Skip to main content

Fundamental Energy Needs Quantification for QoL Improvement

  • Chapter
  • First Online:
Relationship Between Quality of Life and Energy Usage
  • 194 Accesses

Abstract

Previous chapters conducted energy analysis in terms of the proposed QoL indicator at international level. Moreover, the analysis of Chap. 3 revealed that QoL will increase three times if final energy consumption per capita reaches to 548 kgoe. Additionally, poverty rate decreases around three times through supplying same final energy for each person in pre-developing countries. Energy consumption at family level is the scope of current chapter, to measure fundamental energy needs (FENs). Then, it will investigate to what extent FENs reduces final energy consumption. In other word, the share of FENs in energy poverty reduction is considered. The proposed method is based on time use analysis which is independent from place and families. Thus, the proposed method can be conducted in different countries and different families to extend the results. Measuring FENs across households provides an insight into the poor households’ energy needs and energy poverty reduction. Household’s fundamental energy needs consists of energy for heating, cooling, cooking, and lighting services, which vary from one country to another. This chapter proposes the time use analysis to figure out energy consumption among households, while the “power” side of energy is assumed as an exogenous variable (Energy = Time × Power). A set of household activities related to a family with two persons is selected and their corresponding cycle times and frequencies are modeled by different statistical distributions due to the intrinsic uncertainty of cycle times. Then, a simulation model is created to extract robust results related to the household energy consumption based on the whole set of activities, weather data and selected statistical distributions. For the aforementioned family, the results of simulation showed that on average, the daily FENs is 63.3 MJ; while its highest share belongs to the cooking activities (39.2%), followed by heating (23.6%), cooling (18.3%), and lighting (5.2%). The results of chapter emphasize the importance of heating, cooking, and cooling services for poverty reduction at the household level than lighting service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The basic energy needs consists energy for cooking, heating, lighting, cooling, and energy services for educational and health centers as well as income generation [52].

  2. 2.

    Productive uses of energy makes sure that energy access translates into employment, additional income and ultimately better living conditions for entrepreneurs, employees and their families [53].

  3. 3.

    Wooden table frame covered by a heavy blanket which its heat source is underneath of the table (Korsi in Persia).

  4. 4.

    In the steady state, total loss of convection, conduction, and radiation is around 25.8% (5.6, 19.0, and 1.2%, respectively). Energy waste includes 29.0%, while combustion and unaccounted losses are 2.0 and 11.0%, respectively [26].

  5. 5.

    Multiplying the mass of fuel used in the LHV, and the whole is divided by burning time of fuel which specifies the firepower.

  6. 6.

    Increase the average of flow velocity improves heat transfer efficiency via changing the flow pattern from laminar [low Reynolds number (Re)] into the turbulence (high Re).

  7. 7.

    Lack of data belong to warm season.

  8. 8.

    Historical data during six months showed around 14% of food preparation requires the start-up phase.

Bibliography

  1. P. Action, Poor People’s Energy Outlook 2010 (Rugby, UK, 2010)

    Google Scholar 

  2. UNDP, World Energy Assessment: Energy and the Challenge of Sustainability (United Nations Development Programme, New York, 2000)

    Google Scholar 

  3. C.C. Lauren, The Stanford Natural Gas Initiative Framework for Understanding the Role for Natural Gas in Reducing Energy Poverty (Stanford University, CA, 2017)

    Google Scholar 

  4. M. González-Eguino, Energy poverty: An overview. Renew. Sustain. Energy Rev. 47, 377–385 (2015)

    Article  Google Scholar 

  5. UN, Practical Action: Policy and Practice_Total Energy Access, United Nations, [Online]. Available https://policy.practicalaction.org/policy-themes/energy/total-energy-access. Accessed 10 2017

  6. S. Groh, S. Pachauri, R. Narasimha, What are we measuring? An empirical analysis of household electricity access metrics in rural Bangladesh. Energy. Sustain. Dev. 30, 21–31 (2016)

    Article  Google Scholar 

  7. T. Sanchez, The Hidden Energy Crisis: How Policies are Failing the World’s Poor (Practical Action Publication, 2010)

    Google Scholar 

  8. S. Pachauri, Reaching an international consensus on defining modern energy access. Curr. Opin. Environ. Sustain. 3, 235–240 (2011)

    Article  Google Scholar 

  9. U. Nations, Transforming Our World: The 2030 Agenda for Sustainable Development (sustainabledevelopment.un.org, 2015)

    Google Scholar 

  10. R. Nadimi, K. Tokimatsu, Modeling of quality of life in terms of energy and electricity consumption. Appl. Energy 212, 1282–1294 (2017)

    Article  Google Scholar 

  11. R. Nadimi, K. Tokimatsu, Energy use analysis in the presence of quality of life, poverty, health. Energy 19, 657–663 (2018)

    Google Scholar 

  12. R. Nadimi, K. Tokimatsu, Renewable Energy Substitution Model and Environment Saving Preservation (Technologies and Eco-innovation towards Sustainability II, Springer Nature Singapore, 2019)

    Google Scholar 

  13. R. Nadimi, K. Tokimatsu, Potential energy saving via overall efficiency relying on quality of life. Appl. Energy 233–234, 283–299 (2019)

    Article  Google Scholar 

  14. P. Nussbaumer, M. Bazilian, V. Modi, Measuring energy poverty: Focusing on what matters. Renew. Sustain. Energy Rev. 16, 231–243 (2012)

    Article  Google Scholar 

  15. E. S. M. A. P. (ESMAP), Beyond Connections Energy Access Redefined (World Bank, Washington DC 20433, 2015)

    Google Scholar 

  16. R. Nadimi, K. Tokimatsu, in 10th International Conference on Applied Energy (ICAE2018). Fundamental energy needs quantification across poor households through simulation model (Hong Kong, China (under publication), 2018)

    Google Scholar 

  17. L.C. Culver, Energy Poverty: What You Measure Matters (Stanford University, California, 2017)

    Google Scholar 

  18. H. Shakouri, R. Nadimi, S.F. Ghaderi, A hybrid TSK-FR model to study short-term variations of the electricity demand versus the temperature changes. Expert Syst. Appl. 36, 1765–1772 (2009)

    Article  Google Scholar 

  19. L.T. Jr., A note on understanding cycle time. Int. J. Prod. Econ. 205, 113–117 (2018)

    Google Scholar 

  20. ASHRAE Handbook Fundamentals, Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers (Inc., 2009)

    Google Scholar 

  21. CIBSE, Degree-days: Theory and application (2006). [Online]. Available https://www.cibse.org/Knowledge/knowledge-items/detail?id=a0q20000008I73TAAS. Accessed 1 June 2018

  22. S. Guillén-Lambea, B. Rodríguez-Soria, J.M. Marín, Comfort settings and energy demand for residential nZEB in warm climates. Appl. Energy 202, 471–486 (2017)

    Article  Google Scholar 

  23. S. Purcell, Maximum Likelihood Estimation (20 05 2007). [Online]. Available http://statgen.iop.kcl.ac.uk/bgim/mle/sslike_1.html. Accessed 3 June 2018

  24. G. Marsaglia, Evaluating the Anderson-Darling distribution. J. Stat. Softw. 9(2), 730–737 (2004)

    Article  Google Scholar 

  25. Y. Yamaguchi, Y. Shimoda, in the 2nd Asia Conference of International Building Performance Simulation Association. Behavior Model of Occupants in Home based on Japanese National Time Use Survey (Nagoya, Japan, 2014)

    Google Scholar 

  26. D.J. Zube, Heat Transfer efficiency of biomass cookstoves (2010). [Online]. Available https://dspace.library.colostate.edu/bitstream/handle/10217/39344/2010_Summer_Zube_Daniel.pdf?sequence=1. Accessed 05 June 2018

  27. M. Bryden, D. Still, P. Scott, G. Hoffa, D. Ogle, R. Bailis, K. Goyer, Design Principles for Wood Burning Cook Stoves (Aprovecho Research Center—Advanced Studies in Appropriate Technology, 2010)

    Google Scholar 

  28. L. Gattei, A Study on the Fluid Dynamics of Domestic Gas Burners (University of Bologna, 2008)

    Google Scholar 

  29. K.K. Prasad, B. Frederiks, W. Floor, CookStove.net, BTG biomass technology group B.V. & The World Bank Group, [Online]. Available http://www.cookstove.net/needs/power.html. Accessed 8 June 2018

  30. Power Calculation, © Power-Calculation.com, [Online]. Available http://www.power-calculation.com/hot-water-heater-cost-energy-consumption.php. Accessed 8 June 2018

  31. G. S. O. R. Center, AccuWeather, Global Sales Office Rockefeller Center New York, NY, [Online]. Available https://www.accuweather.com/en/jp/machida-shi. Accessed 8 July 2018

  32. BizzEE, BizzEE Degree Days Weather Data for Energy Professionals, Degree Days.net, [Online]. Available https://www.degreedays.net/. Accessed 8 July 2018

  33. Timeanddate, @timeanddate.com, [Online]. Available https://www.timeanddate.com/sun/japan/tokyo. Accessed 8 July 2018

  34. R.J. Aristizabal, Estimating the Parameters of the Three-Parameter Lognormal Distribution (2012)

    Google Scholar 

  35. CORONA, Kerosene Fan Heater FH-2506, CORONA Japan, [Online]. Available https://www.corona.co.jp/en/products/fh2506.html. Accessed 2 June 2018

  36. CIBSE, Hydronic system design, [Online]. Available www.cibse.org/getmedia/76229a96-c37e-4d2f-b4f9…/Guide-B1-appendix.pdf.aspx. Accessed 12 June 2018

  37. A. S. f. P. Engineering, Domestic Water Systems, [Online]. Available https://aspe.org/sites/default/files/CPD_review_2015_Chapter6_errata.pdf. Accessed 12 June 2018

  38. K. Brozyna, A. Rapport, Measure Guideline: Transitioning to a Tankless Water Heater (U.S. Department of Energy, 2012)

    Google Scholar 

  39. H. Hendrickx, People’s showering habits revealed in survey, UK sustainable shower study_BBC, UK (2011)

    Google Scholar 

  40. e-Stat, Survey on Time Use and Leisure Activities, Japanese Government Statistics, 2016. [Online]. Available http://www.stat.go.jp/english/data/shakai/index.html. Accessed 8 July 2018

  41. S. Baurzhan, G.P. Jenkins, Off-grid solar PV: Is it an affordable or appropriate solution for rural electrification in Sub-Saharan African countries? Renew. Sustain. Energy Rev. 60, 1405–1418 (2016)

    Article  Google Scholar 

  42. C.L. Azimoh, P. Klintenberg, F. Wallin, B. Karlsson, C. Mbohwa, Electricity for development: Mini-grid solution for rural electrification in South Africa. Energy Convers. Manag. 110, 268–277 (2016)

    Article  Google Scholar 

  43. H. Ahlborg, L. Hammar, Drivers and barriers to rural electrification in Tanzania and Mozambique e Grid-extension, off-grid, and renewable energy technologies. Renew. Energy 61, 117–124 (2014)

    Article  Google Scholar 

  44. R.J. Aristizabal, Estimating the Parameters of the Three-Parameter Lognormal Distribution (Florida International University Digital Commons, Florida, USA, 2012)

    Book  Google Scholar 

  45. Risk Analysis and Simulation Add-In for Microsoft® Excel (Palisade Corporation, NY USA, 2016)

    Google Scholar 

  46. I. Basak, N. Balakrishnan, Estimation for the three-parameter gamma distribution based on progressively censored data. Stat. Methodol. 9, 305–319 (2012)

    Article  Google Scholar 

  47. C.C. Kokonendji, S.S. Zocchi, Extensions of discrete triangular distributions and boundary bias in kernel estimation for discrete functions. Stat. Probab. Lett. 80, 1655–1662 (2010)

    Article  Google Scholar 

  48. R.J. Beckman, G.L. Tiet jen, Maximum likelihood estimation for the beta distribution. J. Stat. Comput. Simul. 7, 253–258 (1978)

    Article  Google Scholar 

  49. N.C. Sagias, G.K. Karagiannidis, Gaussian class multivariate Weibull distributions: Theory and applications in fading channels. IEEE Trans. Inf. Theory 51(10), 3608–3619 (2005)

    Article  Google Scholar 

  50. G.R. Shorack, J.A. Wellner, Empirical Processes with Applications to Statistics (Wiley, New York, 1986)

    Google Scholar 

  51. S. Kotz, S. Nadarajah, Extreme Value Distributions: Theory and Applications (World Scientific Publishing Company, 2001)

    Google Scholar 

  52. T. Sanchez, A. Scott, Energy poverty: The hidden energy crisis, 2010. [Online]. Available www.practicalaction.org. Accessed 10 2017

  53. e. pdf_giz, Productive Use of Energy—PRODUSE A Manual for Electrification Practitioners (Eschborn, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Nadimi .

Appendices

Appendix 1: The Statistical Distributions Used in This Article (Shape (α), Scale (β), Mean (μ), Standard Deviation (σ), and Threshold (or Location) (γ) Parameters)

Name of distribution

Distribution function (f(x))

Expected value (E(X))

Variance (Var(X))

Reference

3-Parameter lognormal

\(\frac{{e^{{ - 0.5\left( {\frac{{\ln \left( {x - \gamma } \right) - \mu }}{\sigma }} \right)^{2} }} }}{{\left( {x - \gamma } \right)\sigma \sqrt {2\pi } }}\)

\(\upgamma + {\text{e}}^{{\left( {\mu + \frac{{\sigma^{2} }}{2}} \right)}}\)

\(({\text{e}}^{{\sigma^{2} }} - 1){\text{e}}^{{\left( {2\mu + \sigma^{2} } \right)}}\)

[44]

3-Parameter log-logistica

\(\frac{\alpha }{\beta }\left( {\frac{x - \gamma }{\beta }} \right)^{\alpha - 1} \left( {1 + \left( {\frac{x - \gamma }{\beta }} \right)^{\alpha } } \right)^{ - 2}\)

\(\upbeta \uptheta { \csc }\left(\uptheta \right) +\upgamma;\)

\(\uptheta = \frac{\pi }{\alpha }\;where\; \alpha > 1\)

\(\upbeta^{2}\uptheta \left[ {2{ \csc }\left( {2\uptheta} \right) - \theta { \csc }^{2} \left( \theta \right)} \right],\)

\(where\,\alpha > 2\)

[45]

3-Parameter Gammab

\(\frac{{\left( {x - \gamma } \right)^{\alpha - 1} }}{{\beta^{\alpha } \Gamma \left( \alpha \right)}}{\text{e}}^{{ - \frac{{\left( {x - \gamma } \right)}}{\beta }}}\)

\(\upgamma +\upalpha \upbeta\)

\(\upalpha \upbeta ^{2}\)

[46]

Triangular

\(\left\{ {\begin{array}{*{20}c} 0 & {x \le a} \\ {\frac{{\left( {x - a} \right)^{2} }}{{\left( {b - a} \right)\left( {c - a} \right)}}} & {a < x \le c} \\ {1 - \frac{{\left( {b - x} \right)^{2} }}{{\left( {b - a} \right)\left( {b - c} \right)}}} & {c < x < b} \\ 1 & {b \le x} \\ \end{array} } \right.\)

\(\frac{{{\text{a}} + {\text{b}} + {\text{c}}}}{3}\)

\(\frac{{{\text{a}}^{2} + {\text{b}}^{2} + {\text{c}}^{2} - ab - - ac - bc}}{18}\)

[47]

Beta

\(\begin{aligned} & \frac{1}{{B\left( {\alpha _{1} ,\alpha _{2} } \right)}}\frac{{\left( {x - p} \right)^{{\alpha _{1} - 1}} \left( {q - x} \right)^{{\alpha _{2} - 1}} }}{{\left( {q - p} \right)^{{\alpha _{1} + \alpha _{2} - 1}} }}, \\ & \quad p \le x \le q \\ \end{aligned}\)

\({\text{p}} + \left( {{\text{q}} - {\text{p}}} \right)\frac{{\alpha_{1} }}{{\alpha_{1} + \alpha_{2} }}\)

\(\left( {{\text{q}} - {\text{p}}} \right)^{2} \left[ {\frac{{\alpha_{1} \alpha_{2} }}{{\left( {\alpha_{1} + \alpha_{2} } \right)^{2} \left( {\alpha_{1} + \alpha_{2} + 1} \right)}}} \right]\)

[48]

Weibull

\(\frac{\alpha }{\beta }\left( {\frac{x - \gamma }{\beta }} \right)^{\alpha - 1} {\text{e}}^{{ - \left( {\frac{x - \gamma }{\beta }} \right)^{\alpha } }}\)

\(\upgamma +\upbeta\,\Gamma \left( {1 + \frac{1}{\alpha }} \right)\)

\(\upbeta^{2} \left[ {\Gamma \left( {1 + \frac{2}{\alpha }} \right) - \left( {\Gamma \left( {1 + \frac{1}{\alpha }} \right)} \right)^{2} } \right]\)

[49]

Uniform

\(\frac{1}{{x_{max} - x_{min} }}\)

\(\frac{{x_{min} + x_{max} }}{2}\)

\(\frac{{\left( {x_{max} - x_{min} } \right)^{2} }}{12}\)

[45]

Empirical function

\(f_{t} = \frac{{\mathop \sum \nolimits_{i = 1}^{k} I\left( {x_{i} \le t} \right)}}{n};\)

\(I\left( x \right) = \left\{ {\begin{array}{*{20}c} 1 & {x \le t} \\ 0 & {x > t} \\ \end{array} } \right.\)

\(\frac{{\mathop \sum \nolimits_{i = 1}^{n} x_{i} }}{n}\)

\(\left( {\frac{n}{n - 1}} \right)\left( {\frac{{\mathop \sum \nolimits_{i = 1}^{n} \left( {x_{i} - E\left( x \right)} \right)^{2} }}{n}} \right)\)

[50]

Generalized Extreme Value

\(\left\{ {\begin{array}{*{20}c} {\frac{1}{\beta }\left[ {1 + \alpha \left( {\frac{x - \gamma }{\beta }} \right)} \right]^{ - 1 - 1/\alpha } {\text{e}}^{{\left( { - \left( {1 + \alpha \left( {\frac{x - \gamma }{\beta }} \right)} \right)^{ - 1/\alpha } } \right)}} } & {\alpha \ne 0} \\ {\frac{1}{\beta }{\text{e}}^{{\left( { - \left( {\frac{x - \gamma }{\beta }} \right) - {\text{e}}^{{ - \left( {\frac{x - \gamma }{\beta }} \right)}} } \right)}} } & {\alpha = 0} \\ \end{array} } \right.\)

[51]

\(E\left( x \right) = \left\{ {\begin{array}{*{20}c} {\gamma + \beta \frac{{\left( {\Gamma \left( {1 - \alpha } \right) - 1} \right)}}{\alpha }} & {\alpha \ne 0,\, \alpha < 1} \\ {\gamma + 0.577 \times \beta } & {\alpha = 0} \\ \infty & {\alpha \ge 1} \\ \end{array} } \right.\)

\(Var\left( x \right) = \left\{ {\begin{array}{*{20}c} {\beta^{2} \frac{{\left[ {\Gamma \left( {1 - 2\alpha } \right) -\Gamma ^{2} \left( {1 - \alpha } \right)} \right]}}{{\alpha^{2} }}} & {\alpha \ne 0, \,\alpha < 0.5} \\ {\beta^{2} + \frac{{\pi^{2} }}{6}} & {\alpha = 0} \\ \infty & {\alpha \ge 0.5} \\ \end{array} } \right.\)

  1. a“csc” stands for Cosecant function
  2. bErlang distribution is a special case of the Gamma distribution where the shape parameter is a positive integer

Appendix 2: Parameter Values of the Statistical Distributions

Activity Name

Distribution (Time use)

Parameters

Distribution (Frequency of activity)

Parameters

Meal

3-Parameter lognormal

σ = 0.55581, μ = 3.8218, γ = 8.5225

Normal

μ = –1.715, σ = 52.18

Food warm-up/start-up

Generalized extreme value

α = 0.24398, β = 1.7941, γ = 16.923

Boiling water

Uniform

Xmin = 3, Xmax = 6

Uniform

Xmin = 1, Xmax = 60

TV

Beta

α1 = 1.5993, α2 = 3.285, p = 7.2, q = 404.0

Uniform

Xmin = 120, Xmax = 180

Bath

3-Parameter lognormal

σ = 0.4345, μ = 2.466, γ = 6.738

3-Parameter log-logistic (Waking hours)

α = 2.174, β = 91.914, γ = 891.04

Shower

3-Parameter log-logistic

α = 5.7257, β = 7.5957, γ = 0

Hand washing clothes

Triangular

a = 42.855, b = 74.0, c = 76.957

Mobile charging

Gamma

α = 1.2509, β = 55.079, γ = 41.568

Hand dishwashing

Gamma

α = 5.1821, β = 1.3207, γ = 0

Dwelling bulb

3-Parameter log-logistic

α = 7.5928, β = 274.08, γ = 63.784

Kitchen bulb

Erlang

α = 1, β = 15.581, γ = 10.0

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadimi, R. (2019). Fundamental Energy Needs Quantification for QoL Improvement. In: Relationship Between Quality of Life and Energy Usage. Springer, Singapore. https://doi.org/10.1007/978-981-13-7840-9_5

Download citation

Publish with us

Policies and ethics