontaneously hypertensive rats. J Am Heart Assoc 3:e000606. https://doi.org/10.1161/JAHA.113.000606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chandran G, Sirajudeen KNS, Yusoff NSN et al (2014) Effect of the antihypertensive drug enalapril on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat. Oxidative Med Cell Longev 2014:608512. https://doi.org/10.1155/2014/608512

    Article  CAS  Google Scholar 

  36. Ahmad A, Singhal U, Hossain MM et al (2013) The role of the endogenous antioxidant enzymes and malondialdehyde in essential hypertension. J Clin Diagn Res 7:987–990

    PubMed  PubMed Central  Google Scholar 

  37. Rodrigo R, Bächler JP, Araya J et al (2007) Relationship between (Na + K)-ATPase activity, lipid peroxidation and fatty acid profile in erythrocytes of hypertensive and normotensive subjects. Mol Cell Biochem 303:73–81

    Article  CAS  PubMed  Google Scholar 

  38. Russo C, Olivieri O, Girelli D et al (1998) Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens 16:1267–1271

    Article  CAS  PubMed  Google Scholar 

  39. Togliatto G, Lombardo G, Brizzi MF (2017) The future challenge of reactive oxygen species (ROS) in hypertension: from bench to bed side. Int J Mol Sci 18:1988

    Article  PubMed Central  Google Scholar 

  40. Cracowski JL, Baguet JP, Ormezzano O et al (2003) Lipid peroxidation is not increased in patients with untreated mild-to-moderate hypertension. Hypertension 41:286–288

    Article  CAS  PubMed  Google Scholar 

  41. Harrison DG, Gongora MC (2009) Oxidative stress and hypertension. Med Clin North Am 93:621–635. https://doi.org/10.1016/j.mcna.2009.02.015

    Article  CAS  PubMed  Google Scholar 

  42. Touyz RM, Schiffrin EL (2001) Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens 19:1245–1254. Lippincott Williams & Wilkins

    Article  CAS  PubMed  Google Scholar 

  43. Fliser D, Buchholz K, Haller H, EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators (2004) Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 110:1103–1107. https://doi.org/10.1161/01.CIR.0000140265.21608.8E

    Article  CAS  PubMed  Google Scholar 

  44. Ahmad KA, Yuan Yuan D, Nawaz W et al (2017) Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic Res 51:428–438. https://doi.org/10.1080/10715762.2017.1322205

    Article  CAS  PubMed  Google Scholar 

  45. Hornig B, Landmesser U, Kohler C et al (2001) Comparative effect of ACE inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation 103:799–805. https://doi.org/10.1017/9781316274385.007

    Article  CAS  PubMed  Google Scholar 

  46. Rodrigo R, Prat H, Passalacqua W et al (2008) Decrease in oxidative stress through supplementation of vitamins C and E is associated with a reduction in blood pressure in patients with essential hypertension. Clin Sci 114:625–634. https://doi.org/10.1042/CS20070343

    Article  CAS  Google Scholar 

  47. Juraschek SP, Guallar E, Appel LJ et al (2012) Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr 95:1079–1088. https://doi.org/10.3945/ajcn.111.027995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325

    Article  CAS  PubMed  Google Scholar 

  49. Navab M, Berliner JA, Watson AD et al (1996) The Yin and Yang of oxidation in the development of the fatty streak: a review based on the 1994 George Lyman Duff memorial lecture. Arterioscler Thromb Vasc Biol 16:831–842

    Article  CAS  PubMed  Google Scholar 

  50. Choi SH, Harkewicz R, Lee JH et al (2009) Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res 104:1355–1363. https://doi.org/10.1161/CIRCRESAHA.108.192880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parhami F, Fang ZT, Fogelman AM et al (1993) Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest 92:471–478. https://doi.org/10.1172/JCI116590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Henriksen T, Mahoney EM, Steinberg D (1981) Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A 78:6499–6503. https://doi.org/10.1073/pnas.78.10.6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Husain K (2015) Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem 6:209–217. https://doi.org/10.4331/wjbc.v6.i3.209

    Article  PubMed  PubMed Central  Google Scholar 

  54. Münzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31:2741–2748. https://doi.org/10.1093/eurheartj/ehq396

    Article  CAS  PubMed  Google Scholar 

  55. Hill JM, Zalos G, Halcox JPJ et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600. https://doi.org/10.1056/NEJMoa022287

    Article  PubMed  Google Scholar 

  56. Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104

    Article  CAS  PubMed  Google Scholar 

  57. Zhou Z, Peng J, Wang C-J et al (2010) Accelerated senescence of endothelial progenitor cells in hypertension is related to the reduction of calcitonin gene-related peptide. J Hypertens 28:931–939. https://doi.org/10.1097/HJH.0b013e3283399326

    Article  CAS  PubMed  Google Scholar 

  58. Münzel T, Camici GG, Maack C et al (2017) Impact of oxidative stress on the heart and vasculature. J Am Coll Cardiol 70:212–229. https://doi.org/10.1016/j.jacc.2017.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ungvári Z, Gupte SA, Recchia FA et al (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hudmon A, Schulman H (2002) Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 364:593–611. https://doi.org/10.1042/BJ20020228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wagner S, Rokita AG, Anderson ME, Maier LS (2013) Redox regulation of sodium and calcium handling. Antioxid Redox Signal 18:1063–1077. https://doi.org/10.1089/ars.2012.4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mollnau H, Oelze M, August M et al (2005) Mechanisms of increased vascular superoxide production in an experimental model of idiopathic dilated cardiomyopathy. Arterioscler Thromb Vasc Biol 25:2554–2559. https://doi.org/10.1161/01.ATV.0000190673.41925.9B

    Article  CAS  PubMed  Google Scholar 

  63. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. https://doi.org/10.1152/physrev.00029.2006

    Article  CAS  PubMed  Google Scholar 

  64. CONSENSUS Trial Study Group (1987) Effects of Enalapril on mortality in severe congestive heart failure. N Engl J Med 316:1429–1435. https://doi.org/10.1056/NEJM198706043162301

    Article  Google Scholar 

  65. Dai DF, Johnson SC, Villarin JJ et al (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Gαq overexpression-induced heart failure. Circ Res 108:837–846. https://doi.org/10.1161/CIRCRESAHA.110.232306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schäfer A, Fraccarollo D, Tas P et al (2004) Endothelial dysfunction in congestive heart failure: ACE inhibition vs. angiotensin II antagonism. Eur J Heart Fail 6:151–159. https://doi.org/10.1016/j.ejheart.2003.10.009

    Article  CAS  PubMed  Google Scholar 

  67. Park S-H, Stenvinkel P, Lindholm B (2012) Cardiovascular biomarkers in chronic kidney disease. J Ren Nutr 22:120–127. https://doi.org/10.1053/j.jrn.2011.10.021

    Article  CAS  PubMed  Google Scholar 

  68. Sun J, Axelsson J, Machowska A et al (2016) Biomarkers of cardiovascular disease and mortality risk in patients with advanced CKD. Clin J Am Soc Nephrol 11:1163–1172. https://doi.org/10.2215/CJN.10441015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Imig JD, Ryan MJ (2013) Immune and inflammatory role in renal disease. Compr Physiol 3:957–976. https://doi.org/10.1002/cphy.c120028

    Article  PubMed  PubMed Central  Google Scholar 

  70. Robertson J, Wu J, Arends J et al (2005) Activation of glomerular basement membrane-specific B cells in the renal draining lymph node after T cell-mediated glomerular injury. J Am Soc Nephrol 16:3256–3263. https://doi.org/10.1681/ASN.2005040421

    Article  CAS  PubMed  Google Scholar 

  71. Yasuda H, Leelahavanichkul A, Tsunoda S et al (2008) Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 294:F1050–F1058. https://doi.org/10.1152/ajprenal.00461.2007

    Article  CAS  PubMed  Google Scholar 

  72. Zhang B, Ramesh G, Uematsu S et al (2008) TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 19:923–932. https://doi.org/10.1681/ASN.2007090982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nataraj C, Oliverio MI, Mannon RB et al (1999) Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J Clin Invest 104:1693–1701. https://doi.org/10.1172/JCI7451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matsumoto K, Morishita R, Moriguchi A et al (1999) Prevention of renal damage by angiotensin II blockade, accompanied by increased renal hepatocyte growth factor in experimental hypertensive rats. Hypertension (Dallas, Tex 1979) 34:279–284

    Article  CAS  Google Scholar 

  75. Kim HJ, Vaziri ND (2010) Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Renal Physiol 298:F662–F671. https://doi.org/10.1152/ajprenal.00421.2009

    Article  CAS  PubMed  Google Scholar 

  76. Libetta C, Sepe V, Esposito P et al (2011) Oxidative stress and inflammation: implications in uremia and hemodialysis. Clin Biochem 44:1189–1198. https://doi.org/10.1016/j.clinbiochem.2011.06.988

    Article  CAS  PubMed  Google Scholar 

  77. Calò LA, Naso A, Pagnin E et al (2004a) Vitamin E-coated dialyzers reduce oxidative stress related proteins and markers in hemodialysis–a molecular biological approach. Clin Nephrol 62:355–361

    Article  PubMed  Google Scholar 

  78. Calò LA, Naso A, D’Angelo A et al (2011) Molecular biology-based assessment of vitamin E-coated dialyzer effects on oxidative stress, inflammation, and vascular remodeling. Artif Organs 35:33. https://doi.org/10.1111/j.1525-1594.2010.01125.x

    Article  Google Scholar 

  79. Calo LA, Naso A, Carraro G et al (2007) Effect of haemodiafiltration with online regeneration of ultrafiltrate on oxidative stress in dialysis patients. Nephrol Dial Transplant 22:1413–1419. https://doi.org/10.1093/ndt/gfl783

    Article  PubMed  Google Scholar 

  80. Calò LA, Naso A, Davis PA et al (2010) Hemodiafiltration with online regeneration of ultrafiltrate: effect on heme-oxygenase-1 and inducible subunit of nitric oxide synthase and implication for oxidative stress and inflammation. Artif Organs 35:183–187. https://doi.org/10.1111/j.1525-1594.2010.01045.x

    Article  CAS  PubMed  Google Scholar 

  81. Calo LA, Vertolli U, Davis PA et al (2014) Molecular biology based assessment of green tea effects on oxidative stress and cardiac remodelling in dialysis patients. Clin Nutr 33:437–442. https://doi.org/10.1016/j.clnu.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  82. Aoki J, Ikari Y, Nakajima H et al (2005) Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients. Kidney Int 67:333–340. https://doi.org/10.1111/j.1523-1755.2005.00086.x

    Article  PubMed  Google Scholar 

  83. Gabrielli L, Winter JL, Godoy I et al (2014) Increased Rho-kinase activity in hypertensive patients with left ventricular hypertrophy. Am J Hypertens 27:838–845. https://doi.org/10.1093/ajh/hpt234

    Article  CAS  PubMed  Google Scholar 

  84. Ravarotto V, Pagnin E, Fragasso A et al (2015a) Angiotensin II and cardiovascular-renal remodelling in hypertension: insights from a human model opposite to hypertension. High Blood Press Cardiovasc Prev 22:215–223. https://doi.org/10.1007/s40292-015-0082-7

    Article  CAS  PubMed  Google Scholar 

  85. Calò LA, Davis PA, Rossi GP (2014c) Understanding the mechanisms of angiotensin II signaling involved in hypertension and its long-term sequelae. J Hypertens 32:2109–2119. https://doi.org/10.1097/HJH.0000000000000321

    Article  CAS  PubMed  Google Scholar 

  86. Calò LA, Pagnin E, Davis PA et al (2003) Oxidative stress-related factors in Bartter’s and Gitelman’s syndromes: relevance for angiotensin II signalling. Nephrol Dial Transplant 18:1518–1525

    Article  PubMed  Google Scholar 

  87. Calò L, Ceolotto G, Milani M et al (2001) Abnormalities of Gq-mediated cell signaling in Bartter and Gitelman syndromes1∗1See editorial by Warnock, p. 1197. Kidney Int 60:882–889. https://doi.org/10.1046/j.1523-1755.2001.060003882.x

    Article  PubMed  Google Scholar 

  88. Calò L, Davis PA, Semplicini A (2002) Reduced content of α subunit of Gq protein content in monocytes of Bartter and Gitelman syndromes: relationship with vascular hyporeactivity. Kidney Int 61:353–354. https://doi.org/10.1046/j.1523-1755.2002.00128.x

    Article  PubMed  Google Scholar 

  89. Calò LA, Pagnin E, Davis PA et al (2004b) Increased expression of regulator of G protein signaling-2 (RGS-2) in Bartter’s/Gitelman’s syndrome. A role in the control of vascular tone and implication for hypertension. J Clin Endocrinol Metab 89:4153–4157. https://doi.org/10.1210/jc.2004-0498

    Article  CAS  PubMed  Google Scholar 

  90. Semplicini A, Lenzini L, Sartori M et al (2006) Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. J Hypertens 24:1115–1124. https://doi.org/10.1097/01.hjh.0000226202.80689.8f

    Article  CAS  PubMed  Google Scholar 

  91. Calò L, Sartore G, Bassi A et al (1998) Reduced susceptibility to oxidation of low-density lipoprotein in patients with overproduction of nitric oxide (Bartter’s and Gitelman’s syndrome). J Hypertens 16:1001–1008

    Article  PubMed  Google Scholar 

  92. Pagnin E, Davis PA, Sartori M et al (2004) Rho kinase and PAI-1 in Bartter’s/Gitelman’s syndromes: relationship to angiotensin II signaling. J Hypertens 22:1963–1969

    Article  CAS  PubMed  Google Scholar 

  93. Calò LA, Pessina AC (2007) RhoA/Rho-kinase pathway: much more than just a modulation of vascular tone. Evidence from studies in humans. J Hypertens 25:259–264. https://doi.org/10.1097/HJH.0b013e328010d4d2

    Article  CAS  PubMed  Google Scholar 

  94. Caló LA, Davis PA, Pagnin E et al (2008) Linking inflammation and hypertension in humans: studies in Bartter’s/Gitelman’s syndrome patients. J Hum Hypertens 22:223–225. https://doi.org/10.1038/sj.jhh.1002309

    Article  PubMed  Google Scholar 

  95. Davis PA, Mussap M, Pagnin E et al (2006) Early markers of inflammation in a high angiotensin II state – results of studies in Bartter’s/Gitelman’s syndromes. Nephrol Dial Transplant 21:1697–1701. https://doi.org/10.1093/ndt/gfl112

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo A. Calò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maiolino, G., Ravarotto, V., Calò, L.A. (2019). Oxidative Stress in Hypertension and Cardiovascular-Renal Remodeling: Focus on the Renin-Angiotensin-Aldosterone System. In: Chakraborti, S., Dhalla, N., Ganguly, N., Dikshit, M. (eds) Oxidative Stress in Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8273-4_26

Download citation

Publish with us

Policies and ethics