Skip to main content

Brief Introduction of Food Processing Methods and Chemical Hazards Formed during Thermal Processing

  • Chapter
  • First Online:
Chemical Hazards in Thermally-Processed Foods

Abstract

Food processing is used not only to ensure safety and shelf-life of raw food materials by inactivating enzymes or killing pathogens and microorganisms, but also enhance the palatability, flavor and nutrition quality of finished food products. Many of raw agriculture materials or ingredients are processed to food products and chemical hazards subsequently formed during processing are the key issues for food quality, safety and nutrition. There is a significant correlation between those issues and food processing methods, for latter which are generally divided into thermal processing and non-thermal processing according to the heat input. The mostly reported chemical hazards, such as α-Dicarbonyl compounds, furan, and acrylamide, are mainly formed in thermal processing. In this chapter, food processing methods and chemical hazards formed during thermal processing are introduced briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knoerzer K (2016) Nonthermal and innovative food processing technologies. In: Reference module in food science. Elsevier, Amsterdam

    Google Scholar 

  2. Fellows P (2017) Minimal processing methods. In: Food processing technology: principles and Practice. Elsevier, Amsterdam

    Google Scholar 

  3. Sun D-W (2012) Thermal food processing: new technologies and quality issues. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Featherstone S (2012) A review of development in and challenges of thermal processing over the past 200years—a tribute to Nicolas Appert. Food Res Int 47(2):156–160

    Article  Google Scholar 

  5. Richardson P (2001) Thermal technologies in food processing. Taylor & Francis, New York

    Book  Google Scholar 

  6. Gassmann B (1989) P. fellows: food processing technology. Principles and practice. 505 Seiten, 169 Abb., 85 Tab. VCH Verlagsgesellschaft mbH, Weinheim, und Ellis Horwood. Chichester 1988. Preis: 180.–DM. Mol Nutr Food Res 33(2):224

    Google Scholar 

  7. Stumbo CR (1973) Thermobacteriology in food processing. Academic, Orlando, p 2

    Google Scholar 

  8. Lund D (1989) Food processing: from art to engineering. Food Technol 43(9):242–247

    Google Scholar 

  9. Van Boekel MA (2008) Kinetic modeling of reactions in foods. CRC Press, Boca Raton

    Book  Google Scholar 

  10. Devlieghere F et al (2004) New preservation technologies: possibilities and limitations. Int Dairy J 14(4):273–285

    Article  Google Scholar 

  11. Garcia-Gonzalez L et al (2007) High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microbiol 117(1):1–28

    Article  CAS  PubMed  Google Scholar 

  12. Zhanga Q (1995) Engineering aspects of pulsed electric field pasteurization. J Food Eng 25(94):261–281

    Article  Google Scholar 

  13. Barbosa-Canovas GV et al (2010) Pulsed light technology. J Food Saf 65(s8):82–85

    Google Scholar 

  14. Donsì F, et al (2006) High-pressure homogenisation for food sanitisation. In: 13th world congress of food science & technology 2006

    Google Scholar 

  15. Diels AM, Michiels CW (2006) High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit Rev Microbiol 32(4):201–216

    Article  CAS  PubMed  Google Scholar 

  16. Dumay E et al (2013) Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci Technol 31(1):13–26

    Article  CAS  Google Scholar 

  17. Popper L, Knorr D (1990) Applications of high-pressure homogenization for food preservation: high-pressure homogenization can be used alone or combined with lytic enzyme or chitosan to reduce the microbial population and heat treatment damage in foods. Food Technol 44(7):84–89

    Google Scholar 

  18. Kleinig AR, Middelberg AP (1998) On the mechanism of microbial cell disruption in high-pressure homogenisation. Chem Eng Sci 53(5):891–898

    Article  CAS  Google Scholar 

  19. Bevilacqua A et al (2007) Effects of high-pressure homogenization on the survival of Alicyclobacillus acidoterrestris in a laboratory medium. Lett Appl Microbiol 45(4):382–386

    Article  CAS  PubMed  Google Scholar 

  20. Feijoo S et al (1997) Effects of microfluidizer® technology on Bacillus licheniformis spores in ice cream mix1. J Dairy Sci 80(9):2184–2187

    Article  CAS  PubMed  Google Scholar 

  21. Venkatesh M, Raghavan G (2004) An overview of microwave processing and dielectric properties of agri-food materials. Biosyst Eng 88(1):1–18

    Article  Google Scholar 

  22. Nursten HE (2007) The Maillard reaction: chemistry, biochemistry and implications. Royal Society of Chemistry, Cambridge

    Google Scholar 

  23. Wang Y, Ho C-T (2012) Flavour chemistry of methylglyoxal and glyoxal. Chem Soc Rev 41(11):4140–4149

    Article  CAS  PubMed  Google Scholar 

  24. Nemet I et al (2006) Methylglyoxal in food and living organisms. Mol Nutr Food Res 50(12):1105–1117

    Article  CAS  PubMed  Google Scholar 

  25. Papetti A et al (2014) Free α-dicarbonyl compounds in coffee, barley coffee and soy sauce and effects of in vitro digestion. Food Chem 164:259–265

    Article  CAS  PubMed  Google Scholar 

  26. Campbell A et al (2010) Bacterial metabolic ‘toxins’: a new mechanism for lactose and food intolerance, and irritable bowel syndrome. Toxicology 278(3):268–276

    Article  CAS  PubMed  Google Scholar 

  27. Marceau E, Yaylayan VA (2009) Profiling of α-dicarbonyl content of commercial honeys from different botanical origins: identification of 3, 4-dideoxyglucoson-3-ene (3, 4-DGE) and related compounds. J Agric Food Chem 57(22):10837–10844

    Article  CAS  PubMed  Google Scholar 

  28. Rizz GP (1972) Mechanistic study of alkylpyrazine formation in model systems. J Agric Food Chem 20(5):1081–1085

    Article  CAS  Google Scholar 

  29. Wang Y, Ho C-T (2008) Formation of 2, 5-dimethyl-4-hydroxy-3 (2 H)-furanone through methylglyoxal: a Maillard reaction intermediate. J Agric Food Chem 56(16):7405–7409

    Article  CAS  PubMed  Google Scholar 

  30. Jang HW et al (2013) Formation of 4 (5)-methylimidazole and its precursors, α-dicarbonyl compounds, in Maillard model systems. J Agric Food Chem 61(28):6865–6872

    Article  CAS  PubMed  Google Scholar 

  31. Chatterjee S, Chen A (2012) Voltammetric detection of the α-dicarbonyl compound: methylglyoxal as a flavoring agent in wine and beer. Anal Chim Acta 751:66

    Article  CAS  PubMed  Google Scholar 

  32. Ruizmatute AI et al (2015) Identification and determination of 3-deoxyglucosone and glucosone in carbohydrate-rich foods. J Sci Food Agric 95(12):2424–2430

    Article  CAS  Google Scholar 

  33. Hasnip S et al (2006) Some factors affecting the formation of furan in heated foods. Food Addit Contam 23(3):219–227

    Article  CAS  PubMed  Google Scholar 

  34. Kim TK et al (2010) Analysis of furan in heat-processed foods consumed in Korea using solid phase microextraction–gas chromatography/mass spectrometry (SPME–GC/MS). Food Chem 123(4):1328–1333

    Article  CAS  Google Scholar 

  35. Martin-Matute B et al (2003) Intramolecular reactions of alkynes with furans and electron rich arenes catalyzed by PtCl2: the role of platinum carbenes as intermediates. J Am Chem Soc 125(19):5757–5766

    Article  CAS  PubMed  Google Scholar 

  36. Katan MB, Katan MB (2000) Trans fatty acids and plasma lipoproteins. Nutr Rev 58(6):188–191

    Article  CAS  PubMed  Google Scholar 

  37. Hunter EJ (2005) Dietary levels of trans-fatty acids: basis for health concerns and industry efforts to limit use. Nutr Res 25(5):499–513

    Article  CAS  Google Scholar 

  38. Alonso L et al (2000) Determination of trans fatty acids and fatty acid profiles in margarines marketed in Spain. J Am Oil Chem Soc 77(2):131–136

    Article  CAS  Google Scholar 

  39. Paul W, Niallwg Y (2010) Food applications of trans fatty acid substitutes. Int J Food Sci Technol 42(5):503–517

    Google Scholar 

  40. Oomen CM et al (2001) Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: a prospective population-based study. Lancet 357(9258):746–751

    Article  CAS  PubMed  Google Scholar 

  41. Hulshof K et al (1999) Intake of fatty acids in western Europe with emphasis on trans fatty acids: the TRANSFAIR Study. Eur J Clin Nutr 53(2):143–157

    Article  CAS  PubMed  Google Scholar 

  42. Ascherio A et al (1999) Trans fatty acids and coronary heart disease. N Engl J Med 340:1994–1998

    Article  CAS  PubMed  Google Scholar 

  43. Mossoba M et al (2007) Interference of saturated fats in the determination of low levels of trans fats (below 0.5%) by infrared spectroscopy. J Am Oil Chem Soc 84(4):339–342

    Article  CAS  Google Scholar 

  44. Tyburczy C et al (2012) Evaluation of low trans fat edible oils by attenuated total reflection-Fourier transform infrared spectroscopy and gas chromatography: a comparison of analytical approaches. Anal Bioanal Chem 404(3):809–819

    Article  CAS  PubMed  Google Scholar 

  45. Ruan ED et al (2014) Dietary vitamin E effects on the formation of heterocyclic amines in grilled lean beef. Meat Sci 96(2):849–853

    Article  CAS  PubMed  Google Scholar 

  46. Cross AJ, Sinha R (2004) Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen 44(1):44

    Article  CAS  PubMed  Google Scholar 

  47. Oz F et al (2010) Effects of cooking methods and levels on formation of heterocyclic aromatic amines in chicken and fish with Oasis extraction method. LWT Food Sci Technol 43(9):1345–1350

    Article  CAS  Google Scholar 

  48. Cancer IAFO (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Carcinógenos 38:351

    Google Scholar 

  49. Skog K, Solyakov A (2002) Heterocyclic amines in poultry products: a literature review. Food Chem Toxicol 40(8):1213–1221

    Article  CAS  PubMed  Google Scholar 

  50. Kawamori T et al (2004) Carcinogenicity of aminophenylnorharman, a possible novel endogenous mutagen, formed from norharman and aniline, in F344 rats. Carcinogenesis 25(10):1967–1972

    Article  CAS  PubMed  Google Scholar 

  51. Toribio F et al (2002) Ion-trap tandem mass spectrometry for the determination of heterocyclic amines in food. J Chromatogr A 948(1):267–281

    Article  CAS  PubMed  Google Scholar 

  52. Jägerstad M et al (1983) Creatinine and Maillard reaction products as precursors of mutagenic compounds formed in fried beef. ACS Symp Ser 12:255

    Google Scholar 

  53. Xu Y et al (2014) Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem Toxicol 69(3):1

    Article  CAS  PubMed  Google Scholar 

  54. Franco P et al (2014) Current issues in dietary acrylamide: formation, mitigation and risk assessment. J Sci Food Agric 94(1):9–20

    Article  CAS  Google Scholar 

  55. Stadler RH et al (2002) Food chemistry: acrylamide from Maillard reaction products. Nature 419(6906):449–450

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Xu, H., Luan, H., Cai, J. (2019). Brief Introduction of Food Processing Methods and Chemical Hazards Formed during Thermal Processing. In: Wang, S. (eds) Chemical Hazards in Thermally-Processed Foods. Springer, Singapore. https://doi.org/10.1007/978-981-13-8118-8_1

Download citation

Publish with us

Policies and ethics