Skip to main content

Thiotaurine: From Chemical and Biological Properties to Role in H2S Signaling

  • Conference paper
  • First Online:
Taurine 11

Abstract

In the last decade thiotaurine, 2-aminoethane thiosulfonate, has been investigated as an inflammatory modulating agent as a result of its ability to release hydrogen sulfide (H2S) known to play regulatory roles in inflammation. Thiotaurine can be included in the “taurine family” due to structural similarity to taurine and hypotaurine, and is characterized by the presence of a sulfane sulfur moiety. Thiotaurine can be produced by different pathways, such as the spontaneous transsulfuration between thiocysteine – a persulfide analogue of cysteine – and hypotaurine as well as in vivo from cystine. Moreover, the enzymatic oxidation of cysteamine to hypotaurine and thiotaurine in the presence of inorganic sulfur can occur in animal tissues and last but not least thiotaurine can be generated by the transfer of sulfur from mercaptopyruvate to hypotaurine catalyzed by a sulfurtransferase. Thiotaurine is an effective antioxidant agent as demonstrated by its ability to counteract the damage caused by pro-oxidants in the rat. Recently, we observed the influence of thiotaurine on human neutrophils functional responses. In particular, thiotaurine has been found to prevent human neutrophil spontaneous apoptosis suggesting an alternative or additional role to its antioxidant activity. It is likely that the sulfane sulfur of thiotaurine may modulate neutrophil activation via persulfidation of target proteins. In conclusion, thiotaurine can represent a biologically relevant sulfur donor acting as a biological intermediate in the transport, storage and release of sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APAP:

Acetaminophen

CAT:

Cysteine aminotransferase

CBS:

Cystathionine β-synthase

CDO:

Cysteine dioxygenase

CN:

Cyanide

CSAD:

Cysteine sulfinate decarboxylase

CSE:

Cystathionine γ-lyase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GSH:

Glutathione

GSSH:

Glutathione persulfide

H2S:

Hydrogen sulfide

HSSH:

Hydrogen persulfide

MDA:

Malondialdehyde

MST:

Mercaptopyruvate sulfurtransferase

NAC:

N-acetylcysteine

PLP:

Pyridoxal 5′-phosphate

PMA:

Phorbol 12-myristate 13-acetate

ROS:

Reactive oxygen species

RS:

Thiolate anion

RSH:

Thiol

RSO2H:

Sulfinate/Hypotaurine

RSO2SH:

Thiosulfonate/Thiotaurine

RSO3H:

Sulfonate/Taurine

RSOH:

Sulfenate

RSSH:

Persulfide/Thiocysteine

RSSnSR:

Polysulfide

RSSR:

Disulfide

S0:

Zero-valent sulfur

S2−:

Sulfide

−S2O2:

Thiosulfonate group

S2O32−:

Thiosulfate

S8:

Elemental sulfur

SCN:

Thiocyanate

SO32−:

Sulfite

STZ:

Streptozotocin

References

  • Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Acharya M, Lau-Cam CA (2010) Comparison of the protective actions of N-acetylcysteine, hypotaurine and taurine against acetaminophen-induced hepatotoxicity in the rat. J Biomed Sci 17(Suppl 1):S35

    PubMed  PubMed Central  Google Scholar 

  • Acharya M, Lau-Cam CA (2013) Comparative evaluation of the effects of taurine and thiotaurine on alterations of the cellular redox status and activities of antioxidant and glutathione-related enzymes by acetaminophen in the rat. Adv Exp Med Biol 776:199–215

    CAS  PubMed  Google Scholar 

  • Alberic P (1986) Occurrence of thiotaurine and hypotaurine in the tissues of Riftia pachyptila. Comptes Rendus de l’Académie des Sciences Paris 302:503–508

    CAS  Google Scholar 

  • Baskin SI, Prabhaharan V, Bowman JD, Novak MJ (2000) In vitro effects of anionic sulfur compounds on the spectrophotometric properties of native DNA. J Appl Toxicol 20:S3–S5

    CAS  PubMed  Google Scholar 

  • Bełtowski J (2015) Hydrogen sulfide in pharmacology and medicine – an update. Pharmacol Rep 67:647–658

    PubMed  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625

    CAS  PubMed  Google Scholar 

  • Budhram R, Pandya KG, Lau-Cam CA (2013) Protection by taurine and thiotaurine against biochemical and cellular alterations induced by diabetes in a rat model. Adv Exp Med Biol 775:321–343

    Article  CAS  PubMed  Google Scholar 

  • Capuozzo E, Pecci L, Baseggio Conrado A, Fontana M (2013) Thiotaurine prevents apoptosis of human neutrophils: a putative role in inflammation. Adv Exp Med Biol 775:227–236

    CAS  PubMed  Google Scholar 

  • Capuozzo E, Baseggio Conrado A, Fontana M (2015) Thiotaurine modulates human neutrophil activation. Adv Exp Med Biol 803:145–155

    CAS  PubMed  Google Scholar 

  • Capuozzo E, Giorgi A, Canterini S, Baseggio Conrado A, Giarrusso P, Schininà ME, Fontana M (2017) A proteomic approach to study the effect of thiotaurine on human neutrophil activation. Adv Exp Med Biol 975:563–571

    CAS  PubMed  Google Scholar 

  • Cavallini D, De Marco C, Mondovì B (1959a) Chromatographic evidence of the occurence of thiotaurine in the urine of rats fed with cystine. J Biol Chem 234:854–857

    CAS  PubMed  Google Scholar 

  • Cavallini D, Mondovì B, Giovanella B, De Marco C (1959b) Degradation of thiotaurine by ionizing radiations. Nature 184:61

    CAS  PubMed  Google Scholar 

  • Cavallini D, De Marco C, Mondovì B, Tentori L (1960a) Radioautographic detection of metabolites of 35S-DL-cystine. J Chromatogr 3:20–24

    CAS  Google Scholar 

  • Cavallini D, De Marco C, Mondovì B, Mori BG (1960b) The cleavage of cystine by cystathionase and the transulfuration of hypotaurine. Enzymologia 22:161–173

    CAS  PubMed  Google Scholar 

  • Cavallini D, De Marco C, Mondovì B (1961) Detection and distribution of enzymes for oxidizing thiocysteamine. Nature 192:557–558

    CAS  Google Scholar 

  • Cavallini D, Mondovì B, De Marco C, Scioscia-Santoro A (1962a) Inhibitory effect of mercaptoethanol and hypotaurine on the desulfhydration of cysteine by cystathionase. Arch Biochem Biophys 96:456–457

    CAS  PubMed  Google Scholar 

  • Cavallini D, Mondovì B, De Marco C, Scioscia-Santoro A (1962b) The mechanism of desulphydration of cysteine. Enzymologia 24:253–266

    CAS  PubMed  Google Scholar 

  • Cavallini D, Scandurra R, De Marco C (1963) The enzymatic oxidation of cysteamine to hypotaurine in the presence of sulfide. J Biol Chem 238:2999–3005

    CAS  PubMed  Google Scholar 

  • Chaimbault P, Alberic P, Elfakir C, Lafosse M (2004) Development of an LC-MS-MS method for the quantification of taurine derivatives in marine invertebrates. Anal Biochem 332:215–225

    CAS  PubMed  Google Scholar 

  • Chauncey TR, Westley J (1983) The catalytic mechanism of yeast thiosulfate reductase. J Biol Chem 258:15037–15045

    CAS  PubMed  Google Scholar 

  • Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by O2. Environ Sci Technol 6:529–537

    Google Scholar 

  • Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284:11601–11612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa M, Vesci L, Fontana M, Solinas SP, Duprè S, Cavallini D (1990) Displacement of [3H]GABA binding to bovine brain receptors by sulfur-containing analogues. Neurochem Int 17:547–551

    CAS  PubMed  Google Scholar 

  • Cuevasanta E, Lange M, Bonanata J, Coitiño EL, Ferre-Sueta G, Filipovic MR, Alvarez B (2015) Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide. J Biol Chem 290:26866–26880

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Marco C, Tentori L (1961) Sulfur exchange between thiotaurine and hypotaurine. Experientia 17:345–346

    CAS  Google Scholar 

  • De Marco C, Coletta M, Cavallini D (1961) Spontaneous transulfuration of sulfinates by organic persulfides. Arch Biochem Biophys 93:179–180

    Google Scholar 

  • Dragotto J, Capuozzo E, Fontana M, Curci A, Fiorenza MT, Canterini S (2015) Thiotaurine protects mouse cerebellar granule neurons from potassium deprivation-induced apoptosis by inhibiting the activation of caspase-3. Adv Exp Med Biol 803:513–523

    CAS  PubMed  Google Scholar 

  • Dulaney MD Jr, Pellicore LS, Wisler JS (1989) The efficacy of alpha-ketoglutaric acid and 2-aminoethanesulfonate as a prophylactic antidote against cyanide. In: Proceedings of the medical defense bioscience review. US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, pp 25–31

    Google Scholar 

  • Filipovic M, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H2S signaling through persulfidation. Chem Rev 118:1253–1337

    PubMed  PubMed Central  Google Scholar 

  • Finkel T (2012) From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci Signal 5:pe10

    PubMed  Google Scholar 

  • Francoleon NE, Carrington SJ, Fukuto JM (2011) The reaction of H2S with oxidized thiols: generation of persulfides and implications to H2S biology. Arch Biochem Biophys 516:146–153

    CAS  PubMed  Google Scholar 

  • Giles GI, Tasker KM, Jacob C (2001) Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radic Biol Med 31:1279–1283

    CAS  PubMed  Google Scholar 

  • Giles GI, Nasim MJ, Ali W, Jacob C (2017) The reactive sulfur species concept: 15 years on. Antioxidants 6:38

    PubMed Central  Google Scholar 

  • Green TR, Fellman JH, Eichert AL, Pratt KL (1991) Antioxidant role and subcellular localisation of hypotaurine and taurine in human neutrophils. Biochim Biophys Acta 1073:91–97

    CAS  PubMed  Google Scholar 

  • Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361

    CAS  PubMed  Google Scholar 

  • Iciek M, Włodek L (2001) Biosynthesis and biological properties of containing highly reactive, reduced sulfane sulfur. Pol J Pharmacol 53:215–225

    CAS  PubMed  Google Scholar 

  • Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111:7606–7611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Tsukuda K, Koito T, Miyazaki Y, Hosoi M, Kado R, Miyazaki N, Toyohara H (2008) Possible role of a taurine transporter in the deep-sea mussel Bathymodiolus septemdierum in adaptation to hydrothermal vents. FEBS Lett 582:1542–1546

    CAS  PubMed  Google Scholar 

  • Jackson MR, Melideo S, Jorns MS (2012) Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51:6804–6815

    CAS  PubMed  Google Scholar 

  • Joyner JL, Peyer SM, Lee RW (2003) Possible roles of sulfur-containing amino acids in a chemoautotrophic bacterium-mollusc symbiosis. Biol Bull 205:331–338

    CAS  PubMed  Google Scholar 

  • Kabil O, Banerjee R (2010) The redox biochemistry of hydrogen sulfide. J Biol Chem 285:21903–21907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabil O, Banerjee R (2014) Enzymology of H2S biogenesis, decay and signaling. Antiox Red Signal 20:770–782

    CAS  Google Scholar 

  • Kim C, Cha YN (2014) Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids 46:89–100

    CAS  PubMed  Google Scholar 

  • Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41:113–121

    CAS  PubMed  Google Scholar 

  • Koj A, Frendo J, Janik Z (1967) [35S]Thiosulphate oxidation by rat liver mitochondria in the presence of glutathione. Biochem J 103:791–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotronarou A, Hoffmann MR (1991) Catalytic autoxidation of hydrogen sulfide in wastewater. Environ Sci Technol 25:1153–1160

    CAS  Google Scholar 

  • Kutney GW, Turnbull K (1982) Compounds containing the S=S bond. Chem Rev 82:333–357

    CAS  Google Scholar 

  • Libiad M, Yadav PK, Vitvitsky V, Martinov M, Banerjee R (2014) Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 289:30901–30910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo GX, Horowitz PM (1994) The sulfurtransferase activity and structure of rhodanese are affected by site-directed replacement of Arg-186 or Lys-249. J Biol Chem 269:8220–8225

    CAS  PubMed  Google Scholar 

  • Majtan T, Krijt J, Sokolovà J, Krızkovà M, Ralat MA, Kent J, Gregory JF III, Kozich V, Kraus JP (2018) Biogenesis of hydrogen sulfide and thioethers by cystathionine beta-synthase. Antiox Redox Signal 28:311–323

    CAS  Google Scholar 

  • Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46:7–20

    CAS  PubMed  Google Scholar 

  • Marziaz M, Frazier K, Guidry PB, Ruiz RA, Petrikovics I, Haines DC (2013) Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD50 yields insight into the efficacy of prophylactics. J Appl Toxicol 33:50–55

    PubMed  Google Scholar 

  • Mathew E, Barletta MA, Lau-Cam CA (2013) The effects of taurine and thiotaurine on oxidative stress in the aorta and heart of diabetic rats. Adv Exp Med Biol 775:345–369

    CAS  PubMed  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439:479–485

    CAS  PubMed  Google Scholar 

  • Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11:457–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mousa HM, Davis RH (1991) Alternative sulfur donors for detoxification of cyanide in the chicken. Comp Biochem Physiol 99C:309–315

    CAS  Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72

    PubMed  PubMed Central  Google Scholar 

  • Nagahara N, Sawada N (2006) The mercaptopyruvate pathway in cysteine catabolism: a physiological role and related disease of the multifunctional 3-mercaptopyruvate sulfur transferase. Curr Med Chem 13:1219–1230

    CAS  PubMed  Google Scholar 

  • Oja S, Kontro P (1982) Taurine. In: Lajitha A (ed) Handbook of neurochemistry, vol 3, 2nd edn. Plenum Press, New York, pp 501–553

    Google Scholar 

  • Pandya KG, Budhram R, Clark G, Lau-Cam CA (2013) Comparative evaluation of taurine and thiotaurine as protectants against diabetes-induced nephropathy in a rat model. Adv Exp Med Biol 775:371–394

    CAS  PubMed  Google Scholar 

  • Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13:499–507

    CAS  PubMed  Google Scholar 

  • Predmore BL, Lefer DJ, Gojon G (2012) Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 17:119–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pruski AM, Fiala-Medioni A, Colomines JC (1997) High amounts of sulphur-amino acids in three symbiotic mytilid bivalves from deep benthic communities. C R Acad Sci III 320:791–796

    CAS  PubMed  Google Scholar 

  • Rahimi R, Nikfar S, Larijani B, Abdollahi M (2005) A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 59:365–373

    CAS  PubMed  Google Scholar 

  • Rosenberg NK, Lee RW, Yancey PH (2006) High contents of hypotaurine and thiotaurine in hydrothermal-vent gastropods without thiotrophic endosymbionts. J Exp Zool A Comp Exp Biol 305:655–662

    PubMed  Google Scholar 

  • Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466

    Google Scholar 

  • Sörbo B (1957) Enzymic transfer of sulfur from mercaptopyruvate to sulfite or sulfinates. Biochim Biophys Acta 24:324–329

    PubMed  Google Scholar 

  • Sörbo B (1958) On the formation of thiosulfate from inorganic sulfide by liver tissue and heme compounds. Biochim Biophys Acta 27:324–329

    PubMed  Google Scholar 

  • Steudel R, Drozdova Y, Miaskiewicz K, Hertwig RH, Koch W (1997) How unstable are thiosulfoxides? An ab initio MO study of various disulfanes RSSR (R=H, Me, Pr, All), their branched isomers R2SS, and the related transition states. J Am Chem Soc 119:1990–1996

    CAS  Google Scholar 

  • Stipanuk MH, Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206:267–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stipanuk MH, Ueki I (2011) Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis 34:17–32

    CAS  PubMed  Google Scholar 

  • Szczepkowski TW, Wood JL (1967) The cystathionase-rhodanese system. Biochim Biophys Acta 139:469–478

    CAS  PubMed  Google Scholar 

  • Toohey JI (1989) Sulphane sulphur in biological systems: a possible regulatory role. Biochem J 264:625–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toohey JI (2011) Sulfur signalling: is the agent sulfide or sulfane? Anal Biochem 413:1–7

    CAS  PubMed  Google Scholar 

  • Toohey JI, Cooper AJL (2014) Thiosulfoxide (sulfane) sulphur: new chemistry and new regulatory roles in biology. Molecules 19:12789–12813

    PubMed  PubMed Central  Google Scholar 

  • Westley J, Heyse D (1971) Mechanisms of sulfur transfer catalysis. Sulfhydryl-catalyzed transfer of thiosulfonate sulfur. J Biol Chem 246:1468–1474

    CAS  PubMed  Google Scholar 

  • Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32

    CAS  PubMed  Google Scholar 

  • Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288:20002–20013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav PK, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic MR, Banerjee R (2016) Biosynthesis and reactivity of cysteine persulfides in signaling. J Am Chem Soc 138:289–299

    CAS  PubMed  Google Scholar 

  • Yancey PH, Blake WR, Conley J (2002) Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp Biochem Physiol A Mol Integr Physiol 133:667–676

    PubMed  Google Scholar 

  • Yancey PH, Ishikawa J, Meyer B, Girguis PR, Lee RW (2009) Thiotaurine and hypotaurine contents in hydrothermal-vent polychaetes without thiotrophic endosymbionts: correlation with sulfide exposure. J Exp Zool A Ecol Genet Physiol 311:439–447

    PubMed  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322:587–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zanardo RCO, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Dr. Alessandro Chinazzi (Department of Biochemical Sciences – Sapienza University of Rome) for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Fontana .

Editor information

Editors and Affiliations

Additional information

This work is dedicated to the memory of Professor Doriano Cavallini and Professor Carlo De Marco

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baseggio Conrado, A., Capuozzo, E., Mosca, L., Francioso, A., Fontana, M. (2019). Thiotaurine: From Chemical and Biological Properties to Role in H2S Signaling. In: Hu, J., Piao, F., Schaffer, S., El Idrissi, A., Wu, JY. (eds) Taurine 11. Advances in Experimental Medicine and Biology, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-13-8023-5_66

Download citation

Publish with us

Policies and ethics