Skip to main content

Epigenetics and its Implications in Neurological Disorders

  • Chapter
  • First Online:
Histone Deacetylase Inhibitors — Epidrugs for Neurological Disorders
  • 287 Accesses

Abstract

Epigenetic players perform a significant role in governing gene expression programs as they precisely regulate the various post-translational modifications of histone and non-histone substrates. Epigenetic dysregulation due to aberrant activity of these players alters homeostasis provoking neurological complications. Here I discuss the amendments of the definition of epigenetics over time and the various post-translational modifications that histone proteins undergo. Moreover, the altered activity and expression of various epigenetic enzymes in distinct neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis (ALS) will be thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammal Kaidery N, Tarannum S, Thomas B (2013) Epigenetic landscape of Parkinson's disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics 10(4):698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsoum J, Varshavsky A (1985) Preferential localization of variant nucleosomes near the 5′-end of the mouse dihydrofolate reductase gene. J Biol Chem 260(12):7688–7697

    CAS  PubMed  Google Scholar 

  • Chen HY, Sun JM, Zhang Y, Davie JR, Meistrich ML (1998) Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem 273(21):13165–13169

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhang X-J, Li L-X, Wang Y, Zhong R-J, Le W (2015) Histone deacetylase 6 delays motor neuron degeneration by ameliorating the autophagic flux defect in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Bull 31(4):459–468. https://doi.org/10.1007/s12264-015-1539-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31(46):16619–16636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conaway RC, Brower CS, Conaway JW (2002) Emerging roles of ubiquitin in transcription regulation. Science 296(5571):1254–1258

    Article  CAS  PubMed  Google Scholar 

  • D'Oto A, Q-w T, Davidoff AM, Yang J (2016) Histone demethylases and their roles in cancer epigenetics. Journal of medical oncology and therapeutics 1(2):34–40

    PubMed  PubMed Central  Google Scholar 

  • Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70(5):813–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, Masliah E (2011) Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286(11):9031–9037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Fiore PP, Polo S, Hofmann K (2003) When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol Cell Biol 4(6):491–497

    Article  PubMed  Google Scholar 

  • Draker R, Cheung P (2009) Transcriptional and epigenetic functions of histone variant H2A. Z Biochem Cell Biol 87(1):19–25

    Article  CAS  Google Scholar 

  • Farris SD, Rubio ED, Moon JJ, Gombert WM, Nelson BH, Krumm A (2005) Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J Biol Chem 280(26):25298–25303

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Fouse S, Fan G (2007) Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res 61:58R. https://doi.org/10.1203/pdr.0b013e3180457635

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Romero C, Hur J, Bender DE, Delaney CE, Cataldo MD, Smith AL, Yung R, Ruden DM, Callaghan BC, Feldman EL (2012) Identification of epigenetically altered genes in sporadic amyotrophic lateral sclerosis. PLoS One 7(12):e52672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francelle L, Lotz C, Outeiro T, Brouillet E, Merienne K (2017) Contribution of Neuroepigenetics to Huntington’s disease. Front Hum Neurosci 11(17). https://doi.org/10.3389/fnhum.2017.00017

  • Francis YI, Fa M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, Arancio O (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer's disease. J Alzheimers Dis 18(1):131–139

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA (2016a) Histone deacetylase inhibitor givinostat: the small-molecule with promising activity against therapeutically challenging haematological malignancies. J Chemother 28(4):247–254

    Article  CAS  Google Scholar 

  • Ganai SA (2016b) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm Biol 54(9):1926–1935

    Article  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282

    Article  CAS  PubMed  Google Scholar 

  • Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach S, Di Monte DA, Uversky VN, Fink AL (2003) Nuclear localization of α-Synuclein and its interaction with histones. Biochemistry 42(28):8465–8471

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638

    Article  CAS  PubMed  Google Scholar 

  • Hall JR, Strathdee CA (2000) Disease-associated mutations in SOD1 are impervious to dominant positive or negative effects. Biochem Biophys Res Commun 276(3):1056–1061

    Article  CAS  PubMed  Google Scholar 

  • Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17071

    Article  PubMed  Google Scholar 

  • Helt CE, Cliby WA, Keng PC, Bambara RA, O'Reilly MA (2005) Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 280(2):1186–1192

    Article  CAS  PubMed  Google Scholar 

  • Hervás-Corpión I, Guiretti D, Alcaraz-Iborra M, Olivares R, Campos-Caro A, Barco Á, Valor LM (2018) Early alteration of epigenetic-related transcription in Huntington’s disease mouse models. Sci Rep 8(1):9925. https://doi.org/10.1038/s41598-018-28185-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (1994) Epigenetics: an overview. Dev Genet 15(6):453–457

    Article  CAS  PubMed  Google Scholar 

  • Horvath S, Langfelder P, Kwak S, Aaronson J, Rosinski J, Vogt TF, Eszes M, Faull RL, Curtis MA, Waldvogel HJ, Choi OW, Tung S, Vinters HV, Coppola G, Yang XW (2016) Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging 8(7):1485–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarome TJ, Thomas JS, Lubin FD (2014) The epigenetic basis of memory formation and storage. Prog Mol Biol Transl Sci 128:1–27

    Article  CAS  PubMed  Google Scholar 

  • Johansen KM, Johansen J (2006) Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosom Res 14(4):393–404

    Article  CAS  Google Scholar 

  • Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116(2):259–272

    Article  CAS  Google Scholar 

  • Kim MO, Chawla P, Overland RP, Xia E, Sadri-Vakili G, Cha JH (2008) Altered histone monoubiquitylation mediated by mutant huntingtin induces transcriptional dysregulation. J Neurosci 28(15):3947–3957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontopoulos E, Parvin JD, Feany MB (2006) α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15(20):3012–3023

    Article  CAS  PubMed  Google Scholar 

  • Kurdistani SK, Grunstein M (2003) Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4(4):276–284

    Article  CAS  PubMed  Google Scholar 

  • Labadorf A, Hoss AG, Lagomarsino V, Latourelle JC, Hadzi TC, Bregu J, MacDonald ME, Gusella JF, Chen JF, Akbarian S, Weng Z, Myers RH (2016 Jul 25) Correction: RNA sequence analysis of human Huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One 11(7):e0160295

    Article  PubMed  PubMed Central  Google Scholar 

  • Lachner M, O'Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116. (Pt 11:2117–2124

    Article  CAS  PubMed  Google Scholar 

  • Landgrave-Gomez J, Mercado-Gomez O, Guevara-Guzman R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 27:9–58

    Google Scholar 

  • LaSalle JM, Powell WT, Yasui DH (2013) Epigenetic layers and players underlying neurodevelopment. Trends Neurosci 36(8):460–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau PN, Cheung P (2011) Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagonizes polycomb silencing. Proc Natl Acad Sci U S A 108(7):2801–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P, Malone LM, Sweatt JD (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281(23):15763–15773

    Article  CAS  PubMed  Google Scholar 

  • Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6(2):108–118

    Article  CAS  PubMed  Google Scholar 

  • Levinger L, Varshavsky A (1982) Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the Drosophila genome. Cell 28(2):375–385

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wang M-w (2016) Histone lysine methyltransferases as anti-cancer targets for drug discovery. Acta Pharmacol Sin 37(10):1273–1280. https://doi.org/10.1038/aps.2016.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(5646):890–893

    Article  CAS  PubMed  Google Scholar 

  • Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J (2011) Epigenetic mechanisms in Alzheimer's disease. Neurobiol Aging 32(7):1161–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McFarland KN, Das S, Sun TT, Leyfer D, Xia E, Sangrey GR, Kuhn A, Luthi-Carter R, Clark TW, Sadri-Vakili G, Cha J-HJ (2012) Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington's disease. PLoS One 7(7):e41423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38

    Article  CAS  PubMed  Google Scholar 

  • Nanney DL (1958) Epigenetic control systems. Proc Natl Acad Sci U S A 44(7):712–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickel BE, Davie JR (1989) Structure of polyubiquitinated histone H2A. Biochemistry 28(3):964–968

    Article  CAS  PubMed  Google Scholar 

  • Park C-H, Kim K-T (2012) Apoptotic phosphorylation of histone H3 on Ser-10 by protein kinase Cδ. PLoS One 7(9):e44307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S-M, Choi E-Y, Bae M, Kim S, Park JB, Yoo H, Choi JK, Kim Y-J, Lee S-H, Kim I-H (2016) Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nat Commun 7:12914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  PubMed  Google Scholar 

  • Ryu H, Lee J, Hagerty SW, Soh BY, McAlpin SE, Cormier KA, Smith KM, Ferrante RJ (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc Natl Acad Sci U S A 103(50):19176–19181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadri-Vakili G, Bouzou B, Benn CL, Kim MO, Chawla P, Overland RP, Glajch KE, Xia E, Qiu Z, Hersch SM, Clark TW, Yohrling GJ, Cha JH (2007) Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models. Hum Mol Genet 16(11):1293–1306

    Article  CAS  PubMed  Google Scholar 

  • Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19(7):804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Kim J (2016) Degeneration of dopaminergic neurons due to metabolic alterations and Parkinson’s disease. Front Aging Neurosci 8:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas B, Matson S, Chopra V, Sun L, Sharma S, Hersch S, Rosas HD, Scherzer C, Ferrante R, Matson W (2013) A novel method for detecting 7-methyl guanine reveals aberrant methylation levels in Huntington disease. Anal Biochem 436(2):112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne AW, Sautiere P, Briand G, Crane-Robinson C (1987) The structure of ubiquitinated histone H2B. EMBO J 6(4):1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valle C, Salvatori I, Gerbino V, Rossi S, Palamiuc L, René F, Carrì MT (2014) Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways. Cell Death Dis 5:e1296

    Article  CAS  Google Scholar 

  • Vashishtha M, Ng CW, Yildirim F, Gipson TA, Kratter IH, Bodai L, Song W, Lau A, Labadorf A, Vogel-Ciernia A, Troncosco J, Ross CA, Bates GP, Krainc D, Sadri-Vakili G, Finkbeiner S, Marsh JL, Housman DE, Fraenkel E, Thompson LM (2013) Targeting H3K4 trimethylation in Huntington disease. Proc Natl Acad Sci USA 110(32):19

    Article  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 a resolution. J Mol Biol 194(3):531–544

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1968) Towards a theoretical biology. Nature 218(5141):525–527

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41(1):10–13

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Fischhaber PL, Guo C, Tang TS (2014) Epigenetic modifications as novel therapeutic targets for Huntington's disease. Epigenomics 6(3):287–297

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Morris JR (2001 Aug 10) Genes, genetics, and epigenetics: a correspondence. Science 293(5532):1103–1105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganai, S.A. (2019). Epigenetics and its Implications in Neurological Disorders. In: Histone Deacetylase Inhibitors — Epidrugs for Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-13-8019-8_1

Download citation

Publish with us

Policies and ethics